Computer Architecture

Instruction Level Parallelism

Outline

 Instruction Level Parallelism (2.1)

« Compiler techniques for Exposing ILP (2.2)
 Reducing Branch Costs with Prediction (2.3)

 Overcoming Data Hazards with Dynamic
Scheduling (2.4)

 Dynamic Scheduling: Examples and the
Algorithm (2.5)

« Hardware-Based Speculation (2.6)

« Exploiting ILP using Multiple Issue and Static
Scheduling (2.7)

« Exploiting ILP using Dynamic Scheduling,
Multiple Issue, and Speculation (2.8)

2007/4/25

Speculation to greater ILP

 Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct

— Speculation = fetch, issue, and execute instructions as if
branch predictions were always correct

— Dynamic scheduling = only fetches and issues
Instructions

 Essentially a data flow execution model:
Operations execute as soon as their operands are
available

2007/4/25 3

Speculation to greater ILP

« 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
Instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

2007/4/25

Adding Speculation to Tomasulo

Must separate execution from allowing
Instruction to finish or “commit”

This additional step called instruction commit

When an instruction is no longer speculative,
allow it to update the register file or memory

Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated

2007/4/25

Reorder Buffer (ROB)

* In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
Instructions will find result in the register file

« With speculation, the register file is not updated
until the instruction commits
— (we know definitively that the instruction should execute)

 Thus, the ROB supplies operands in interval
between completion of instruction execution and
Instruction commit

— ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

— ROB extends architectured registers like RS

2007/4/25

Reorder Buffer Entry

« Each entry in the ROB contains four fields:

1. Instruction type

« abranch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination

 Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value
« Value of instruction result until the instruction commits
4. Ready

* Indicates that instruction has completed execution, and the
value is ready

2007/4/25

Reorder Buffer operation

Holds instructions in FIFO order, exactly as issued

When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station

Instructions commit =values at head of ROB placed in

registers [

As aresult, easy to undo Reorder
speculated instructions Buffer
on mispredicted branches
Or on exceptions

Commit path *1

[Res Stationsd] [Res Stations]

EP_AL:IL:IQIIEP_?ddﬂd

2007/4/25 8

Recall: 4 Steps of Speculative Tomasulo
Algorithm

1.Issue—qget instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute,
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

2007/4/25

Wait until Action or bookkeeping

if (RegisterStat[rs].Busy)/*in-flight instr. writes rs¥/
{h « RegisterStat[f.aeorder;
if (ROBEh].Ready)é; Instr completed already *{
(RS[r].vj « ROB[h].value; RS[r].Qi « 0O;
else {RS[r].Qj « h;} /* wait for instruction */
) else (RS[rl.Vj « Regs[rs]; RS[r].Qj « 0:}:

“station (r) RS[r].Busy « yes; RS[r].Dest « b;
E'B’a) ROB[b]. Instruction « opcode; ROB[b].Dest « rd;ROB[b].Ready « no;
both available if fRegisterStat[rt].Bus) /*in-flight instr writes rt*/

3 h negisterStattrti/.Reord'er;

if (ROB h].Ready] * Instr completed already *{
{RS[r].Vk « ROB[h].value; RS[r].Qk « O;
else {RS[r].Qk « h;) /= wait for instruction */
} else {RS[r].Vk « Regs{rt]; RS[r].Qk « 05};

RegisterStat[rd] .Reorder « b; RegisterStat[rd].Busy « yes;
ROB[b] .Dest + rd;

RS[r].A « fmm; RegisterStat[rt].Reorder «b;
RegisterStat[rt] .Busy « yes; ROB[b] .Dest « rt;

RS[r].A « imm;

(RS[r].Qj==0)and Compute results—operands are in Vj and Vk
(RS[r].Qk =)

(RS[r)Qj==0yand RS[r].A « RS[r].vj + RS[r].A;
there are no stores
earlier in the queve

Loud step | done Read from Mem[RS[r].A]
und all stores earlier

in ROB have

different address

(RS[r].Qj == 0)and ROB[h] .Address « RS[r].vj + RS[r].A;
store at quene head

Exécution doneat r b « RS[r].Dest; RS[r].Busy ¢« noj

and CDB available in‘lf (RS[&] .Qi==b) {RSPIV.V:} « result; RS[x 0 - G”;
wx(if (RS[x].Qk==b) (RS[x].Vk « result; RS[x].Qk « 0});
ROB[b] .Value « result; ROB[b].Ready « yes;

Execution done st r ROB[h] .Value « RS[r].Vk;

and (RS[r).Qk =

0

Instruction is at the d « ROB[h] .Dest; /* register dest, if exists */
» head of the ROB 1f {ma h] . Instruction==Branch

(entry h) and if {branch is mispredicted
ROB[h] ready = {clear nuafh]. RegisterStat; fetch branch dest;}:l
yes else if (ROB_Eh .Instruction==Store)

{Mem[ROB[h] .Destination] « ROB[h].Value;]

else /* put the result in the register destination */
gi]!gsfd] — mﬁ[?]_.’;a'lue;};mn y
ROB[h] .Busy + no; /* free up entry *
2007/4/25 /* free up dest register if no one else writing it */
if (RegisterStat[d].Reorder==h) {RegisterStat[d].Busy « no;};

Tomasulo With Reorder buffer:

Reorder Buffer

Registers

Dest

- Reservation
Stations
00/7/4

FP Op
Queue

Done?

ROB7 Newest

ROB6

ROB5

ROB4

ROB3

ROBZR Oldest

FO LD FO, 10(R2)
Dest

N | roB1

Memory

from
Memory

Dest *

10+R2

Tomasulo With Reorder buffer:

FP Op
Queue

Reorder Buffer

Registers

Dest
2 R FA) . ROE

-

Done?

ROB7 Newest

ROB6

ROB5

ROB4

ROB3

F10

ADDD F10, F4, FO

N | rOB2

Oldest

FO

LD FO, 10(R2)

]

Dest

Reservation
Stations

N | roB1

Memory

from
Memory

Dest *

10+R2

Tomasulo With Reorder buffer:

Done?

FP Op

ROB7 Newest

Queue

ROB6

ROB5

ROB4

Reorder Buffer

F2

DI VD F2, F10, F6 | N JrROB3

F10

ADDD F10, F4, FO | N [roB2 Oldest

FO

LD FO, 10(R2) N [roB1

Dest
2 R FA) . ROE

Dest
3 DI VD]

X087,

Registers I To
Memory

from
~ Memory

- Reservation
Stations
00/7/4

. Dest *

1 |10+R2

Tomasulo With Reorder buffer:

Done?

ROB7 Newest

ROB6

ROB5

ROB4

ROB3

ROBZR Oldest

FP Op
Queue = ADDD FO, F4,F6 [N
=) LD F4, 0(R3) N
- BNE F2, <.> N
Reorder Buffer |- DIVD F2, F10, F6 [N
F10 ADDD F10, F4, FO [N
FO LD FO, 10(R2) N

ROB1

Registers I To
Memory
Dest E— Dest from
B v nal iR ez At 3 [VDIROBZ, R(FE Memory
Desf*

- Reservation
Stations
00/7/4

1]10+R2

0+R3

FP Op
Queue

Tomasulo With Reorder buffer:

Reorder Buffer |=

Done?

o+rR3] ROB5 | ST O(R3), F4 N JROB7 Newest
FO ADDD FO, F4, F6 | N |[ROBé6
F4 LD F4, O(R3) N [roe5

BNE F2, <.> N | ROB4
F2 DI VD F2, F10, F6 | N frROR3
10 ADDD F10, F4, FO | N | roB2 Oldest
FO LD FO, 10(R2) N [roB1

Registers To
Memory
D;St ~ T T Dest from
6 JADDDIROBS, R = 3 DI VDTROBZ, R F6 Memory
Desf*

U0 /14

Reservation
Stations

1]10+R2

0+R3

Tomasulo With Reorder buffer:

FP Op
Queue

Reorder Buffer

Registers

Dest
2)

A
6 _|ADDD[M 10[

Y I
»

U0 /14

Reservation
Stations

Dest
3 DI VD]

]

O 1
»

Memory

from
~ Memory

Dest *

1 |10+R2

Done?
p+R3) M 10] | ST O(R3), F4 Y [ROB7 Newest
FO ADDD FO, F4, F6 | N ||RoBé
F4| M 10] | LD F4, O(R3) Y |RoB5
- - BNE F2, <.> N | ROB4
F2 DI VD F2, F10, F6 | N | rROB3
F10 ADDD F10, F4, FO | N froB2 Oldest
FO LD FO, 10(R2) | N lrog:

Tomasulo With Reorder buffer:

Done?
FP Op o+r3l M 10] | ST O(R3), F4 Y |ROB7 Newest
Queue FO|<val 2>| ADDD FO, F4, F6 |Ex|ROBé6
F4| M 10] | LD F4, 0(R3) Y JroB5
- BNE F2, <.> N [lroB4
Reorder Buffer F2 DI VD F2, F10, F6 | N |ROB3
F10 ADDD F10, F4, FO [N|Ro82 | oidest
FO LD FO, 10(R2) N Jroe1

Dest

2 » / ! Q=

Dest
3 DI VD]

O 1
»

Registers I To
Memory

from
~ Memory

- Reservation
Stations
00/7/4

. Dest *

1 |10+R2

Tomasulo With Reorder buffer:

FP Op
Queue

Reorder Buffér

What about memory
hazards???

Dest

A
3

Registers

Y I
»

-

Dest

3

[VDROB?,

Reservation
Stations

Done?
o+rR3l M 10] | ST O(R3), F4 Y JROB7
FO|<val 2>| ADDD FO, F4, F6

8 LD F4, 0(R3) Y

ANE F2, <.> N

DI vQ F2, F10, F6 | N

F10 ADDD W10, F4, FO | N
LD FO, IN(R2) N

Newest

Oldest

Implication (Example in

ext Book)

« The processor with the ROB can dynamically
execute code while maintaining a precise interrupt

model.

— For example, if the MUL.D instruction caused an interrupt, we
could simply wait until it reached the head of the ROB and take the
interrupt, flushing any other pending instructions from the ROB.
Because instruction commit happens in order, this yields a precise

exception.

— In the example using Tomasulo’s algorithm, the SUB.D and ADD.D
instructions could both complete before the MUL.D raised the

exception.

2007/4/25

19

Avoiding Memory Hazards

2007/4/25

WAW and WAR hazards through memory are
eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

RAW hazards through memory are maintained
by two restrictions:

1. not allowing a load to initiate the second step of its execution
if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an

effective address of aload with respect to all earlier stores.
these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data

20

Outline

 Instruction Level Parallelism (2.1)

« Compiler techniques for Exposing ILP (2.2)
 Reducing Branch Costs with Prediction (2.3)

 Overcoming Data Hazards with Dynamic
Scheduling (2.4)

 Dynamic Scheduling: Examples and the
Algorithm (2.5)

 Hardware-Based Speculation (2.6)

« Exploiting ILP using Multiple Issue and Static
Scheduling (2.7)

« Exploiting ILP using Dynamic Scheduling,
Multiple Issue, and Speculation (2.8)

2007/4/25

Getting CPI below 1

« CPI>=1ifissue only 1instruction every clock cycle

— The goal of the multiple-issue processors is to allow multiple
instructions to issue in a clock cycle.

 Multiple-issue processors come in 3 flavors:
1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors

2007/4/25 22

Multiple-Issue Processors

« 2types of superscalar processors issue varying
numbers of instructions per clock

— use in-order execution if they are statically scheduled,
or

— out-of-order execution if they are dynamically
scheduled

 VLIW processors, in contrast, issue a fixed
number of instructions formatted either as one
large instruction or as a fixed instruction packet
with the parallelism among instructions explicitly

Indicated by the instruction (Intel/HP Itanium —lA-
63)

2007/4/25 23

VLIW: Very Large Instruction Word

« Each “instruction” has explicit coding for multiple
operations
— In IA-64, grouping called a “packet”
— In Transmeta, grouping called a “molecule” (with “atoms” as ops)

« Tradeoff instruction space for simple decoding

— The long instruction word has room for many operations

— By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

— E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
— Need compiling technique that schedules across several branches

2007/4/25 24

Recall: Unrolled Loop that Minimizes
Stalls for Scalar

2007/4/25

1Loop: L.D

2 L. D

3 L. D

4 L. D

5 ADD. D
6 ADD. D
7 ADD. D
38 ADD. D
9 S.D
10 S.D
11 S.D
12 DSUBUI
13 BNEZ
14 S.D

FO, O(R1)
F6, - 8(RL)
F10, - 16(R1)
F14, - 24(R1)
F4, FO, F2
F8, F6, F2
F12, F10, F2
F16, F14, F2
O(RL), F4
-8(RL), F8
-16(R1), F12
RL, R1, #32
R1, LOOP
8(R1), F16

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

= -24

14 clock cycles, or 3.5 per iteration

25

Loop Unrolling in VLIW

:ﬁ:‘r;ﬁe 1 :-E:::If]ie 2 FP operation 1 FP operation 2 Ic:r::zgz?criﬂnfbranch
L.D F0,0(R1) L.D F6,-8(R1)
L.D F10,-16(R1) | L.D F14,-24(R1)
L.D F18,-32(R1) | L.D F22,-40(R1) | ADD.D F4,F0, F2 ADD.D FB,F6, F2
L.D F26,-48(R1) ADD.D F12,F10,F2 | ADD.D F16,F14,F2
ADD.D F20,F18,F2 | ADD.D F24 F23,F2
5.D F4,0(R1) 5.0 F8,-6(R1) ADD.D F28,F26,F2
5.D F12,-16(R1) | 5.D F16,-24(R1) DADDUI R1,R1,#-56
5.D F20,24(R1) | 5.D F24,16(R1)
5.D F2a,8(R1) BNE E1,R2,Loop

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15)

2007/4/25

26

Problems with 1st Generation VLIW

* Increase in code size

— generating enough operations in a straight-line code fragment
requires ambitiously unrolling loops

— whenever VLIW instructions are not full, unused functional
units translate to wasted bits in instruction encoding

To combat this code size increase, clever encodings are
sometimes used.

Another technigue is to compress the instructions in main
memory and expand them when they are read into the
cache or are decoded.

2007/4/25 27

Problems with 1st Generation VLIW

 Operated in lock-step; no hazard
detection HW

— A stall in any functional unit pipeline caused entire
processor to stall, since all functional units must be
kept synchronized

— Compiler might prediction function units, but caches
hard to predict

* Binary code compatibility

— Pure VLIW =» different numbers of functional units and
unit latencies require different versions of the code

2007/4/25

28

Intel/HP 1A-64 “Explicitly Parallel
Instruction Computer (EPIC)”

|A-64: instruction set architecture
128 64-bit integer registers + 128 82-bit floating point registers

Hardware checks dependencies
(interlocks => binary compatibility over time)

Extension for more aggressive software speculation
Preserving binary compatibility

Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

ltanium ™ was first implementation (2001)

— Highly parallel and deeply pipelined hardware at 800Mhz

— 6-wide, 10-stage pipeline at 800Mhz on 0.18 4 process
ltanium 2™ is name of 2nd implementation (2005)

— 6-wide, 8-stage pipeline at 1666Mhz on 0.13 p process

— Caches: 32KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

2007/4/25 29

Outline

 Instruction Level Parallelism (2.1)
« Compiler techniques for Exposing ILP (2.2)
 Reducing Branch Costs with Prediction (2.3)

 Overcoming Data Hazards with Dynamic
Scheduling (2.4)

 Dynamic Scheduling: Examples and the
Algorithm (2.5)

 Hardware-Based Speculation (2.6)

« Exploiting ILP using Multiple Issue and Static
Scheduling (2.7)

« Exploiting ILP using Dynamic Scheduling,
Multiple Issue, and Speculation (2.8)

2007/4/25

Put All Together

« To gain the full advantage of dynamic scheduling we
will allow the pipeline to issue any combinations in a
clock, using the scheduling hardware to actually

assign operations to the integer and floating-point
unit.

« Speculation can be advantageous when there are
data-dependent branches, which otherwise would
limit the performance.

2007/4/25

31

Put All Together (cont.)

« Consider the execution of the following loop, which
Increments each element of an integer array, on a
two Issue processor, once without speculation and
once with speculation:

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2 ,R2,#1 ;increment R2
sD R2,0(R1) ;store result
DADDIU R1,R1,#8 ;increment pointer
ENE R2 ,R3,Loop ;branch if not last element

e Assumptions:

— Separate integer functional units for effective address calculation,
for ALU operations, and for branch condition evaluation.

— Up to two instructions of any type can commit per clock.

2007/4/25

32

Two-Issue Dynamically Scheduled
ation (1)

Processor without Specu

|ssues at | Executes Memory Nrite CDB

lteration : clock at clock access at at clock

number hulnlol cycle cycle clock cycle cycle Bl =y
number number number number

1 LD RZ,0(R1) 1 First issue

1 DADDIT R2,B2,#1 1

1 5D RZ,0(R1)

1 DADDIT R1,R1,#8

1 ENE E2 ,R3,LOOCE

2 LD E2,0{(R1)

2 DADDTITD R2,R2,#1

2 5D E2,0(R1)

2 DADDTIT R1,EB1,#8

2 BHE E2 ,R3,LOOCPE

3 LD R2,0(R1)

3 DADDITO R2,B2,#1

3 SD R2,0(R1)

3 DADDIT R1,R1,#8

3 ENE E2 ,R3,LOOCE

2007/4/25

33

Two-Issue Dynamically Scheduled

Processor without Speculation (2)
lssues at | Executes Memory | Write CDB

Iteration : clock at clock access at at clock

number Instructions cycle cycle clock cycle cycle Comment
number number number number

1 LD R2,0(R1) 1 2 First issue

1 DADDIT R2 R2, #1 1 Wait for LD

1 5D B2, 0(R1) 2

1 DADDIT Rl ,RB1,#8 2

1 BNE B2 B3 ,LOOF

2 LD B2 ,0(R1)

2 DADDIU R2,R2,#1

2 SD B2 ,0(R1)

2 DADDIU R1,R1,#8

2 BNE B2 ,R3,LO0OPE

3 LD B2 O(R1)

3 DADDIT R2 B2 ,#1

3 sD B2, 0(R1)

3 DADDIT Rl ,RB1,#8

3 BHE B2 B3,LOCF

2007/4/25

34

Two-Issue Dynamically Scheduled

Processor without Speculation (3)
lssues at | Executes Memaory Vrite CDB

lteration : clock at clock access at at clock

number Instructions cycle cycle clock cycle cycle Comment
number number number number

1 LD R2,0(E1) i 2 3 First issue

1 DADDIU R2,R2,#1 1 Wait for LD

1 SDhr E2,0(R1) 2 3

1 DADDIT R1,R1,#8 2 3 Execute directly

1 BHE B2 B3, LOOF 3

2 LI E2,0(R1)

2 DADDIT R2,R2,#1

2 5D R2,0(R1)

2 DADDIT R1,R1,#8

2 BNE RZ,R3,LOCP

3 LD R2,0 (R1)

3 DADDIT R2 R2,#1

3 SDhr E2,0(R1)

3 DADDIT R1,B1,#8

3 BHE B2 B3, LOOF

2007/4/25

35

Two-Issue Dynamically Scheduled

Processor without Speculation (4)
lssues at | Executes Memory Write CDB
lteration Instructions clock at .=:.In::|:k access at at clock Comment
number cycle cycle clock cycle cycle
number number number number
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU R2 ,R2,#1 1 Wait for LD
1 5D B2 0(R1) 2 Wait for DADDIU
1 DADDIT R1,R1,#6 2 4 Execute directly
1 BHE B2 B3, LOOP 3 Wait for DADDIU
2 LD B2 ,0(R1) 4
2 DADDIT R2 ,R2,#1 4
2 SD R2,0(R1)
2 DADDIT E1,R1,#8
2 BHE B2 B3, LOOP
3 LD R2,0(R1)
3 DADDIT R2 R2,#1
3 5D B2, 0(R1)
3 DADDIT E1,R1,#8
3 BNE E2 ,R3,LOOP

2007/4/25

36

Two-Issue Dynamically Scheduled

Processor without Speculation (5)
Issues at | Executes Memory Nrite CDB
lteration Instructions clock at clock acces_&_at at clock Comment
number cycle cycle clock cycle cycle
number number number number
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIT R2 ,R2 41 1 5 Wait for LD
1 5D E2,0(R1) 2 3 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE R2 ,R3,LOOP 3 Wait for pDADDTIU
2 LD R2,0 (E1) 4 Wait for BNE
2 DADDIT R2,R2,#1 4 Wait for LD
2 SD R2,0(R1) 5
2 DADDIT R1 ,R1 48 5
2 BHE B2 ,R3,LOOP
3 LD E2,0(R1)
3 DADDIT R2 , B2, #1
3 SD R2,0(RE1)
3 DADDIU R1,R1, 48
3 BHE E2 B3, LOOP

2007/4/25

37

Two-Issue Dynamically Scheduled

Processor without Speculation (6)
lssues at | Executes Memory Write CDB
lteration . clock at clock access at at clock
number Instructions cycle cycle clock cycle cycle Comment
number number number number
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU B2 ,R2,#1 1 5 6 Wait for LD
1 SD B2 ,0(R1) 2 3 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE E2 B3 ,LOOP 3 Wait for DADDIU
2 LD B2 ,0(R1) 4 Wait for BNE
2 DADDIT R2 R2,#1 4 Wait for LD
2 5D B2 ,0(R1) 5 Wait for DADDIU
2 DADDIT R1,E1,4#8 5 Wait for BNE
2 ENE R2 ,R3,LOOP G
3 LD E2,0(R1)
3 DADDIU R2 ,R2,#1
3 sD R2,0(R1)
3 DADDIT R1 . R1,#8
3 BNE E2 B3 ,LOOP
2007/4/25 38

Two-Issue Dynamically Scheduled

Processor without Speculation (7)
Issues at | Executes Memaory Nrite CDB
lteration : clock at clock access at at clock
number Instructions cycle cycle clock cycle cycle Comment
number number number number
1 LD RZ,0(R1) 1 2 3 4 First issue
1 DADDIU R2,R2,#1 1 5 B Wait for LD
1 SD R2,0(R1) 2 3 7 Wait for DADDIO
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BHE B2 B3, LOOP 3 [Wait for DADDIU
2 LD B2 ,0(E1) 4 Wait for BHE
2 DADDIT R2,B2,#1 4 Wait for LD
2 5D R2,0(R1) 5 Wait for DADDTIU
2 DADDIT R1,R1,#8 5 Wait for BHE
2 BNE RZ2,R3,LOOP G Wait for DADDIU
3 LD RZ ,0(R1) T
3 DADDIT R2 ,R2, 41 I
3 5D E2,0(E1)
3 DADDIT R1,RB1,#8
3 BHE B2 ,R3,LOOP

2007/4/25

39

Two-Issue Dynamically Scheduled

Processor without Speculation (8)
Issues at | Executes Memory | Write CDB
Iteration Instructions clock at .::.Ion:k access af at clock Comment
number cycle cycle clock cycle cycle
number number number number

1 LD R2,0(R1) 1 2 3 4 First issue

1 DADDIU R2 ,R2,#1 1 5 6 Wait for LD

1 SD B2 ,0({R1) 2 3 T Wait for DADDTU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE E2 ,R3,LOOF 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 A Wait for BNE

2 DADDIU R2,R2,#1 4 Wait for LD

2 SD R2,0(R1) 5 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 Wait for BNE

2 BNE B2 ,R3,LOOP [Wait for DADDID
3 LD R2,0(R1) 7 Wait for BNE

3 DADDIU R2,R2,#1 7 Wait for LD

3 5D R2,0(R1) 8

3 DADDIU R1,R1,#8 8

3 BNE B2 ,R3,LOOP

2007/4/25

40

Two-Issue Dynamically Scheduled

Processor without Speculation (9)

Issues at | Executes Memaory Nrite CDB
lteration Instructions clock at clock an::n:esla.at at clock Comment
number cycle cycle clock cycle cycle

number number number number
1 LD R2,0(R1) 1 2 3 4 First iIssue
1 DADDIU R2,R2,#1 1 5 6 Wait for LD
1 SD R2,0(R1) 2 3 7 Wait for DADDID
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BHE E2 B3, LOOPF 3 i Wait for DADDIU
2 LD R2,0(R1} 4 a8 9 Wait for BHE
2 DADDIT R2,R2,#1 4 Wait for LD
2 SD R2,0(R1) b 9 Wait for DADDID
2 DADDIT R1,R1,#8 b 9 Wait for BHE
2 ENE E2 ,R3,LOGP G Wait for DADDIU
3 LD E2,0(R1) 7 Wait for BRE
3 DADDIT R2 ,R2,#1 7 Wait for LD
3 sD R2,0(R1) a Wait for DADDTIUD
3 DADDIT R1,R1,#8 g Wait for BHE
3 ENE E2 ,R3,LOGP 9

2007/4/25

41

Two-Issue Dynamically Scheduled

Processor without Speculation (10)
lssues at | Executes Memory | Write CDB
Iteration . clock at clock access at at clock
number Lol cycle cycle clock cycle cycle L
number number number number
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU R2,R2,#1 1 h 6 Wait for LD
1 SD R2,0(R1) 2 3 7 Wait for DADDIUT
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BENE E2,R3,LOOP 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 g 9 10 Wait for BNE
2 DADDIU R2,R2,#1 4 Wait for LD
2 SD F2,0(R1) 5 9 Wait for DADDIU
2 DADDIU R1,R1,#8 5 g 9 Wait for BNE
2 BNE E2 ,R3,LOOP 6 Wait for DADDIU
3 LD F2,0(R1) 7 Wait for BNE
3 DADDIU R2,R2,#1 T Wait for LD
3 SD E2,0(R1) 8 Wait for DADDIU
3 DADDIU R1,R1,#8 8 Wait for BNE
3 BNE R2 ,R3,LOOP g Wait for DADDIU

2007/4/25

42

Two-Issue Dynamically Scheduled

Processor without Speculation (11)
Issues at | Executes Memaory Nrite COB
lteration . clock at clock access at at clock
number Instructions cycle cycle clock cycle cycle Comment
number number number number
1 LD R2,0(R1) i 2 3 4 First issue
1 DADDIU R2,R2,4#1 1 5 B Wait for LD
1 5D R2,0(R1) 2 3 il Wait for DADDIU
1 DADDIT R1,R1,#48 2 3 4 Execute directly
1 BNE RZ ,R3,LOOP 3 i Wait for DADDID
2 LD RZ,0(R1) 4 a8 9 10 Wait for BNE
2 DADDIUT R2,R2,#1 4 11 Wait for LD
2 sD R2,0(R1)) Wait for DADDIU
2 DADDIU R1,R1,#8 5 9 Wait for BNE
2 ENE R2,R3,LOOP B Wait for DADDIU
3 LD R2,0(R1) i Wait for BNE
3 DADDIT R2,R2,#1 i Wait for LD
3 5D R2,0(E1) 8 Wait for DADDIU
3 DADDIT R1,R1,#48 g Wait for BHNE
3 BNE E2,R3,LOOP g Wait for DADDIUD

2007/4/25

43

Two-Issue Dynamically Scheduled

Processor without Speculation (12)
lssues at | Executes Memory | Write CDB
Iteration Instructions clock at .c.ln::-n:k access at at clock Comment
number cycle cycle clock cycle cycle
number number number number

1 LD E2,0(R1) 1 2 3 4 First issue

1 DADDIU B2 ,R2,#1 1 5 6 Wait for LD

1 sD B2 ,0(R1) 2 3 7 Wait for DADDTIU
1 DADDIT R1,R1,#8 2 3 4 Execute directly
1 BNE R2 ,R3,LOOP 3 7 Wait for DADDID
2 LD R2,0(R1) 4 8 9 10 VW ait for BNE

2 DADDIU R2 ,R2,#1 4 11 12 Wait for LD

2 SD E2,0(R1) 5 9 Wait for DADDIU
2 DADDIU E1,R1,#8 5 9 Wait for BNE

2 BNE R2 ,R3,LOOP [Wait for DADDIU
3 LD R2,0(R1) 7 Wait for BNE

3 DADDIT R2,R2,#1 7 Wait for LD

3 sD R2,0(R1) 8 Wait for DADDIU
3 DADDIU E1,R1,#8 8 Wait for BNE

3 ENE E2,R3,LOOP 9 Wait for DADDIU

2007/4/25

Two-Issue Dynamically Scheduled

Processor without Speculation (13)
lssues at | Executes Memaory Nrite CDB
lteration Instructions clock at clock an::n:es.a. at at clock Comment
number cycle cycle clock cycle cycle
number number number number

1 LD R2,0(R1) i 2 3 4 First issue

1 DADDIU R2,R2,4#1 1 5 B Wait for LD

1 SD R2,0(R1) 2 3 T Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE R2,R3,LOOP 3 7 Wait for DADDIO
2 LD R2,0(R1) 4 8 9 10 Wait for BHE

2 DADDIU R2,R2,#1 4 1" 12 Wait for LD

2 SD R2,0(R1)) 9 13 Wait for DADDIO
2 DADDIT R1,R1,#8 5 9 Wait for BHE

2 BNE R2,R3,LOOP 5 13 Wait for DADDIU
3 LD R2,0(R1) 7 Wait for BHE

3 DADDIU R2,R2,#1 7 Wait for LD

3 sD E2,0(R1) 8 Wait for DADDIU
3 DADDIT R1,R1,#8 g8 Wait for BNE

3 BNE B2 ,R3,LOOP g Wait for DADDIU

2007/4/25

45

Two-Issue Dynamically Scheduled

Processor without Speculation (14)
lssues at | Executes Memory | Write CDB
Iteration . clock at clock access at at clock
number Instructions cycle cycle clock cycle cycle Comment
number number number number

1 LD R2,0(R1) 1 2 3 4 First issue

1 DADDIU R2,R2,#1 1 b 6 Wait for LD

1 5D R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE R2 ,R3,LOOP 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE

2 DADDIU R2,R2,#1 4 11 12 Wait for LD

2 SD R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE

2 BNE R2 ,R3,LOOP G 13 Wait for DADDIUT
3 LD R2,0(R1) 7 14 Wait for BNE

3 DADDIU R2,R2,#1 7 Wait for LD

3 SD R2,0(R1) 8 Wait for DADDIU
3 DADDIU R1,R1,#8 8 14 Wait for BNE

3 ENE F2 ,R3,LOOP 9 Wait for DADDIU

2007/4/25

46

Two-Issue Dynamically Scheduled

Processor without Speculation (15)
lssues at | Executes Memory Nrite CDB
lteration : clock at clock access at at clock
number R cycle cycle clock cycle cycle Sl
number number number number
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU R2,R2,#1 1 5 B Wait for LD
1 5D RZ2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIT R1,R1,#8 2 3 4 Execute directly
1 BNE R2,R3,LO0OP 3 il Wait for DADDTIUD
2 LD RZ2,0(R1) 4 a8 9 10 Wait for BNE
2 DADDIU R2,R2,#1 4 11 12 Wait for LD
2 SD R2,0(R1) b 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 b a8 9 Wait for BNE
2 BNE R2 ,R3,LOOP G 13 Wait for DADDTUD
3 LD R2,0(R1) T 14 15 Wait for BNE
3 DADDIU R2,R2,#1 7 Wait for LD
3 SD R2,0(R1) 8 15 Wait for DADDIUT
3 DADDIU R1,R1,#8 g8 14 15 Wait for BNE
3 BNE R2,R3,LOOP g Wait for DADDIU

2007/4/25

47

Two-Issue Dynamically Scheduled

Processor without Speculation (16)

lssues at | Executes Memory | Wrnte CDB
lteration Instructions clock at .clln::n:k access at at clock Comment
number cycle cycle clock cycle cycle

number number number number
1 LD B2 ,0(R1) 1 2 3 4 First issue
1 DADDIU B2 ,R2,#1 1 g (& Wait for LD
1 5D B2 ,0(R1) 2 3 T Wait for DADDIU
1 DADDIT R1,R1,#8 2 3 4 Execute directly
1 BNE R2 ,R3,LOOF 3 7 VWait for DADDIU
2 LD R2,0(R1) 4 g 9 10 VWait for BNE
2 DADDIU B2, R2,#1 4 11 12 Wait for LD
2 5D R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE
2 BNE R2 ,R3,LOOP G 13 Wait for DADDIU
3 LD B2 ,0(R1) 7 14 15 16 Wait for BNE
3 DADDIU R2 ,R2,#1 7 Wait for LD
3 SD B2 ,0(R1) 8 15 Wait for DADDIU
3 DADDIU R1,R1,#6 8 14 15 Wait for BNE
3 BENE R2,R3,LOOP g9 Wait for DADDIU

2007/4/25

48

Two-Issue Dynamically Scheduled

Processor without Speculation (17)
Issues at | Executes Memaory Nrite CDB
lteration Instructions clock at clock acces.a_at at clock Comment
number cycle cycle clock cycle cycle
number number number number

1 LD R2,0(R1) 1 2 3 4 First issue

1 DADDIU RZ,R2,#1 1 5 6 Wait for LD

1 SD RZ,0(R1) 2 3 7 Wait for DADDID
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 ENE R2,R3,LOOP 3 i Wait for DADDTIU
2 LD R2,0(B1} 4 a8 9 10 Wait for BRE

2 DADDIU R2,R2,#1 4 11 12 Wait for LD

2 SD R2,0(R1) 5 9 13 Wait for DADDID
2 DADDIT R1,R1,#8 b a3 9 Wait for BHE

2 ENE E2 ,R3,LOGP G 13 Wait for DADDTU
3 LD R2,0(R1) 7 14 15 16 Wait for BHE

3 DADDIU R2,R2,#1 [17 Wait for LD

3 5D R2,0 (R1) 8 15 Wait for DADDTIUD
3 DADDIU R1,R1,#8 a8 14 15 Wait for BNE

3 ENE E2 B3, LOOP] Wait for DADDIU

2007/4/25

49

Two-Issue Dynamically Scheduled

Processor without Speculation (18)
lssues at | Executes Memory | Wnte CDB
lteration . clock at clock access aft at clock
number Instructions cycle cycle clock cycle cycle Comment
number number number number

1 LD B2 ,0(R1) 1 2 3 4 First issue

1 DADDIU B2 ,R2,#1 1 g 6 Wait for LD

1 SD B2 ,0(R1) 2 3 7 Wait for DADDTD
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE R2 ,R3,LOOP 3 7 Wait for DADDID
2 LD R2,0(R1) 4 g 9 10 Wait for BNE

2 DADDIU R2 ,R2,#1 4 11 12 Wait for LD

2 5D R2,0(R1) 5 9 13 Wait for DADDID
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE

2 BNE B2 ,R3,LOOP 6 13 Wait for DADD I
3 LD B2 ,0(R1) 7 14 15 16 Wait for BNE

3 DADDIU B2 ,R2,#1 7 17 18 Wait for LD

3 sD E2,0(R1) 8 15 Wait for DADDIU
3 DADDIU R1,R1,#8 8 14 15 Wait for BNE

3 ENE R2,R3,LOOF g Wait for DADDIU

2007/4/25

50

Two-Issue Dynamically Scheduled

Processor without Speculation (19)
|ssues at | Executes Memary Vrite CDB
lteration : clock at clock access at at clock
number Instructions cycle cycle clock cycle cycle Comment
number number number number

1 LD R2,0(R1) 1 2 3 4 First issue

1 DADDIU R2,R2,$#1 1) G Wait for LD

1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIT R1,R1,#8 2 3 4 Execute directly
1 ENE R2,R3,LOOP 3 i Wait for DADDTU
2 LD R2,0(B1) 4 a8 9 10 Wait for BNE

2 DADDIU R2,R2,#1 4 11 12 Wait for LD

2 sD RZ,0 (R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 a8 9 Wait for BNE

2 ENE RZ,R3, LOOP G 13 Wait for DADDIU
3 LD RZ,0 (R1) 7 14 15 16 Wait for BNE

3 DADDIU R2,R2,$#1 7 17 18 Wait for LD

3 5D RZ,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,#8 a8 14 15 Wait for BNE

3 BNE R2,R3,LOOP 9 19 Wait for DADDIU

2007/4/25

51

Two-Issue Dynamically Scheduled

Processor with Speculation (1)

Issues | Executes Read Vrite Commits
Instructions at clock | at clock a':;iaci at Cctl}jzst at clock Comment

number | number number number number

1| LD R2,0(R1) 1 First issue

1 | DADDIT B2 ,ER2, #1 1

1] 5D B2 ,0(R1)

1| DADDIT R1,R1,#8

1 | BHE B2 B3 ,LOOP

2| LD E2,0(R1)

2 | DADDIU R2,EZ2,#1

2| sD RE2,0(R1)

2 | DADDIT R1,E1,#8

2 | BHE B2 B3 ,LOOP

3| LD B2 ,0(R1)

3 | DADDIT R2 ,R2,#1

3| 5D R2,0(R1)

3 | DADDIUT R1,E1,#8

3 | BHE B2 B3 ,LOOP

2007/4/25

52

Two-Issue Dynamically Scheduled

Processor with Speculation (2)

Read Write :
Issues | Executes Commits
. access at CDE at
Instructions at clock | at clock at clock Comment
clock clock
number | number number
number number
1| LD R2,0(R1) 1 2 First issue
1| DADDIU R2,R2,#1 1 Wait for LD
1| sD R2,0(R1) 2
1| DADDIU R1,R1,#8 2
1| BHE R2, B3 ,LOOP
2| LD EZ2,0(R1)
2| DADDIT R2,R2,#1
2| 5D EZ2,0(R1l)
2| DADDIT ER1,R1, #8
7 | BNE E2,R3,LOOP
3| LD R2,0(RB1)
3 | DADDIU R2,R2, 41
3| sD RZ,0(R1)
3| DADDIT ER1,R1, #8
3 | BNE R2 ,R3,LOOP

2007/4/25

53

Two-Issue Dynamically Scheduled

») . .
rocessor with Speculation (3
f e
lssues | Executes acz:::m Clgl-gtzt Commits
Instructions at clock | at clock clock clock at clock Comment
number | number number number number

1| LD E2,0(R1) 1 2 3 First issue

1| DADDIT R2 B2, #1 1 Wait for LD
115D R2,0(R1l) 2 3

1| DADDIT B1,R1,#8 2 3

1 | BNE E2 ,R3,LOOP 3

2| LD B2 ,0(R1)

2 | pDADDIU R2,R2, #1

2| sD E2,0(R1)

2| DADDIT R1,E1,#8

Z2 | BHME Rz ,R3,LO0OP

3| LD R2,D0(R1)

3| DADDIU B2 R2,#1

3| sD E2,0(R1)

3 | DADDIU R1,R1,#8

3 | BNE R2 ,R3,LOOP

2007/4/25

54

Two-Issue Dynamically Scheduled

2007/4/25

Processor with Speculation (4)
lssues | Executes Read Write Commits
Instructions at clock | atclock accless at CDB at at clock Comment

number [number nﬁritlz:uli;r nfllriilr number

1| LD RZ,0(R1) 1 2 3 4 First issue

1| DADDIT R2 ,B2,#1 1 Wait for LD

1] 5D E2,0(R1) 2 3 Wait for DADDIU

1| DADDITU R1,R1,#8 2 3 4

1| BNE R2 ,R3,LOCP 3 Wait for DADDIUD

2| LD R2,0(E1) 4

2| DADDIU R2 ,R2,#1 4

2| SD E2,0(R1)

2| DADDIT R1,R1,#8

Z | BHNE E2 B3 ,LOOF

3| LD E2,0(R1)

3| DADDIU B2 ,B2,#1

3| 5D R2,0(R1)

3 | DADDIU R1,R1,#8

3 | BNE RZ,R3,LOOP

55

Two-Issue Dynamically Scheduled

Processor with Speculation (5)
Issues | Executes e Ll Commits
Instructions at clock | at clock M;iﬁci at C.:?ift at clock Comment
number | number number number number
1| LD R2,0(R1) 1 2 3 4 b First issue
1 | DADDIU R2,R2, #1 1 [Nait for LD
1| sD R2,0(R1) 2 3 Wait for DADDIU
1 | DADDIU R1,R1,#8 2 3 4 Commit in order
1 | BNE R2 ,R3,LOOP 3 Wait for DADDID
2 | LD R2,0(R1) 4 g MNo execute delay
2 | DADDIU E2,R2,#1 4 Wait for LD
2| sD R2,0(R1) 5
2 | DADDIT R1,R1,#8 5
2 | BHE B2 B3 ,LO0OP
3|LD R2,0(R1)
3 | DADDIU R2,R2,#1
3| 5D B2 ,0(R1)
3 | DADDIU R1,R1,#8
J | BNE R2 ,R3,LOOP

2007/4/25

56

Two-Issue Dynamically Scheduled

Processor with Speculation (6)
lssues | Executes Read Write Commits
Instructions at clock | atclock aﬂsliisk at Cﬁi; t at clock Comment
number | number number number number
1| LD RZ,0(R1) 1 2 3 4 5 First issue
1 | DADDITU R2,B2,#1 1 5 5 Wait for LD
1| SD RZ,0(R1) 2 3 Wait for DADDIU
1| DADDIT R1,R1,#8 2 3 4 Commit in order
1| BNE R2 B3, LOOP 3 Wait for DADDIU
2| LD R2,0(R1) 4 5 6 Mo execute delay
2| DADDIU R2,R2,#1 4 Wait for LD
2| 5D R2,0({R1) 5 B
2 | DADDIU R1,R1,#8 5 B
2 | BHNE R2,R3,LOCP 6
3| LD R2,0(R1)
3| DADDIT RZ,B2 ,#1
3| 5D B2 ,0(R1)
3| DADDIU R1,RB1,#8
3| BHE E2 , B3 ,LOOP

2007/4/25

S/

Two-Issue Dynamically Scheduled

Processor with Speculation (7)
[i
Issues | Executes a EESSH: at C E}E:z i Commits
Instructions at clock | at clock clock clock at clock Comment
number | number number number number

1| LD E2,0(R1) 1 2 3 4 5 First issue

1| DADDIU R2,R2,#1 1 g G Nait for LD

11 5D B2, 0(R1) 2 3 \ait for DADDIT
1| DADDIU R1,R1,#8 2 3 4 Commit in order
1 | BHE B2 ,R3,LO0OP 3 T Nait for DADDIT
2| LD RE2,0(R1l) 4 R G T Mo execute delay
2 | DADDTT B2, E2 ., #1 4 Wait for LD

2| 5D R2,0(R1) R Wait for DADDIU
2 | DADDIU R1,R1,#8 5 7

2 | BNE R2 ,R3,LOOP [Wait for DADDIU
3| LD B2, 0(R1) T

3| DADDIT R2 ,EB2,#1 T

3| 5D B2 ,0(R1)

3| DADDIT EB1,R1,4#8

3 | BNE R2 ,R3,LOOP

2007/4/25

58

Two-Issue Dynamically Scheduled

Processor with Speculation (8)
lssues | Executes e L Commits
Instructions at clock | atclock EECFSS at CDB at at clock Comment
number | number nﬁritlz:nl;r ntl_:llriiir number
1| LD R2,0(R1) 1 2 3 4 5 First issue
1| DADDIU R2,R2,#1 1) 6 T Wait for LD
1| sD R2,0(R1) 2 3 7 Wait for DADDTIU
1| DADDIU R1,R1,#8 2 3 4 a8 Commit in order
1 | BNE RZ,R3,LOOP 3 7 8 Wait for DADDIU
2| LD R2,0(R1) 4 5 B 7 Mo execute delay
2 | DADDIU R2,R2,#1 4 8 Wait for LD
2| 5D E2,0(R1) 5 & Wait for DADDIU
2 | DADDIT R1,R1, 48 5 B T Commit in order
2 | BNE R2,R3,LOOP A Wait for DADDIU
3| 1D R2,0(R1) i 8
3 | DADDIU R2,R2,#1 7
3| 5D E2 ,0(R1)]
3 | DADDIU R1,R1,#8 8
3 | BNE R2,R3,LOOP

2007/4/25

59

Two-Issue Dynamically Scheduled

Processor with Speculation (9)
lssues | Executes Read Vrite Commits
Instructions at clock | at clock acgliﬁci at C,:E}Dift at clock Comment
number | number number number number
1| LD RE2,0(R1l) 1 2 3 4 h First issue
1 | DADDIU R2,EB2,#1 1 b B 7 Vait for LD
1| 5D R2,0(R1) 2 3 7 \ait for DADDID
1| DADDIT R1,ER1,#86 2 3 4 B Commit in order
1 | BNE R2 ,R3,LOOP 3 7 g Nait for DADDID
2| LD R2,0(R1) 4 h 6 9 Mo execute delay
2 | DADDIU R2,R2,#1 4 8 Nait for LD
2| sD R2,0(R1) R 6 Wait for DADDTIU
2 | DADDIU R1,R1,#8 5 6 i Commit in order
2 | BHE R2 ,R3,LOOP 6 Wait for DADDIU
3| LD B2, 0(R1) T A]
3 | DADDIT B2 ,B2, #1 7 Wait for LD
3| SD B2, 0(R1) 8
3 | DADDIU R1,E1,#8 8 Execute earlier
3 | BHE B2 B3 ,LOOP 9

2007/4/25

60

Two-Issue Dynamically Scheduled

Processor with Speculation (10)
—
Issues | Executes s Sl Commits
. access at CDB at
Instructions at clock | at clock clock clock at clock Comment
number | number number number number
1| LD R2,0(R1) 1 2 3 4 5 First issue
1 | DADDIU R2 ,R2,#1 1 5 5 7 Wait for LD
1| sD RZ,0(R1) 2 3 7 Wait for DADDID
1| DADDIU R1,R1,4#8 2 3 4 8 Commit in order
1 | BNE R2,R3,LOCP 3 7 8 Wait for DADDIUD
2| LD R2,0(R1) 4 5 6 9 No execute delay
2 | DADDIU R2 ,R2Z,#1 4 a8 10 Wait for LD
2| sD R2,0(R1) 5 G 10 Wait for DADDIU
2 | DADDIU R1,R1,#8 5 B Fi Commit in order
2 | BNE R2,R3,LOCP 6 10 Wait for DADDIU
3| LD R2,0(R1) 7 8 9 10
3| DADDIT RZ,RE2,#1 T Wait for LD
3| 5D B2 ,0(E1l) 8 g Wait for DADDID
3 | DADDIU R1,R1,#8 8 9 10 Execute earlier
3 | BNE R2,B3,LOOP g Wait for DADDIT

2007/4/25

61

Two-Issue Dynamically Scheduled

Processor with Speculation (11)
—
Issues | Executes acljsﬁﬂ: at CE}%J“; i Commits
Instructions at clock | at clock clock clock at clock Comment
number | number number number number

1| LD R2,0(R1) 1 2 3 4 g First issue

1 | DADDIU R2,R2,#1 1 A B 7 Nait for LD

11 5D B2 ,0(R1) 2 3 T Nait for DADDID
1| DADDIT E1,R1, #8 2 3 4 8 Commit in order
1 | BNE B2 ,R3,LOOP 3 7 B Nait for DADDID
2| LD R2,0(R1) 4 a = 7 9 Mo execute delay
2 | DADDIU R2,R2,#1 4 g g 10 NVait for LD

2| 5D R2,0(ER1) R [10 Nait for DADDIT
2 | DADDIU R1,R1,#8 F 6 7 11 Commit in order
2 | BHE R2 ,R3,LOOP 6 10 11 Nait for DADDID
3| LD R2,0(R1) 7 8 9 10

3 | DADDIT ER2 ,R2,#1 T 11 Nait for LD

3| sD E2,0(R1) 8 9 Wait for DADDIU
3 | DADDIT E1,R1,#EB a 9 10 Execute earlier

3 | BHNE B2 ,R3,LO0OP g Wait for DADDID

2007/4/25

62

Two-Issue Dynamically Scheduled

Processor with Speculation (12)
—
lssues | Executes Read ol Commits
. access at CDB at
Instructions at clock | at clock clock clock at clock Comment
number | number number number number
1| LD R2,0(R1) 1 2 3 4 5 First issue
1| DADDIU R2,R2,#1 1 5 6 i Wait for LD
1] sD E2,0(R1) 2 3 7 Wait for DADDIUD
1| DADDIT ER1,R1,#8 2 3 4 8 Commit in order
1 | BNE R2,R3,LOOP 3 i 8 Wait for DADDTIUD
2| LD RZ,0(R1) 4) G 7 9 Mo execute delay
2| DADDIT R2,RB2,#1 4 8 9 10 Wait for D
2 | SD R2,0(R1) g G 10 Wait for DADDIU
Z | DADDIU R1,R1,#8 5 B T 11 Commit in order
2 | BNE R2 ,B3,LOOP G 10 11 Wait for pDADDTID
3| LD R2,0(R1) 7 8 9 10 12 Earliest possible
3| DADDIU R2,R2,4#1 T 11 12 Wait for LD
3| 5D R2,0(R1) 8 9 Wait for DADDTIU
3 | DADDIU R1,R1, 48 8 10 Execute earlier
3 | BNE R2 ,B3,LOOP g Wait for DADDIU

2007/4/25

63

Two-Issue Dynamically Scheduled

Processor with Speculation (13)
e
lzsues | Executes al:S:,:sd at CE}-E!tEa i Commits
Instructions at clock | at clock clock clock at clock Comment
number | number number number number

1| LD B2 ,0(R1) 1 2 3 4 5 First issue

1| DADDITD B2 B2, #1 1] B T NVait for LD

1| sD B2 ,0(R1) 2 3 7 Nait for DADDIU
1| DADDIT E1,R1,#5 2 3 4 8 Commit in order
1 | BNE B2 ,R3,LOOP 3 7 8 Nait for DADDIU
2| LD R2,0(R1) 4 b b 9 Mo execute delay
2 | DADDIU B2 ,R2,#1 4 8 10 Nait for LD

2| sD R2,0(R1) R [10 NVait for DADDIU
2 | DADDIT ER1,R1,#8] G 7 11 Commit in order
2 | BNE B2 ,R3,LOOP 6 10 11 Nait for DADDIU
3| LD R2,0(R1) 7 8 5 10 12 Earliest possible
3 | pADDIU B2 ,R2,#1 7 11 12 13 Nait for LD

3| sD E2,0(R1) 8 9 13 Vait for DADDIU
3 | DADDIU E1,R1,48 8 10 Execute earlier

3 | BNE B2 ,R3,LOOP 9 13 Nait for DADDIU

2007/4/25

64

Two-Issue Dynamically Scheduled

Processor with Speculation (14)
—
Issues | Executes aﬂi::g at ClEJEEtz i Commits
Instructions at clock | at clock clock clock at clock Comment
number | number number number number
1| LD R2,0{R1) 1 2 3 4 b First issue
1 | DADDIU R2,R2,#1 1 5 6 7 Wait for LD
1| sD R2,0(R1) 2 3 7 Wait for DADDID
1| DADDIU R1,R1,#8 2 3 4 8 Commit in order
1 | BNE EZ,R3,LOOF 3 7 8 Wait for DADDID
2| LD E2,0(R1) 4 5 G 9 Mo execute delay
2 | DADDIU R2,R2,#1 4 8 9 10 Wait for LD
2| sD R2,0{R1) g G 10 Wait for DADDIUD
2 | DADDIU R1,R1,#85 oY 5 i 11 Commit in order
Z | BHE EZ,R3,LOOP B 10 11 Wait for DADDIU
3| LD E2,0{R1) 7 8 g 10 12 Earliest possible
3| DADDIU R2,R2,#1 7 11 12 13 Wait for LD
3| 5D R2,0(R1) 8 9 13 Wait for DADDIU
3| DADDIU R1,R1,#8 a8 10 14 Execute earlier
3 | BNE R2,R3,LOCP g 13 14 Wait for DADDIUD

2007/4/25

65

Outline

* Instruction Level Parallelism (2.1)

« Compiler techniques for Exposing ILP (2.2)

* Reducing Branch Costs with Prediction (2.3)

« Overcoming Data Hazards with Dynamic Scheduling (2.4)
 Dynamic Scheduling: Examples and the Algorithm (2.5)
 Hardware-Based Speculation (2.6)

 Exploiting ILP using Multiple Issue and Static Scheduling
(2.7)

* Exploiting ILP using Dynamic Scheduling, Multiple Issue,
and Speculation (2.8)

 Advanced Techniques for Instruction Delivery and
Speculation (2.9)

2007/4/25 66

Advanced Techniques

* Increasing Instruction Fetch Bandwidth
— Branch-Target Buffers
— Return Address Predictors
— Integrated Instruction Fetch Units

e Speculation: Implementation Issues and Extensions
— Speculation Support: Register Renaming versus Reorder Buffers
— How Much to Speculate
— Speculating through Multiple Branches
— Value Prediction

2007/4/25 67

Increasing Instruction Fetch Bandwidth

Predicts next
instruct address. Branch Target Buffer (BTB)

sends It out before

d e CO d | n g PC of instruction to fetch
Instructuction ook u N

PC of branch sent

to BTB Number of
. entries
When match is nbranc

found, Predicted buffer
PC is returned

If branch predicted

taken, instruction A ot insucion's

fetch continues at 'Q‘maﬁch;pmeed normaly predicted
. taken or

P red |Cted PC Yes: then instruction is branch and predicted untaken

PC should be used as the next PC

2007/4/25

2007/4/25

Send PC to memory and
branch-target buffer

/" Entry found in
branch-larget
buffer?

v
Normal
instruction
execution

Is
instructian
a taken
branch?

PC

No / Taken

Send out
predicted

branch?

Ye:s

EX

Y

Y

Enter
branch instruction
address and next

PC into branch-
target buffer

Mispredicted branch,
kill fetched instruction;
restart fetch at other
target; delete entry
from target buffer

Branch correctly
predicted;
continue execution
with no stalls

& 2007 Elsaviar e Al richs ressned.

69

Example

« Determine the total branch penalty for a branch
target buffer. Make the following assumptions about
the prediction accuracy and hit rate:

— Prediction accuracy is 90% (for instructions in the buffer)
— Hit rate in the buffer is 90% (for branches predicted taken)

2007/4/25 70

Example

« We compute the penalty by looking at the probability
of two events:

— The branch is predicted taken but ends up being not taken
— The branch is taken but is not found in the buffer

« Both carry a penalty of 2 cycles.
Probability(branch in buffer, but actually not taken)
= % buffer hit rate x % incorrect predictions
= 90% x 10% = 0.09
Probability(branch not in buffer, but actually taken)= 10%

Branch penalty = (0.09 + 0.10) x 2 =0.38

2007/4/25 71

IF BW: Return Address Predictor

« Small buffer of
return addresses
acts as a stack

« Caches most 9
recent return
addresses

 Call = Push a
return address
on stack

* Return = Pop an
address off stack &
predict as new PC

2007/4/25

If the cache is sufficiently large (i.e.,
as large as the maximum call depth),

it will predict the returns perfectly.

go
+----% \‘ 77777777777777777777777777777777777777 —— m88ksim

ccl

compress
—¥—Xxlisp

ijpeg
—t+—perl

vortex

,,
0 1 2 4 8 16

Return address buffer entries

A buffer of O entries implies that the

standard branch prediction is used?2

Integrated Instruction Fetch Units

 Integrated branch prediction branch predictor is
part of instruction fetch unit and is constantly
predicting branches

 Instruction prefetch Instruction fetch units prefetch
to deliver multiple instruct. per clock, integrating it
with branch prediction

* Instruction memory access and buffering Fetching
multiple instructions per cycle:

— May require accessing multiple cache blocks
(prefetch to hide cost of crossing cache blocks)

— Provides buffering, acting as on-demand unit to
provide instructions to issue stage as needed and in
guantity needed

2007/4/25 73

Speculation: Register Renaming vs. ROB

« Alternative to ROB is a larger physical set of
registers combined with register renaming

— Extended registers replace function of both ROB and reservation
stations

* Instruction issue maps names of architectural
registers to physical register numbers In
extended register set

— On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

— Speculation recovery easy because a physical register holding an
instruction destination does not become the architectural register
until the instruction commits

 Most Out-of-Order processors today use
extended registers with renaming

2007/4/25 74

How Much to Speculate

e Speculation is not free:

— It takes time and energy, and the recovery of incorrect speculation
further reduces performance

— The processor must have additional resources, which take silicon
area and power

— If speculation causes an exceptional event to occur, such as a
cache or TLB miss, the potential for significant performance loss
increase (if that event would not have occurred without
speculation)

2007/4/25 75

How Much to Speculate (cont.)

« To maintain most of the advantage, while minimizing
the disadvantages:

— Most pipelines with speculation will allow only low cost exceptional
events (such as a first-level cache miss) to be handled in
speculative mode.

— If an expensive exceptional event occurs, such as a second-level
cache miss or a TLB miss, the processor will wait until the
instruction causing the event is no longer speculative before
handling the event.

2007/4/25 76

Speculating through Multiple Branches

« Three different situations can benefit from
speculating on multiple branches simultaneously:
— A very high branch frequency
— Significant clustering of branches
— Long delays in functional units

« As of 2005, no processor has yet combined full
speculation with resolving multiple branches per
cycle.

2007/4/25 77

Value Prediction

« Attempts to predict value produced by instruction
— E.g., Loads a value that changes infrequently

— an instruction produces a value chosen from asmall set of
potential values

« Value prediction is useful if it significantly increases ILP

— Focus of research has been on loads; so-so results, no
processor uses value prediction

» The load returns a value that matches the value on the last
execution of the load: 5%~80% (SPEC CPU2000)

» The load to match any of the most recent 16 values returned:
80%

« Because of the high costs of misprediction and the likely case that
misprediction rates will be significant (20% to 50%), researches
have focused on accessing which loads are more predictable and
only attempting to predict those.

* So-so results, no commercial processor has included value
prediction.

2007/4/25 78

Value Prediction (cont.)

* Related topic is address aliasing prediction
— RAW for load and store or WAW for 2 stores

« Address alias prediction is both more stable and
simpler since need not actually predict the

address values, only whether such values
conflict

—Has been used by a few processors

2007/4/25 79

Putting It All Together:
The Intel Pentium 4

Execution Trace Cache

« The Pentium 4 uses a novel execution trace cache to

generate the uop instruction stream.

* Hold sequences of instructions to be executed
Including nonadjacent instructions separated by
branches (with its own branch target buffer, which
predicts the outcome of uop branches).

* Try to exploit the temporal sequencing of instruction
execution rather than the spatial locality exploited in
a normal cache.

2007/4/25

81

Execution Trace Cache

By filling the pipeline from the execution trace cache,
the Pentium 4 avoids the need to redecode 1A-32
Instructions whenever the trace cache hits.

 When a trace-cache miss occurred, I1A-32
Instructions are fetched from the L2 cache and
decoded to refill the execution trace cache.

— Up to 3 1A-32 instructions may be decoded and translated every
cycle, generating up to six uops (micro-operations).

— When a single 1A-32 instruction requires more than three uops, the
uops sequence is generated from the microcode ROM.

2007/4/25 82

Out-of-Order Speculative Pipeline

« Each clock cycle

— 3 uops can be renamed and dispatched to the functional unit
gueues

— 3 uops can be committed

— 6 uops can be dispatched to the functional units (4 dispatch ports:
load/store units, basic ALU operations, FP and integer operations)

2007/4/25 83

Pentium 4 Microarchitecture

_ Frant-gnd BT8 Insiriiction = G4 bits -
Predicts the 4K antries = prefaich
next IA- ' Systerm
i i [rgtfsction dacolis bus
32instruction i W; “ s s
to fetch; used e
race coctw BTH Exsciition race canhe N Bus
Only When the }r 2K =nirigs 12K wons T HOp quelle metace
execution i s
trace cache Register remaming @
misses. : }
Memary LoD dusle [mteger FR LoD Queus
i) 1 i i ; t
I T T D N B T O A O A v L2 cache
VAL VN VN VN Y S 2 MB
H-way
Acldr gen Addr gen, 2x AlLU 2x ALY Slaw ALL o = sl pssociative
Load Store Simple Simple Complex MMX rr;u:we
addrass address st nsir inr S5E
2568
: 1 ' L L] biis
L1 data cachs (16K byte Bway) J—

2007/4/25

2 M¥0T Elsaner, Inc. All ngiis resanved

84

Pentium 4 Microarchitecture

A front-end
decoder
translates each
|A-32 instruction

Frant-end BTB Instriietiom :
4K entries prefaich to a series of
¥ mlcro-operatlons
Instruction decoder
Migrocode
! ROM
Trace cacte BTE Exsciition race canhe N Bus
2K enirigs 12K wops 7 HOp quelle imerface
| Lrif
Register mpaming @
: }
Memary LoD dusle [mteger FR LoD Queus
i ' i i { i t
T T T T T T T ' L2 cache
VAL VN VAL PN SV Y 2 MB
H-way
Acldr gen Addr gen, 2x AlLU 2x ALY Slaw ALL o = sl pssociative
Load Store Simple Simple Complex MMX rr;u:we
addrass address st nsir inr S5E
268
: 1 ' : L L] bits
L1 diats cashs (16K byte Baway)

2007/4/25

2 M¥0T Elsaner, Inc. All ngiis resanved

85

Pentium 4 Microarchitecture

E4 Bits

Frant-encl BT8 Ineiriiction
4K Eniries prefeich
'
Imstruction decodsr
!
Trace cache BTR Exscution [race cache
2K entrigs 12K sops
N\
Repgisiar FE!HEII'I'II%\
‘ »
Memary LoD dusle Inmgy/
i f i i/
VA (VAP (A (A
Acldr gen Addr gen, 2x AlLU 2x AL
Load Siore Simple Simple Camg
addrass address nstr IN&fT INET

r '

- 5
Systam
bus
MR rocode
RCIM et
N Bus
T R guele interface
j/\ Liri

A novel execution trace cache to
generate the uop instruction
stream: Hold sequences of
instructions to be executed

including nonadjacent instructions

separated by branches (with its
own branch target buffer).

L1 diats cashs (16K byte Baway)

2007/4/25

2 M¥0T Elsaner, Inc. All ngiis resanved.

86

Pentium 4 Microarchitecture

Frant-and BTB Inafriict/on - &4 bits
4K Eniries prefeich 1
.
+ Systam
Imsiruction decodar bus
Miprogode
! RO
Trace pachs BTE Exsciition race canhe N Bus
2K, Enirigs 12K wops 1 HOp quells imerface
/ I Lr
/ Registar remaming @
: }
ry LoD GUels [mteger FR LoD Queus
i { i t
oo b t 4 4 v 4 } A L2 cache
redicts the '
\/ \ T TV] T 2
next uop. Ex AlL 2x ALU Slow ALU o = set pssociative
Simple Simpis Compiex M!"_’]K MOVE
mstr. IN&TT INETT. S5E
268
: 1 ' ' L L] bits
L1 diats cashs (16K byte Baway)

2007/4/25

2 M¥0T Elsaner, Inc. All ngiis resanved.

87

Pentium 4 Microarchitecture

Frant-end BTE Insfriiction - B4 bits
4K Eniries prefeich 1
.
+ Systam
L1
Instivation decolar bus
Migrocode
' ROM

Trace pachs BTE Exsciition race canhe N Bus
2K enirigs 12K wops] HOp Quelle imerface

T

'
Registar remaming @
! \ !
Memary LoD dusle [\ [mteger FR LoD Queus
i) \ i i t
| v ' R T T L2 cashe
YN ALY LY IV SV] Y 2o

: H-way

Acldr gen Addr gen, 2x law AL o = sl pssociative
Load Store 128 uops can be in s move
. . 8SE
Sodiws || |owtshis execution with up to

\ stores. //

48 loads and 32

2007/4/25

2 M¥0T Elsaner, Inc. All ngiis resanved.

264
L] bits

88

Pentium 4 Microarchitecture

Frant-end BTE Insfriiction B4 bits
4K Eniries prefeich - 1
.
+ Systam
Imstfalion decolisr bus
Migrosode
! ROM
Trace pachs BTE Exsciition race canhe N Bus
2K enirigs 12K wops 7 HOR guelle imerface
I i
Registar remaming @
: !
Memary LoD dusle [mteger FR LoD Queus
i) 1 i i t
I T T A T I T A [L2 cache
AVAR ALY ALY L ALY AW AN | WY 2 I e
H-way
Acldr gen Addr gen, 2NLU 2x AL Slaw ALL o = sl pssociative
Load Sione Si Simpis Compiex M!"_’]K rr;:we
addrass address in nsir inr S5E
N\
\ 2568
: 1 ' ' L L] biis
\A\ (1B byte Baway)
The simple ALU units run at
twice the clock rate,
accepting up to two simple
2007/4/125 ALU uops every clock cycle. 89

Pentium 4 Microarchitecture

E4 Bits

Frant-encl BT8 Ineiriiction =
4K Eniries prefeich
+ o
Imstruction decodsr
Migrocode
" F\‘Q\M
Trace pachs BTE Exsciition race canhe "
2K =niries 12K waps 1 pOR "-1\
Register mpaming
: }
Memary LoD dusle [mteger FR LoD Queus

Systam
bus

Bus

instruction requires more

i !] i i 12— When a single IA-32
I I T T D T T T /7)/
YN ALY A AR A ALY A
Acldr gen Addr gen, 2x AlLU 2x AL Slaw A
Lpad Siore Simple Simpls Complex
addrass arddress Instr InEtr gF11 8
1 1 ' r

L1 diats cashs (16K byte Baway)

2007/4/25

2 M¥0T Elsaner, Inc. All ngiis resanved.

than three uops, the uops
sequence is generated from
he microcode ROM,

90

Deeper Pipeline

 The Pentium 4 introduced a much deeper pipeline to
achieve a higher clock rate.

* Initial Pentium 4 (introduced in 1990)

— Minimum # of cycles to transit the pipeline was 21
— 1.5 GHz clock rate

* Pentium 4 (2004 version)

— A simple instruction take 31 clock cycles
— 3.2 GHz clock rate

2007/4/25

91

Deeper Pipeline

« With such deep pipelines and aggressive clock rates,
the cost of cache miss and branch mispredictions are
both very high.

« A two-level cache is used to minimize the frequency
of DRAM accesses.

« Branch prediction is done with a branch-target buffer
using a two-level predictor with both local and global
histories.

— The size of the branch-target buffer was increased.

— The static predictor (used when branch-target buffer misses) was
improved.

2007/4/25 92

Performance Analysis

* The processor is a Pentium 4 640 running at 3.2GHz

with an 800MHz system bus and 667MHz DDR2
DRAMs for main memory.

* Focus on branch prediction and cache misses

— Branch-prediction accuracy is crucial in speculative processors,
since incorrect speculation requires recovery time and wastes
energy pursing the wrong path.

— The miss penalty for L2 is comparably higher than L1, and the
inability of the microarchitecture to hide these very long misses

means that L2 misses likely are responsible for an equal of greater
performance loss.

2007/4/25 93

Branch Misprediction

gzip

vpr

gee

macf
crafty
wupwise
swim
mgrid

applu

measa

|

i . i i i i

6 7 4 8 9 10 11 12

Branch mispradictions per 1000 instructions
2007 Bleaiiar, Ine. All nghts resafvad.

o
—
na
G
F<N
L

2007/4/25

13 14

94

Misspeculation Percentage

gzip

vpr

gee

mef
crafty
Wwupwise
swim
marid

applu

mesa

\ |||||

0.0000 0. HEUD Q. 1Dﬂl‘.’.‘l Q. 1EDD 0. EGDU 0. ESDD 0. Hﬂ{]ﬂ 0. 3:1(’.1{] 0. 4ﬂ0{] 0. 45(]{]

Misspeculalion percentage
2007 Blsauisr, Ine All rights résarved

2007/4/25 95

L1 and L2 Data Cache Misses

gaip _ aip
vpt N
gec faie
medf maf
craity orafy
WLIRWIGES WUPAIESD
SWIITi s/
miid mnd
Bppiu appiu
Mmess mess
0 EIEI ::lltl Ell:b El.t:l 1l£iD 2~|:| 1-:1-0 11.5-0 1ﬁ0 Eﬂlir-:'t 0 2 ;1 E B 1lr:| 1I2 1l4 1'5 1.8 E'Ir.'ﬁ
L1 dats cacha missas par 1000 instrugtions L2 ot ciacha migies par 1000 instructions

& 2007 Elsmwier, Ine All Hohis Tesarved

*The scale of the L1 misses is 10 times that of the L2 misses.

» The miss rate for L1 is about 14 times higher than the miss rate for L2.

2007/4/25 96

The CPI for the 10 SPEC CPU

1.45

G.00 h.B5
5.50 1. mcf has the worst misspeculation rate.
2. mcf has the worst L1 and L2 miss rate
500} —_—
among any benchmark, integer or floating
450 point, in SPEC suite.
400}
% 360 195

3.00 ¢

280 249

EDD B 1-?’3
1.59 1.49 153

ol N N = A =0
azip vpr gce mif crafty wupwis swim mgrid applu

2007/4/25

mesa

97

The CPI for the 10 SPEC CPU

Benchmarks

CPI

2007/4/25

6.00
550
5.00 ¢+
4501
400 ¢
350+
3.00
250+

200 -

1.50

1.00

1.59

ozip

2449

1.49

5.85

1. Arise from a branch misprediction that is
the worst among the integer benchmarks.

2. A high L2 miss rate, second only to mcf
among the integer benchmarks.

3.25

1.73

153 145
a 0l E

vpr

gce

mif crafty wupwis swim marid applu mesa

98

Fallacies and Pitfalls

« Fallacy: Processors with lower CPIs will always
be faster.

« Fallacy: Processors with faster clock rates will
always be faster.

— Although a lower CPI is certainly better, sophisticated multiple-
iIssue pipelines typically have slower clock rates than processors

with simple pipelines.

— In applications with limited ILP or where the parallelism cannot be
exploited by the hardware resources, the faster clock rate often
wins.

— When significant ILP exists, a processor that exploits lots of ILP
may be better.

2007/4/25

99

Fallacies and Pitfalls

IBM Powerd Intel Pentium 4

« TwO processor cores * A single processor with
each capable of multithreading. The
sustaining 4 instructions processor can sustain 3
per clock (2 FP & 2 load- instructions per clock with
store instructions) a very deep pipeline.

« The highest clock rate in * The highest clock rate in
2005 is 1.9 GHz 2005 is 3.8 GHz

®» Power5 is faster by 1.5 on SPECp2000 and the
Pentium 4 will be faster by 1.3 on SPECint2000.

2007/4/25 100

Perspective

* Interest in multiple-issue because wanted to improve
performance without affecting uniprocessor
programming model.

« Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice.

« Conservative in ideas, just faster clock and bigger.

2007/4/25 101

Perspective

* Processors of last 5 years (Pentium 4, IBM Power5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
ISSue processors announced in 1995

— Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units

= performance 8 to 16X
« Peak vs. delivered performance gap increasing

2007/4/25 102

In Conclusion ...

* Interrupts and Exceptions either interrupt the current
Instruction or happen between instructions
— Possibly large quantities of state must be saved before interrupting

 Machines with precise exceptions provide one single
point in the program to restart execution
— All instructions before that point have completed
— No instructions after or including that point have completed

 Hardware techniques exist for precise exceptions even
In the face of out-of-order execution!
— Important enabling factor for out-of-order execution

2007/4/25 103

