
Computer Architecture

Instruction Level Parallelism

2007/4/25 2

Outline

•Instruction Level Parallelism (2.1)
•Compiler techniques for Exposing ILP (2.2)
•Reducing Branch Costs with Prediction (2.3)
•Overcoming Data Hazards with Dynamic

Scheduling (2.4)
•Dynamic Scheduling: Examples and the

Algorithm (2.5)
•Hardware-Based Speculation (2.6)
•Exploiting ILP using Multiple Issue and Static

Scheduling (2.7)
•Exploiting ILP using Dynamic Scheduling,

Multiple Issue, and Speculation (2.8)

2007/4/25 3

Speculation to greater ILP

• Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct
– Speculation fetch, issue, and execute instructions as if

branch predictions were always correct
– Dynamic scheduling only fetches and issues

instructions

• Essentially a data flow execution model:
Operations execute as soon as their operands are
available

2007/4/25 4

Speculation to greater ILP

• 3 components of HW-based speculation:
1. Dynamic branch prediction to choose which

instructions to execute
2. Speculation to allow execution of instructions

before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

2007/4/25 5

Adding Speculation to Tomasulo

•Must separate execution from allowing
instruction to finish or “commit”

•This additional step called instruction commit
•When an instruction is no longer speculative,

allow it to update the register file or memory
•Requires additional set of buffers to hold results

of instructions that have finished execution but
have not committed

•This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated

2007/4/25 6

Reorder Buffer (ROB)

•In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
instructions will find result in the register file

•With speculation, the register file is not updated
until the instruction commits
–(we know definitively that the instruction should execute)

•Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit
–ROB is a source of operands for instructions, just as

reservation stations (RS) provide operands in Tomasulo’s
algorithm

–ROB extends architectured registers like RS

2007/4/25 7

Reorder Buffer Entry

• Each entry in the ROB contains four fields:
1. Instruction type

• a branch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or

memory address (for stores)
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the

value is ready

2007/4/25 8

Reorder Buffer operation

•Holds instructions in FIFO order, exactly as issued
•When instructions complete, results placed into ROB

–Supplies operands to other instruction between execution
complete & commit more registers like RS

–Tag results with ROB buffer number instead of reservation station

•Instructions commit values at head of ROB placed in
registers

•As a result, easy to undo
speculated instructions
on mispredicted branches
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path

2007/4/25 9

Recall: 4 Steps of Speculative Tomasulo
Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

2007/4/25 10

2007/4/25 11

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0F0 LD F0,10(R2)LD F0,10(R2) NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

2007/4/25 12

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1
F10F10

F0F0
ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)
NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

2007/4/25 13

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

2007/4/25 14

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0F0 ADDD F0,F4,F6ADDD F0,F4,F6 NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

5 0+R35 0+R3

2007/4/25 15

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

0+R30+R3

F0F0
ROB5ROB5 ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
NN

NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

Dest

Reorder Buffer

Registers

1 10+R21 10+R2
5 0+R35 0+R3

2007/4/25 16

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

0+R30+R3

F0F0
M[10]M[10] ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

NN

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)6 ADDD M[10],R(F6)

2007/4/25 17

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

0+R30+R3

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

2007/4/25 18

0+R30+R3

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???

2007/4/25 19

Implication (Example in Text Book)

•The processor with the ROB can dynamically
execute code while maintaining a precise interrupt
model.
–For example, if the MUL.D instruction caused an interrupt, we

could simply wait until it reached the head of the ROB and take the
interrupt, flushing any other pending instructions from the ROB.
Because instruction commit happens in order, this yields a precise
exception.

–In the example using Tomasulo’s algorithm, the SUB.D and ADD.D
instructions could both complete before the MUL.D raised the
exception.

2007/4/25 20

Avoiding Memory Hazards

• WAW and WAR hazards through memory are
eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

• RAW hazards through memory are maintained
by two restrictions:
1. not allowing a load to initiate the second step of its execution

if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.

• these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data

2007/4/25 21

Outline

•Instruction Level Parallelism (2.1)
•Compiler techniques for Exposing ILP (2.2)
•Reducing Branch Costs with Prediction (2.3)
•Overcoming Data Hazards with Dynamic

Scheduling (2.4)
•Dynamic Scheduling: Examples and the

Algorithm (2.5)
•Hardware-Based Speculation (2.6)
•Exploiting ILP using Multiple Issue and Static

Scheduling (2.7)
•Exploiting ILP using Dynamic Scheduling,

Multiple Issue, and Speculation (2.8)

2007/4/25 22

Getting CPI below 1

• CPI ≥1 if issue only 1 instruction every clock cycle
– The goal of the multiple-issue processors is to allow multiple

instructions to issue in a clock cycle.

• Multiple-issue processors come in 3 flavors:
1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors

2007/4/25 23

Multiple-Issue Processors

•2 types of superscalar processors issue varying
numbers of instructions per clock
–use in-order execution if they are statically scheduled,

or
–out-of-order execution if they are dynamically

scheduled

•VLIW processors, in contrast, issue a fixed
number of instructions formatted either as one
large instruction or as a fixed instruction packet
with the parallelism among instructions explicitly
indicated by the instruction (Intel/HP Itanium –IA-
63)

2007/4/25 24

VLIW: Very Large Instruction Word

•Each “instruction”has explicit coding for multiple
operations
–In IA-64, grouping called a “packet”
–In Transmeta, grouping called a “molecule”(with “atoms”as ops)

•Tradeoff instruction space for simple decoding
–The long instruction word has room for many operations
–By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
–E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
–Need compiling technique that schedules across several branches

2007/4/25 25

Recall: Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

2007/4/25 26

Loop Unrolling in VLIW

•Unrolled 7 times to avoid delays
•7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
•Average: 2.5 ops per clock, 50% efficiency
•Note: Need more registers in VLIW (15)

2007/4/25 27

Problems with 1st Generation VLIW

•Increase in code size
–generating enough operations in a straight-line code fragment

requires ambitiously unrolling loops
–whenever VLIW instructions are not full, unused functional

units translate to wasted bits in instruction encoding

To combat this code size increase, clever encodings are
sometimes used.

Another technique is to compress the instructions in main
memory and expand them when they are read into the
cache or are decoded.

2007/4/25 28

Problems with 1st Generation VLIW

•Operated in lock-step; no hazard
detection HW
–A stall in any functional unit pipeline caused entire

processor to stall, since all functional units must be
kept synchronized

–Compiler might prediction function units, but caches
hard to predict

•Binary code compatibility
–Pure VLIW different numbers of functional units and

unit latencies require different versions of the code

2007/4/25 29

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

• IA-64: instruction set architecture
•128 64-bit integer registers + 128 82-bit floating point registers
•Hardware checks dependencies

(interlocks => binary compatibility over time)
•Extension for more aggressive software speculation
•Preserving binary compatibility
•Predicated execution (select 1 out of 64 1-bit flags)

=> 40% fewer mispredictions?
• Itanium™ was first implementation (2001)

–Highly parallel and deeply pipelined hardware at 800Mhz

–6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)
–6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process

–Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

2007/4/25 30

Outline

•Instruction Level Parallelism (2.1)
•Compiler techniques for Exposing ILP (2.2)
•Reducing Branch Costs with Prediction (2.3)
•Overcoming Data Hazards with Dynamic

Scheduling (2.4)
•Dynamic Scheduling: Examples and the

Algorithm (2.5)
•Hardware-Based Speculation (2.6)
•Exploiting ILP using Multiple Issue and Static

Scheduling (2.7)
•Exploiting ILP using Dynamic Scheduling,

Multiple Issue, and Speculation (2.8)

2007/4/25 31

Put All Together

•To gain the full advantage of dynamic scheduling we
will allow the pipeline to issue any combinations in a
clock, using the scheduling hardware to actually
assign operations to the integer and floating-point
unit.

•Speculation can be advantageous when there are
data-dependent branches, which otherwise would
limit the performance.

2007/4/25 32

Put All Together (cont.)

•Consider the execution of the following loop, which
increments each element of an integer array, on a
two issue processor, once without speculation and
once with speculation:

•Assumptions:
–Separate integer functional units for effective address calculation,

for ALU operations, and for branch condition evaluation.
–Up to two instructions of any type can commit per clock.

2007/4/25 33

Two-Issue Dynamically Scheduled
Processor without Speculation (1)

2007/4/25 34

Two-Issue Dynamically Scheduled
Processor without Speculation (2)

2007/4/25 35

Two-Issue Dynamically Scheduled
Processor without Speculation (3)

2007/4/25 36

Two-Issue Dynamically Scheduled
Processor without Speculation (4)

2007/4/25 37

Two-Issue Dynamically Scheduled
Processor without Speculation (5)

2007/4/25 38

Two-Issue Dynamically Scheduled
Processor without Speculation (6)

2007/4/25 39

Two-Issue Dynamically Scheduled
Processor without Speculation (7)

2007/4/25 40

Two-Issue Dynamically Scheduled
Processor without Speculation (8)

2007/4/25 41

Two-Issue Dynamically Scheduled
Processor without Speculation (9)

2007/4/25 42

Two-Issue Dynamically Scheduled
Processor without Speculation (10)

2007/4/25 43

Two-Issue Dynamically Scheduled
Processor without Speculation (11)

2007/4/25 44

Two-Issue Dynamically Scheduled
Processor without Speculation (12)

2007/4/25 45

Two-Issue Dynamically Scheduled
Processor without Speculation (13)

2007/4/25 46

Two-Issue Dynamically Scheduled
Processor without Speculation (14)

2007/4/25 47

Two-Issue Dynamically Scheduled
Processor without Speculation (15)

2007/4/25 48

Two-Issue Dynamically Scheduled
Processor without Speculation (16)

2007/4/25 49

Two-Issue Dynamically Scheduled
Processor without Speculation (17)

2007/4/25 50

Two-Issue Dynamically Scheduled
Processor without Speculation (18)

2007/4/25 51

Two-Issue Dynamically Scheduled
Processor without Speculation (19)

2007/4/25 52

Two-Issue Dynamically Scheduled
Processor with Speculation (1)

2007/4/25 53

Two-Issue Dynamically Scheduled
Processor with Speculation (2)

2007/4/25 54

Two-Issue Dynamically Scheduled
Processor with Speculation (3)

2007/4/25 55

Two-Issue Dynamically Scheduled
Processor with Speculation (4)

2007/4/25 56

Two-Issue Dynamically Scheduled
Processor with Speculation (5)

2007/4/25 57

Two-Issue Dynamically Scheduled
Processor with Speculation (6)

2007/4/25 58

Two-Issue Dynamically Scheduled
Processor with Speculation (7)

2007/4/25 59

Two-Issue Dynamically Scheduled
Processor with Speculation (8)

2007/4/25 60

Two-Issue Dynamically Scheduled
Processor with Speculation (9)

2007/4/25 61

Two-Issue Dynamically Scheduled
Processor with Speculation (10)

2007/4/25 62

Two-Issue Dynamically Scheduled
Processor with Speculation (11)

2007/4/25 63

Two-Issue Dynamically Scheduled
Processor with Speculation (12)

2007/4/25 64

Two-Issue Dynamically Scheduled
Processor with Speculation (13)

2007/4/25 65

Two-Issue Dynamically Scheduled
Processor with Speculation (14)

2007/4/25 66

Outline

• Instruction Level Parallelism (2.1)
•Compiler techniques for Exposing ILP (2.2)
•Reducing Branch Costs with Prediction (2.3)
•Overcoming Data Hazards with Dynamic Scheduling (2.4)
•Dynamic Scheduling: Examples and the Algorithm (2.5)
•Hardware-Based Speculation (2.6)
•Exploiting ILP using Multiple Issue and Static Scheduling

(2.7)
•Exploiting ILP using Dynamic Scheduling, Multiple Issue,

and Speculation (2.8)
•Advanced Techniques for Instruction Delivery and

Speculation (2.9)

2007/4/25 67

Advanced Techniques

•Increasing Instruction Fetch Bandwidth
–Branch-Target Buffers
–Return Address Predictors
–Integrated Instruction Fetch Units

•Speculation: Implementation Issues and Extensions
–Speculation Support: Register Renaming versus Reorder Buffers
–How Much to Speculate
–Speculating through Multiple Branches
–Value Prediction

2007/4/25 68

Increasing Instruction Fetch Bandwidth

•Predicts next
instruct address,
sends it out before
decoding
instructuction

•PC of branch sent
to BTB

•When match is
found, Predicted
PC is returned

•If branch predicted
taken, instruction
fetch continues at
Predicted PC

Branch Target Buffer (BTB)

2007/4/25 69

2007/4/25 70

Example

•Determine the total branch penalty for a branch
target buffer. Make the following assumptions about
the prediction accuracy and hit rate:
–Prediction accuracy is 90% (for instructions in the buffer)
–Hit rate in the buffer is 90% (for branches predicted taken)

2007/4/25 71

Example

•We compute the penalty by looking at the probability
of two events:
–The branch is predicted taken but ends up being not taken
–The branch is taken but is not found in the buffer

•Both carry a penalty of 2 cycles.
Probability(branch in buffer, but actually not taken)
= % buffer hit rate x % incorrect predictions
= 90% x 10% = 0.09

Probability(branch not in buffer, but actually taken)= 10%

Branch penalty = (0.09 + 0.10) x 2 = 0.38

2007/4/25 72

IF BW: Return Address Predictor

•Small buffer of
return addresses
acts as a stack

•Caches most
recent return
addresses

•Call Push a
return address
on stack

•Return Pop an
address off stack &
predict as new PC

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 4 8 16
Return address buffer entries

M
is

p
re

d
ic

ti
o

n
fr

e
q

u
e

n
c
y

go

m88ksim

cc1

compress

xlisp

ijpeg

perl

vortex

A buffer of 0 entries implies that the

standard branch prediction is used.

If the cache is sufficiently large (i.e.,

as large as the maximum call depth),

it will predict the returns perfectly.

2007/4/25 73

Integrated Instruction Fetch Units

•Integrated branch prediction branch predictor is
part of instruction fetch unit and is constantly
predicting branches

•Instruction prefetch Instruction fetch units prefetch
to deliver multiple instruct. per clock, integrating it
with branch prediction

•Instruction memory access and buffering Fetching
multiple instructions per cycle:
–May require accessing multiple cache blocks

(prefetch to hide cost of crossing cache blocks)
–Provides buffering, acting as on-demand unit to

provide instructions to issue stage as needed and in
quantity needed

2007/4/25 74

Speculation: Register Renaming vs. ROB

•Alternative to ROB is a larger physical set of
registers combined with register renaming
–Extended registers replace function of both ROB and reservation

stations

•Instruction issue maps names of architectural
registers to physical register numbers in
extended register set
–On issue, allocates a new unused register for the destination

(which avoids WAW and WAR hazards)
–Speculation recovery easy because a physical register holding an

instruction destination does not become the architectural register
until the instruction commits

•Most Out-of-Order processors today use
extended registers with renaming

2007/4/25 75

How Much to Speculate

•Speculation is not free:
–It takes time and energy, and the recovery of incorrect speculation

further reduces performance
–The processor must have additional resources, which take silicon

area and power
–If speculation causes an exceptional event to occur, such as a

cache or TLB miss, the potential for significant performance loss
increase (if that event would not have occurred without
speculation)

2007/4/25 76

How Much to Speculate (cont.)

•To maintain most of the advantage, while minimizing
the disadvantages:
–Most pipelines with speculation will allow only low cost exceptional

events (such as a first-level cache miss) to be handled in
speculative mode.

–If an expensive exceptional event occurs, such as a second-level
cache miss or a TLB miss, the processor will wait until the
instruction causing the event is no longer speculative before
handling the event.

2007/4/25 77

Speculating through Multiple Branches

•Three different situations can benefit from
speculating on multiple branches simultaneously:
–A very high branch frequency
–Significant clustering of branches
–Long delays in functional units

•As of 2005, no processor has yet combined full
speculation with resolving multiple branches per
cycle.

2007/4/25 78

Value Prediction
•Attempts to predict value produced by instruction

–E.g., Loads a value that changes infrequently
–an instruction produces a value chosen from asmall set of

potential values
•Value prediction is useful if it significantly increases ILP

–Focus of research has been on loads; so-so results, no
processor uses value prediction

» The load returns a value that matches the value on the last
execution of the load: 5%~80% (SPEC CPU2000)

» The load to match any of the most recent 16 values returned:
80%

•Because of the high costs of misprediction and the likely case that
misprediction rates will be significant (20% to 50%), researches
have focused on accessing which loads are more predictable and
only attempting to predict those.

•So-so results, no commercial processor has included value
prediction.

2007/4/25 79

Value Prediction (cont.)

•Related topic is address aliasing prediction
–RAW for load and store or WAW for 2 stores

•Address alias prediction is both more stable and
simpler since need not actually predict the
address values, only whether such values
conflict
–Has been used by a few processors

Putting It All Together:
The Intel Pentium 4

2007/4/25 81

Execution Trace Cache

•The Pentium 4 uses a novel execution trace cache to
generate the uop instruction stream.

•Hold sequences of instructions to be executed
including nonadjacent instructions separated by
branches (with its own branch target buffer, which
predicts the outcome of uop branches).

•Try to exploit the temporal sequencing of instruction
execution rather than the spatial locality exploited in
a normal cache.

2007/4/25 82

Execution Trace Cache

•By filling the pipeline from the execution trace cache,
the Pentium 4 avoids the need to redecode IA-32
instructions whenever the trace cache hits.

•When a trace-cache miss occurred, IA-32
instructions are fetched from the L2 cache and
decoded to refill the execution trace cache.
–Up to 3 IA-32 instructions may be decoded and translated every

cycle, generating up to six uops (micro-operations).
–When a single IA-32 instruction requires more than three uops, the

uops sequence is generated from the microcode ROM.

2007/4/25 83

Out-of-Order Speculative Pipeline

•Each clock cycle
–3 uops can be renamed and dispatched to the functional unit

queues
–3 uops can be committed
–6 uops can be dispatched to the functional units (4 dispatch ports:

load/store units, basic ALU operations, FP and integer operations)

2007/4/25 84

Pentium 4 Microarchitecture

Predicts the
next IA-

32instruction
to fetch; used
only when the

execution
trace cache

misses.

2007/4/25 85

Pentium 4 Microarchitecture A front-end
decoder

translates each
IA-32 instruction

to a series of
micro-operations

2007/4/25 86

Pentium 4 Microarchitecture

A novel execution trace cache to
generate the uop instruction
stream: Hold sequences of
instructions to be executed

including nonadjacent instructions
separated by branches (with its

own branch target buffer).

2007/4/25 87

Pentium 4 Microarchitecture

Predicts the

next uop.

2007/4/25 88

Pentium 4 Microarchitecture

128 uops can be in
execution with up to

48 loads and 32
stores.

2007/4/25 89

Pentium 4 Microarchitecture

The simple ALU units run at
twice the clock rate,

accepting up to two simple
ALU uops every clock cycle.

2007/4/25 90

Pentium 4 Microarchitecture

When a single IA-32
instruction requires more
than three uops, the uops

sequence is generated from
the microcode ROM.

2007/4/25 91

Deeper Pipeline

•The Pentium 4 introduced a much deeper pipeline to
achieve a higher clock rate.

•Initial Pentium 4 (introduced in 1990)
–Minimum # of cycles to transit the pipeline was 21
–1.5 GHz clock rate

•Pentium 4 (2004 version)
–A simple instruction take 31 clock cycles
–3.2 GHz clock rate

2007/4/25 92

Deeper Pipeline

•With such deep pipelines and aggressive clock rates,
the cost of cache miss and branch mispredictions are
both very high.

•A two-level cache is used to minimize the frequency
of DRAM accesses.

•Branch prediction is done with a branch-target buffer
using a two-level predictor with both local and global
histories.
–The size of the branch-target buffer was increased.
–The static predictor (used when branch-target buffer misses) was

improved.

2007/4/25 93

Performance Analysis

•The processor is a Pentium 4 640 running at 3.2GHz
with an 800MHz system bus and 667MHz DDR2
DRAMs for main memory.

•Focus on branch prediction and cache misses
–Branch-prediction accuracy is crucial in speculative processors,

since incorrect speculation requires recovery time and wastes
energy pursing the wrong path.

–The miss penalty for L2 is comparably higher than L1, and the
inability of the microarchitecture to hide these very long misses
means that L2 misses likely are responsible for an equal of greater
performance loss.

2007/4/25 94

Branch Misprediction

2007/4/25 95

Misspeculation Percentage

2007/4/25 96

L1 and L2 Data Cache Misses

•The scale of the L1 misses is 10 times that of the L2 misses.

•The miss rate for L1 is about 14 times higher than the miss rate for L2.

2007/4/25 97

The CPI for the 10 SPEC CPU
Benchmarks

2007/4/25 98

The CPI for the 10 SPEC CPU
Benchmarks

2007/4/25 99

Fallacies and Pitfalls

•Fallacy: Processors with lower CPIs will always
be faster.

•Fallacy: Processors with faster clock rates will
always be faster.
–Although a lower CPI is certainly better, sophisticated multiple-

issue pipelines typically have slower clock rates than processors
with simple pipelines.

–In applications with limited ILP or where the parallelism cannot be
exploited by the hardware resources, the faster clock rate often
wins.

–When significant ILP exists, a processor that exploits lots of ILP
may be better.

2007/4/25 100

Fallacies and Pitfalls

2007/4/25 101

Perspective

•Interest in multiple-issue because wanted to improve
performance without affecting uniprocessor
programming model.

•Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice.

•Conservative in ideas, just faster clock and bigger.

2007/4/25 102

Perspective

•Processors of last 5 years (Pentium 4, IBM Power5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995
–Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many

renaming registers, and 2X as many load-store units

⇒ performance 8 to 16X
•Peak vs. delivered performance gap increasing

2007/4/25 103

In Conclusion …

•Interrupts and Exceptions either interrupt the current
instruction or happen between instructions
–Possibly large quantities of state must be saved before interrupting

•Machines with precise exceptions provide one single
point in the program to restart execution
–All instructions before that point have completed
–No instructions after or including that point have completed

•Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!
–Important enabling factor for out-of-order execution

