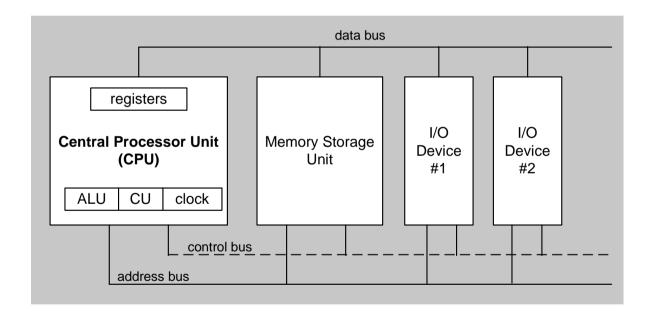
Assembly Language for Intel-Based Computers, 5th Edition

Kip Irvine

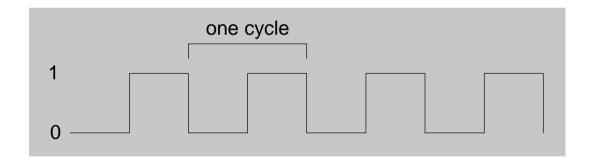
Chapter 2: IA-32 Processor Architecture

Chapter Overview


- **General Concepts**
- IA-32 Processor Architecture
- **IA-32 Memory Management**
- Components of an IA-32 Microcomputer
- Input-Output System

General Concepts

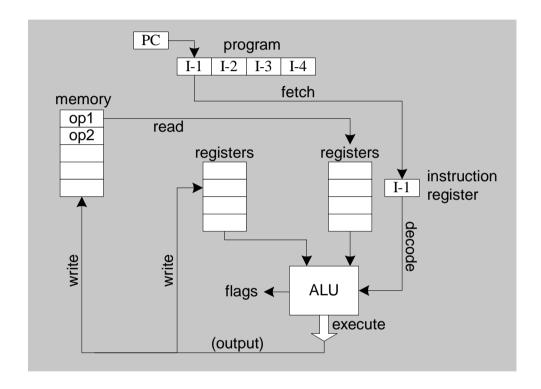
- Basic microcomputer design
- Instruction execution cycle
- Reading from memory
- How programs run


Basic Microcomputer Design

- clock synchronizes CPU operations
- control unit (CU) coordinates sequence of execution steps
- ALU performs arithmetic and bitwise processing

Clock

- synchronizes all CPU and BUS operations
- machine (clock) cycle measures time of a single operation
- clock is used to trigger events


Examples

What's Next

- General Concepts
- IA-32 Processor Architecture
- IA-32 Memory Management
- Components of an IA-32 Microcomputer
- Input-Output System

Instruction Execution Cycle

- **Fetch**
- Decode
- Fetch operands
- **Execute**
- Store output

Multi-Stage Pipeline

- Pipelining makes it possible for processor to execute instructions in parallel
- Instruction execution divided into discrete stages

Example of a nonpipelined processor. Many wasted cycles.

		Stages					
		S1	S2	S3	S4	S5	S6
	1	I-1					
	2		I-1				
	3			I-1			
Cycles	4				I-1		
	5					I-1	
	6						I-1
	7	I-2					
	8		I-2				
	9			I-2			
	10				I-2		
	11					I-2	
	12						I-2

Examples

Pipelined Execution

More efficient use of cycles, greater throughput of instructions:

	Stages						
		S1	S2	S3	S4	S5	S6
	1	I-1					
	2	I-2	I-1				
Cycles	3		I-2	I-1			
\ <u>\</u>	4			I-2	I-1		
(C)	5				I-2	I-1	
	6					I-2	I-1
	7						I-2

For *k* states and *n* instructions, the number of required cycles is:

$$k + (n - 1)$$

Wasted Cycles (pipelined)

When one of the stages requires two or more clock cycles, clock cycles are again wasted.

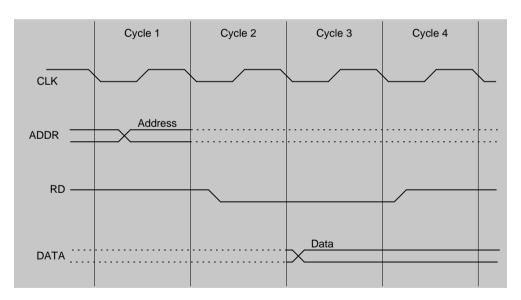
			Stag	ges exe		
	S1	S2	S3	S4	S5	S6
1	I-1					
2	I-2	I-1				
3	I-3	I-2	I-1			
4		I-3	I-2	I-1		
5			I-3	I-1		
6				I-2	I-1	
7				I-2		I-1
8				I-3	I-2	
9				I-3		I-2
10					I-3	
11						I-3
	2 3 4 5 6 7 8 9	1 I-1 2 I-2 3 I-3 4 5 6 7 8 9 10	1 I-1 2 I-2 I-1 3 I-3 I-2 4 I-3 5 6 7 8 9 10	S1 S2 S3 1 I-1 I-1 2 I-2 I-1 3 I-3 I-2 I-1 4 I-3 I-2 5 I-3 I-3 6 I-3 I-3 8 I-3 I-3 9 I-3 I-3	S1 S2 S3 S4 1 I-1 2 I-2 I-1 3 I-3 I-2 I-1 4 I-3 I-2 I-1 5 I-3 I-1 6 I-2 7 I-2 I-3 9 I-3 I-3 10 I-3	exe S1 S2 S3 S4 S5 1 I-1

For *k* states and *n* instructions, the number of required cycles is:

$$k + (2n - 1)$$

Superscalar

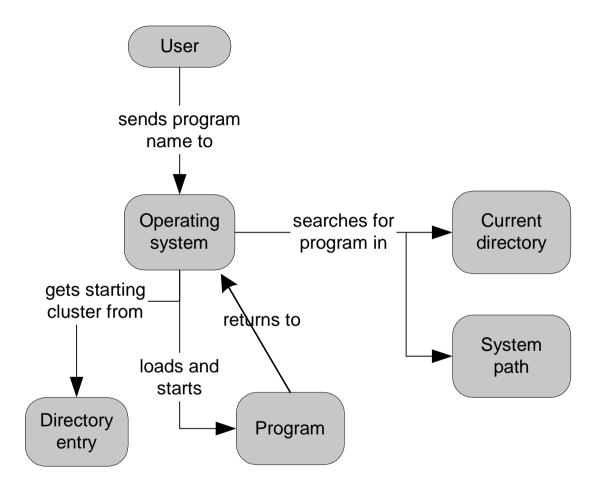
A superscalar processor has multiple execution pipelines. In the following, note that Stage S4 has left and right pipelines (u and v).


	Stages								
		S4							
		S1	S2	S3	u	V	S5	S6	
	1	I-1							
	2	I-2	I-1						
_	3	I-3	I-2	I-1					
les	4	I-4	I-3	I-2	I-1				
Cycles	5		I-4	I-3	I-1	I-2			
S	6			I-4	I-3	I-2	I-1		
	7				I-3	I-4	I-2	I-1	
	8					I-4	I-3	I-2	
	9						I-4	I-3	
	10							I-4	

For *k* states and *n* instructions, the number of required cycles is:

$$k + n$$

Reading from Memory


- Multiple machine cycles are required when reading from memory, because it responds much more slowly than the CPU. The steps are:
 - address placed on address bus
 - Read Line (RD) set low
 - CPU waits one cycle for memory to respond
 - Read Line (RD) goes to 1, indicating that the data is on the data bus

Cache Memory

- High-speed expensive static RAM both inside and outside the CPU.
 - Level-1 cache: inside the CPU
 - Level-2 cache: outside the CPU
- Cache hit: when data to be read is already in cache memory
- Cache miss: when data to be read is not in cache memory.

How a Program Runs

Multitasking

- OS can run multiple programs at the same time.
- Multiple threads of execution within the same program.
- Scheduler utility assigns a given amount of CPU time to each running program.
- Rapid switching of tasks
 - gives illusion that all programs are running at once
 - the processor must support task switching.

IA-32 Processor Architecture

- Modes of operation
- Basic execution environment
- Floating-point unit
- Intel Microprocessor history

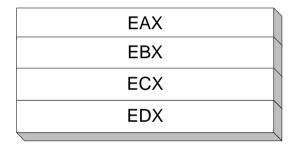
Modes of Operation

- Protected mode
 - native mode (Windows, Linux)
- Real-address mode
 - native MS-DOS
- System management mode
 - power management, system security, diagnostics
- Virtual-8086 mode
 - hybrid of Protected
 - each program has its own 8086 computer

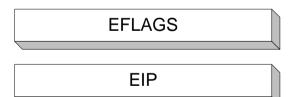
Basic Execution Environment

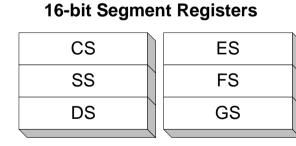
- Addressable memory
- General-purpose registers
- Index and base registers
- Specialized register uses
- Status flags
- Floating-point, MMX, XMM registers

Addressable Memory

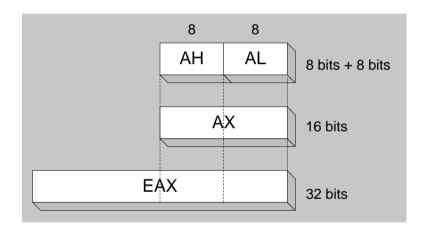

- Protected mode
 - 4 GB
 - 32-bit address
- Real-address and Virtual-8086 modes
 - 1 MB space
 - 20-bit address

Examples


General-Purpose Registers


Named storage locations inside the CPU, optimized for speed.

Used for arithmetic and data movement. 32-bit General-Purpose Registers


EBP	
ESP	
ESI	
EDI	

Accessing Parts of Registers

- Use 8-bit name, 16-bit name, or 32-bit name
- Applies to EAX, EBX, ECX, and EDX

32-bit	16-bit	8-bit (high)	8-bit (low)
EAX	AX	АН	AL
EBX	BX	ВН	BL
ECX	CX	СН	CL
EDX	DX	DH	DL

Index and Base Registers

 Some registers have only a 16-bit name for their lower half:

32-bit	16-bit
ESI	SI
EDI	DI
EBP	BP
ESP	SP

Some Specialized Register Uses (1 of 2)

- General-Purpose
 - EAX accumulator
 - ECX loop counter
 - ESP stack pointer
 - ESI, EDI index registers
 - EBP extended frame pointer (stack)
- Segment
 - CS code segment
 - DS data segment
 - SS stack segment
 - ES, FS, GS additional segments

Some Specialized Register Uses (2 of 2)

- EIP instruction pointer
- EFLAGS
 - status and control flags
 - each flag is a single binary bit

Status Flags

- Carry
 - unsigned arithmetic out of range
- Overflow
 - signed arithmetic out of range
- Sign
 - result is negative
- Zero
 - result is zero
- Auxiliary Carry
 - carry from bit 3 to bit 4 in an 8-bit operand
- Parity
 - sum of 1 bits is an even number

Floating-Point, MMX, XMM Registers

- Eight 80-bit floating-point data registers
 - ST(0), ST(1), . . . , ST(7)
 - arranged in a stack
 - used for all floating-point arithmetic
- Eight 64-bit MMX registers
- Eight 128-bit XMM registers for singleinstruction multiple-data (SIMD) operations

ST(0)	
ST(1)	
ST(2)	
ST(3)	
ST(4)	
ST(5)	
ST(6)	
ST(7)	
	$\overline{}$

Intel Microprocessor History

- Intel 8086, 80286
- IA-32 processor family
- P6 processor family
- CISC and RISC

Early Intel Microprocessors

- Intel 8080
 - 64K addressable RAM
 - 8-bit registers
 - CP/M operating system
 - S-100 BUS architecture
 - 8-inch floppy disks!
- Intel 8086/8088
 - IBM-PC Used 8088
 - 1 MB addressable RAM
 - 16-bit registers
 - 16-bit data bus (8-bit for 8088)
 - separate floating-point unit (8087)

Examples

The IBM-AT

- Intel 80286
 - 16 MB addressable RAM
 - Protected memory
 - several times faster than 8086
 - introduced IDE bus architecture
 - 80287 floating point unit

Intel IA-32 Family

- Intel386
 - 4 GB addressable RAM, 32-bit registers, paging (virtual memory)
- Intel486
 - instruction pipelining
- Pentium
 - superscalar, 32-bit address bus, 64-bit internal data path

Intel P6 Family

- Pentium Pro
 - advanced optimization techniques in microcode
- Pentium II
 - MMX (multimedia) instruction set
- Pentium III
 - SIMD (streaming extensions) instructions
- Pentium 4 and Xeon
 - Intel NetBurst micro-architecture, tuned for multimedia

CISC and RISC

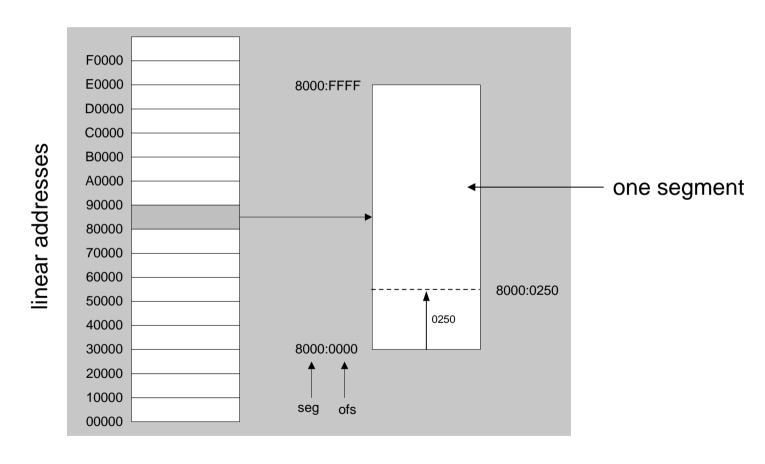
- CISC complex instruction set
 - large instruction set
 - high-level operations
 - requires microcode interpreter
 - examples: Intel 80x86 family
- RISC reduced instruction set
 - simple, atomic instructions
 - small instruction set
 - directly executed by hardware
 - examples:
 - ARM (Advanced RISC Machines)
 - DEC Alpha (now Compaq)

What's Next

- General Concepts
- IA-32 Processor Architecture
- IA-32 Memory Management
- Components of an IA-32 Microcomputer
- Input-Output System

IA-32 Memory Management

- Real-address mode
- Calculating linear addresses
- Protected mode
- Multi-segment model
- Paging


Real-Address mode

- 1 MB RAM maximum addressable
- Application programs can access any area of memory
- Single tasking
- Supported by MS-DOS operating system

Examples

Segmented Memory

Segmented memory addressing: absolute (linear) address is a combination of a 16-bit segment value added to a 16-bit offset

Examples

Calculating Linear Addresses

- Given a segment address, multiply it by 16 (add a hexadecimal zero), and add it to the offset
- Example: convert 08F1:0100 to a linear address

```
Adjusted Segment value: 0 8 F 1 0
```

Add the offset: 0 1 0 0

Linear address:

Your turn . . .

What linear address corresponds to the segment/offset address 028F:0030?

$$028F0 + 0030 = 02920$$

Always use hexadecimal notation for addresses.

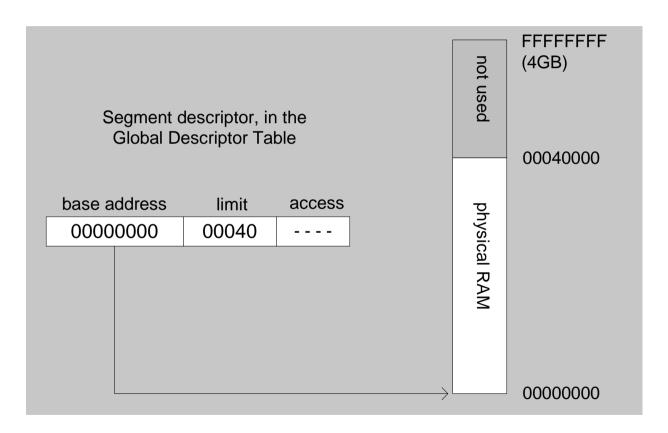
Your turn . . .

What segment addresses correspond to the linear address 28F30h?

Many different segment-offset addresses can produce the linear address 28F30h. For example:

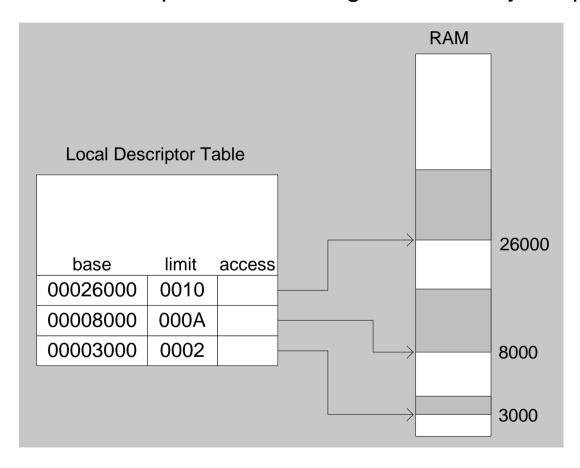
28F0:0030, 28F3:0000, 28B0:0430, . . .

Protected Mode (1 of 2)


- 4 GB addressable RAM
 - (0000000 to FFFFFFFh)
- Each program assigned a memory partition which is protected from other programs
- Designed for multitasking
- Supported by Linux & MS-Windows

Protected mode (2 of 2)

- Segment descriptor tables
- Program structure
 - code, data, and stack areas
 - CS, DS, SS segment descriptors
 - global descriptor table (GDT)
- MASM Programs use the Microsoft flat memory model


Flat Segment Model

- Single global descriptor table (GDT).
- All segments mapped to entire 32-bit address space

Multi-Segment Model

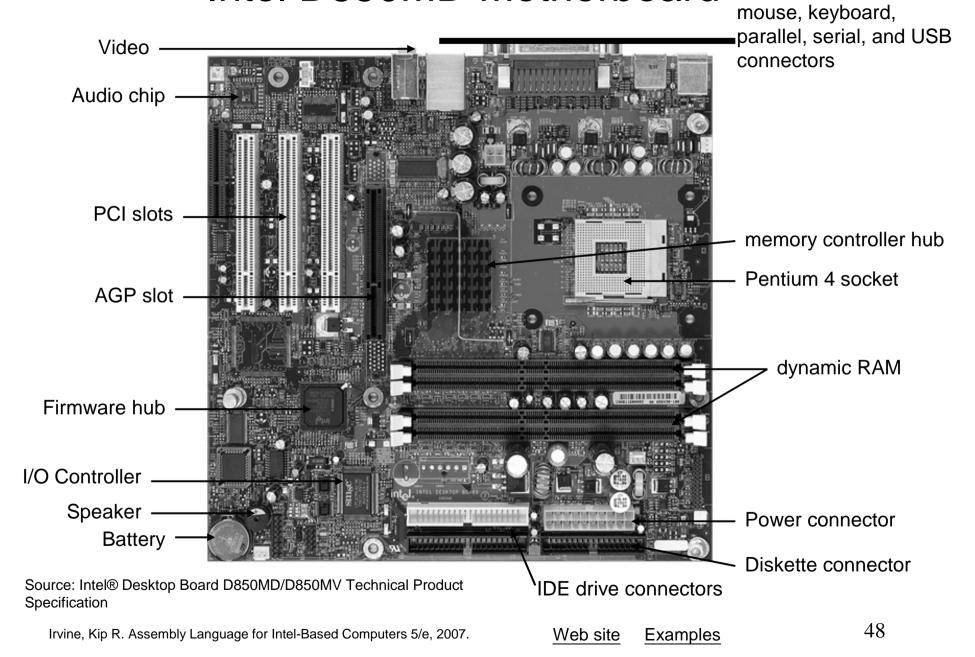
- Each program has a local descriptor table (LDT)
 - holds descriptor for each segment used by the program

Paging

- Supported directly by the CPU
- Divides each segment into 4096-byte blocks called pages
- Sum of all programs can be larger than physical memory
- Part of running program is in memory, part is on disk
- Virtual memory manager (VMM) OS utility that manages the loading and unloading of pages
- Page fault issued by CPU when a page must be loaded from disk

What's Next

- General Concepts
- IA-32 Processor Architecture
- IA-32 Memory Management
- Components of an IA-32 Microcomputer
- Input-Output System

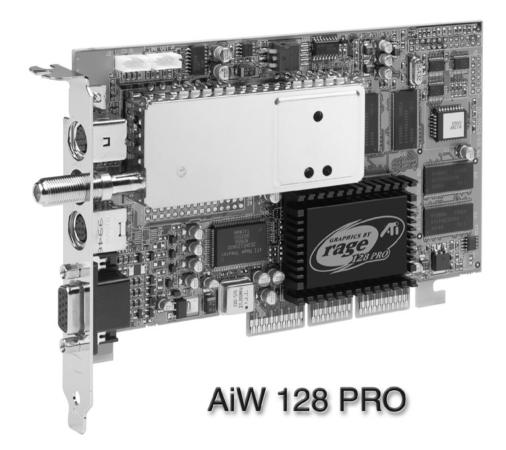

Components of an IA-32 Microcomputer

- Motherboard
- Video output
- Memory
- Input-output ports

Motherboard

- CPU socket
- External cache memory slots
- Main memory slots
- BIOS chips
- Sound synthesizer chip (optional)
- Video controller chip (optional)
- IDE, parallel, serial, USB, video, keyboard, joystick, network, and mouse connectors
- PCI bus connectors (expansion cards)

Intel D850MD Motherboard


Video Output

- Video controller
 - · on motherboard, or on expansion card
 - AGP (accelerated graphics port technology)*
- Video memory (VRAM)
- Video CRT Display
 - uses raster scanning
 - horizontal retrace
 - vertical retrace
- Direct digital LCD monitors
 - no raster scanning required

^{*} This link may change over time.

Sample Video Controller (ATI Corp.)

- 128-bit 3D graphics performance powered by RAGE™ 128 PRO
- 3D graphics performance
- Intelligent TV-Tuner with Digital VCR
- TV-ON-DEMAND™
- Interactive Program Guide
- Still image and MPEG-2 motion video capture
- Video editing
- Hardware DVD video playback
- Video output to TV or VCR

Memory

- ROM
 - read-only memory
- EPROM
 - erasable programmable read-only memory
- Dynamic RAM (DRAM)
 - inexpensive; must be refreshed constantly
- Static RAM (SRAM)
 - expensive; used for cache memory; no refresh required
- Video RAM (VRAM)
 - dual ported; optimized for constant video refresh
- CMOS RAM
 - complimentary metal-oxide semiconductor
 - system setup information
- See: <u>Intel platform memory</u> (Intel technology brief: link address may change)

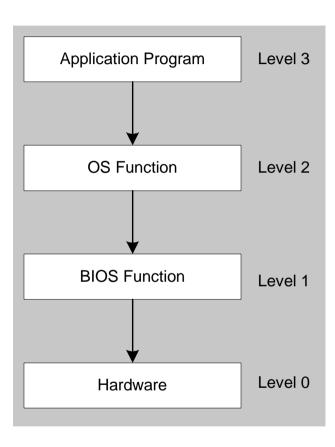
Input-Output Ports

- USB (universal serial bus)
 - intelligent high-speed connection to devices
 - up to 12 megabits/second
 - USB hub connects multiple devices
 - enumeration: computer queries devices
 - supports hot connections
- Parallel
 - short cable, high speed
 - common for printers
 - bidirectional, parallel data transfer
 - Intel 8255 controller chip

Input-Output Ports (cont)

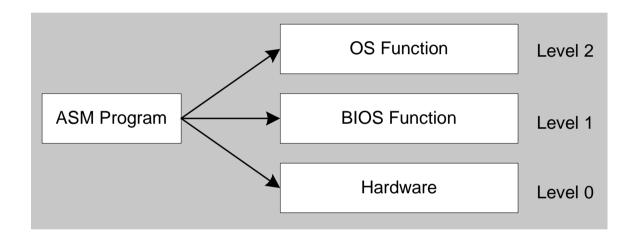
- Serial
 - RS-232 serial port
 - one bit at a time
 - uses long cables and modems
 - 16550 UART (universal asynchronous receiver transmitter)
 - programmable in assembly language

What's Next


- General Concepts
- IA-32 Processor Architecture
- IA-32 Memory Management
- Components of an IA-32 Microcomputer
- Input-Output System

Levels of Input-Output

- Level 3: Call a library function (C++, Java)
 - easy to do; abstracted from hardware; details hidden
 - slowest performance
- Level 2: Call an operating system function
 - specific to one OS; device-independent
 - medium performance
- Level 1: Call a BIOS (basic input-output system) function
 - may produce different results on different systems
 - knowledge of hardware required
 - usually good performance
- Level 0: Communicate directly with the hardware
 - May not be allowed by some operating systems


Displaying a String of Characters

When a HLL program displays a string of characters, the following steps take place:

ASM Programming levels

ASM programs can perform input-output at each of the following levels:

Summary

- Central Processing Unit (CPU)
- Arithmetic Logic Unit (ALU)
- Instruction execution cycle
- Multitasking
- Floating Point Unit (FPU)
- Complex Instruction Set
- Real mode and Protected mode
- Motherboard components
- Memory types
- Input/Output and access levels

42 69 6E 61 72 79