
Assembly Language for IntelAssembly Language for Intel--BasedBased
Computers, 5Computers, 5thth EditionEdition

Chapter 6: Conditional Processing

Kip R. Irvine

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 2Web site Examples

Chapter OverviewChapter Overview

•Boolean and Comparison Instructions
•Conditional Jumps
•Conditional Loop Instructions
•Conditional Structures
•Application: Finite-State Machines
•Decision Directives

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 3Web site Examples

Boolean and Comparison InstructionsBoolean and Comparison Instructions

•CPU Status Flags
•AND Instruction
•OR Instruction
•XOR Instruction
•NOT Instruction
•Applications
•TEST Instruction
•CMP Instruction

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 4Web site Examples

Status FlagsStatus Flags -- ReviewReview

• The Zero flag is set when the result of an operation equals zero.

• The Carry flag is set when an instruction generates a result that is
too large (or too small) for the destination operand. (unsigned)

• The Sign flag is set if the destination operand is negative, and it is
clear if the destination operand is positive.

• The Overflow flag is set when an instruction generates an invalid
signed result. (signed)

• The Parity flag is set when an instruction generates an even
number of 1 bits in the low byte of the destination operand.

• The Auxiliary Carry flag is set when an operation produces a carry
out from bit 3 to bit 4

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 5Web site Examples

AND InstructionAND Instruction

•Performs a Boolean AND operation between each
pair of matching bits in two operands

•Syntax:
AND destination, source

(same operand types as MOV)

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

AND

unchangedcleared

AND

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 6Web site Examples

OR InstructionOR Instruction

•Performs a Boolean OR operation between each pair
of matching bits in two operands

•Syntax:
OR destination, source

OR

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1

OR

setunchanged

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 7Web site Examples

XOR InstructionXOR Instruction

•Performs a Boolean exclusive-OR operation between
each pair of matching bits in two operands

•Syntax:
XOR destination, source XOR

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 0 1 0 0

XOR

invertedunchanged

XOR is a useful way to toggle (invert) the bits in an operand.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 8Web site Examples

NOT InstructionNOT Instruction

•Performs a Boolean NOT operation on a single
destination operand

•Syntax:
NOT destination NOT

0 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0

NOT

inverted

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 9Web site Examples

ApplicationsApplications (1 of 3)(1 of 3)

mov al,'a' ; AL = 01100001b
and al,11011111b ; AL = 01000001b

•Task: Convert the character in AL to upper case.

•Solution: Use the AND instruction to clear bit 5.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 10Web site Examples

ApplicationsApplications (2 of 3)(2 of 3)

mov al,6 ; AL = 00000110b
or al,00110000b ; AL = 00110110b

•Task: Convert a binary decimal byte into its equivalent
ASCII decimal digit.

•Solution: Use the OR instruction to set bits 4 and 5.

The ASCII digit '6' = 00110110b

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 11Web site Examples

ApplicationsApplications (3 of 3)(3 of 3)

mov ax,wordVal
and ax,1 ; low bit set?
jz EvenValue ; jump if Zero flag set

•Task: Jump to a label if an integer is even.

•Solution: AND the lowest bit with a 1. If the result is Zero,
the number was even.

JZ (jump if Zero) is covered in Section 6.3.

Your turn: Write code that jumps to a label if an integer is
negative.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 12Web site Examples

TEST InstructionTEST Instruction

• Performs a nondestructive AND operation between each pair of
matching bits in two operands

• No operands are modified, but the Zero flag is affected.
• Example: jump to a label if either bit 0 or bit 1 in AL is set.

test al,00000011b
jnz ValueFound

• Example: jump to a label if neither bit 0 nor bit 1 in AL is set.

test al,00000011b
jz ValueNotFound

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 13Web site Examples

CMP InstructionCMP Instruction (1 of 3)(1 of 3)

• Compares the destination operand to the source operand
• Nondestructive subtraction of source from destination (destination

operand is not changed)
• Syntax: CMP destination, source
• Example: destination == source

mov al,5
cmp al,5 ; Zero flag set

• Example: destination < source

mov al,4
cmp al,5 ; Carry flag set

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 14Web site Examples

CMP InstructionCMP Instruction (2 of 3)(2 of 3)

• Example: destination > source

mov al,6
cmp al,5 ; ZF = 0, CF = 0

(both the Zero and Carry flags are clear)

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 15Web site Examples

CMP InstructionCMP Instruction (3 of 3)(3 of 3)

• Example: destination > source

mov al,5
cmp al,-2 ; Sign flag == Overflow flag

The comparisons shown here are performed with signed
integers.

• Example: destination < source

mov al,-1
cmp al,5 ; Sign flag != Overflow flag

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 16Web site Examples

What's NextWhat's Next

•Boolean and Comparison Instructions
•Conditional Jumps
•Conditional Loop Instructions
•Conditional Structures
•Application: Finite-State Machines
•Decision Directives

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 17Web site Examples

Conditional JumpsConditional Jumps

•Jumps Based On . . .
•Specific flags
•Equality
•Unsigned comparisons
•Signed Comparisons

•Applications
•Encrypting a String
•Bit Test (BT) Instruction

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 18Web site Examples

JJcondcond InstructionInstruction

•A conditional jump instruction branches to a label
when specific register or flag conditions are met

•Examples:
•JB, JC jump to a label if the Carry flag is set
•JE, JZ jump to a label if the Zero flag is set
•JS jumps to a label if the Sign flag is set
•JNE, JNZ jump to a label if the Zero flag is clear
•JECXZ jumps to a label if ECX equals 0

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 19Web site Examples

JJcondcond RangesRanges

•Prior to the 386:
•jump must be within –128 to +127 bytes from current

location counter

• IA-32 processors:
•32-bit offset permits jump anywhere in memory

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 20Web site Examples

Jumps Based on Specific FlagsJumps Based on Specific Flags

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 21Web site Examples

Jumps Based on EqualityJumps Based on Equality

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 22Web site Examples

Jumps Based on Unsigned ComparisonsJumps Based on Unsigned Comparisons

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 23Web site Examples

Jumps Based on Signed ComparisonsJumps Based on Signed Comparisons

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 24Web site Examples

ApplicationsApplications (1 of 5)(1 of 5)

cmp eax,ebx
ja Larger

•Task: Jump to a label if unsigned EAX is greater than EBX

•Solution: Use CMP, followed by JA

cmp eax,ebx
jg Greater

•Task: Jump to a label if signed EAX is greater than EBX

•Solution: Use CMP, followed by JG

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 25Web site Examples

ApplicationsApplications (2 of 5)(2 of 5)

cmp eax,Val1
jbe L1 ; below or equal

•Jump to label L1 if unsigned EAX is less than or equal to Val1

cmp eax,Val1
jle L1

•Jump to label L1 if signed EAX is less than or equal to Val1

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 26Web site Examples

ApplicationsApplications (3 of 5)(3 of 5)

mov Large,bx
cmp ax,bx
jna Next
mov Large,ax

Next:

•Compare unsigned AX to BX, and copy the larger of the two
into a variable named Large

mov Small,ax
cmp bx,ax
jnl Next
mov Small,bx

Next:

•Compare signed AX to BX, and copy the smaller of the two
into a variable named Small

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 27Web site Examples

ApplicationsApplications (4 of 5)(4 of 5)

cmp WORD PTR [esi],0
je L1

•Jump to label L1 if the memory word pointed to by ESI equals
Zero

test DWORD PTR [edi],1
jz L2

•Jump to label L2 if the doubleword in memory pointed to by
EDI is even

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 28Web site Examples

ApplicationsApplications (5 of 5)(5 of 5)

and al,00001011b ; clear unwanted bits
cmp al,00001011b ; check remaining bits
je L1 ; all set? jump to L1

•Task: Jump to label L1 if bits 0, 1, and 3 in AL are all set.

•Solution: Clear all bits except bits 0, 1,and 3. Then
compare the result with 00001011 binary.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 29Web site Examples

Your turn . . .Your turn . . .

•Write code that jumps to label L1 if either bit 4, 5, or 6
is set in the BL register.

•Write code that jumps to label L1 if bits 4, 5, and 6
are all set in the BL register.

•Write code that jumps to label L2 if AL has even
parity.

•Write code that jumps to label L3 if EAX is negative.
•Write code that jumps to label L4 if the expression

(EBX –ECX) is greater than zero.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 30Web site Examples

Encrypting a StringEncrypting a String

KEY = 239 ; can be any byte value
BUFMAX = 128
.data
buffer BYTE BUFMAX+1 DUP(0)
bufSize DWORD BUFMAX

.code
mov ecx,bufSize ; loop counter
mov esi,0 ; index 0 in buffer

L1:
xor buffer[esi],KEY ; translate a byte
inc esi ; point to next byte
loop L1

The following loop uses the XOR instruction to transform every
character in a string into a new value.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 31Web site Examples

String Encryption ProgramString Encryption Program

•Tasks:
•Input a message (string) from the user
•Encrypt the message
•Display the encrypted message
•Decrypt the message
•Display the decrypted message

View the Encrypt.asm program's source code. Sample output:

Enter the plain text: Attack at dawn.

Cipher text: «¢¢Äîä-Ä¢-ïÄÿü-Gs

Decrypted: Attack at dawn.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 32Web site Examples

BT (Bit Test) InstructionBT (Bit Test) Instruction

•Copies bit n from an operand into the Carry flag

•Syntax: BT bitBase, n

•bitBase may be r/m16 or r/m32

•n may be r16, r32, or imm8

•Example: jump to label L1 if bit 9 is set in the AX
register:

bt AX,9 ; CF = bit 9
jc L1 ; jump if Carry

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 33Web site Examples

Bit Testing InstructionsBit Testing Instructions

•BT (bit test)
•BTC (bit test and complement)
•BTR (bit test and clear)
•BTS (bit test and set)

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 34Web site Examples

What's NextWhat's Next

•Boolean and Comparison Instructions
•Conditional Jumps
•Conditional Loop Instructions
•Conditional Structures
•Application: Finite-State Machines
•Decision Directives

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 35Web site Examples

Conditional Loop InstructionsConditional Loop Instructions

•LOOPZ
•LOOPE
•LOOPNZ
•LOOPNE

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 36Web site Examples

LOOPZ and LOOPELOOPZ and LOOPE

•Syntax:
LOOPE destination
LOOPZ destination

•Logic:
•ECX  ECX –1
•if ECX > 0 and ZF=1, jump to destination

•Useful when scanning an array for the first element
that does not match a given value.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 37Web site Examples

LOOPNZ and LOOPNELOOPNZ and LOOPNE

•LOOPNZ (LOOPNE) is a conditional loop instruction
•Syntax:

LOOPNZ destination
LOOPNE destination

•Logic:
•ECX  ECX –1;
•if ECX > 0 and ZF=0, jump to destination

•Useful when scanning an array for the first element
that matches a given value.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 38Web site Examples

LOOPNZ ExampleLOOPNZ Example

.data
array SWORD -3,-6,-1,-10,10,30,40,4
sentinel SWORD 0
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

next:
test WORD PTR [esi],8000h ; test sign bit
pushfd ; push flags on stack
add esi,TYPE array
popfd ; pop flags from stack
loopnz next ; continue loop
jnz quit ; none found
sub esi,TYPE array ; ESI points to value

quit:

The following code finds the first positive value in an array:

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 39Web site Examples

Your turn . . .Your turn . . .

.data
array SWORD 50 DUP(?)
sentinel SWORD 0FFFFh
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

L1: cmp WORD PTR [esi],0 ; check for zero

(fill in your code here)

quit:

Locate the first nonzero value in the array. If none is found, let
ESI point to the sentinel value:

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 40Web site Examples

. . . (solution). . . (solution)

.data
array SWORD 50 DUP(?)
sentinel SWORD 0FFFFh
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

L1: cmp WORD PTR [esi],0 ; check for zero
pushfd ; push flags on stack
add esi,TYPE array
popfd ; pop flags from stack
loope L1 ; continue loop
jz quit ; none found
sub esi,TYPE array ; ESI points to value

quit:

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 41Web site Examples

What's NextWhat's Next

•Boolean and Comparison Instructions
•Conditional Jumps
•Conditional Loop Instructions
•Conditional Structures
•Application: Finite-State Machines
•Decision Directives

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 42Web site Examples

Conditional StructuresConditional Structures

•Block-Structured IF Statements

•Compound Expressions with AND

•Compound Expressions with OR

•WHILE Loops

•Table-Driven Selection

If(expression)
{

…..
}
Else
{

….
}

If(expression1 && expression2)
{

…..
}
Else
{

….
}

If(expression1 || expression2)
{

…..
}
Else
{

….
}

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 43Web site Examples

Flowchart of IF StructureFlowchart of IF Structure
Start

Boolean expression

Statement list 1 Statement list 2

End

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 44Web site Examples

BlockBlock--Structured IF StatementsStructured IF Statements

Assembly language programmers can easily translate logical
statements written in C++/Java into assembly language. For
example:

mov eax,op1
cmp eax,op2
jne L1
mov X,1
jmp L2

L1: mov X,2
L2:

if(op1 == op2)
X = 1;

else
X = 2; When the

condition is
satisfied

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 45Web site Examples

Your turn . . .Your turn . . .

Implement the following pseudocode in assembly
language. All values are unsigned:

cmp ebx,ecx
ja next
mov eax,5
mov edx,6

next:

if(ebx <= ecx)
{
eax = 5;
edx = 6;

}

(There are multiple correct solutions to this problem.)

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 46Web site Examples

Your turn . . .Your turn . . .

Implement the following pseudocode in assembly
language. All values are 32-bit signed integers:

mov eax,var1
cmp eax,var2
jle L1
mov var3,6
mov var4,7
jmp L2

L1: mov var3,10
L2:

if(var1 <= var2)
var3 = 10;

else
{
var3 = 6;
var4 = 7;

}

(There are multiple correct solutions to this problem.)

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 47Web site Examples

Compound Expression with ANDCompound Expression with AND (1 of 3)(1 of 3)

•When implementing the logical AND operator, consider that high-
level languages use short-circuit evaluation

•In the following example, if the first expression is false, the second
expression is skipped:

if (al > bl) AND (bl > cl)
X = 1;

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 48Web site Examples

Compound Expression with ANDCompound Expression with AND (2 of 3)(2 of 3)

cmp al,bl ; first expression...
ja L1
jmp next

L1:
cmp bl,cl ; second expression...
ja L2
jmp next

L2: ; both are true
mov X,1 ; set X to 1

next:

if (al > bl) AND (bl > cl)
X = 1;

This is one possible implementation . . . Not short-circuit

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 49Web site Examples

Compound Expression with ANDCompound Expression with AND (3 of 3)(3 of 3)

cmp al,bl ; first expression...
jbe next ; quit if false
cmp bl,cl ; second expression...
jbe next ; quit if false
mov X,1 ; both are true

next:

if (al > bl) AND (bl > cl)
X = 1;

But the following implementation uses 29% less code by
reversing the first relational operator. We allow the program to
"fall through" to the second expression:

Short-circuit

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 50Web site Examples

Your turn . . .Your turn . . .

Implement the following pseudocode in assembly
language. All values are unsigned:

cmp ebx,ecx
ja next
cmp ecx,edx
jbe next
mov eax,5
mov edx,6

next:

if(ebx <= ecx
&& ecx > edx)

{
eax = 5;
edx = 6;

}

(There are multiple correct solutions to this problem.)

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 51Web site Examples

Compound Expression with ORCompound Expression with OR (1 of 2)(1 of 2)

•When implementing the logical OR operator, consider that high-
level languages use short-circuit evaluation

•In the following example, if the first expression is true, the second
expression is skipped:

if (al > bl) OR (bl > cl)
X = 1;

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 52Web site Examples

Compound Expression with ORCompound Expression with OR (1 of 2)(1 of 2)

cmp al,bl ; is AL > BL?
ja L1 ; yes
cmp bl,cl ; no: is BL > CL?
jbe next ; no: skip next statement

L1: mov X,1 ; set X to 1
next:

if (al > bl) OR (bl > cl)
X = 1;

We can use "fall-through" logic to keep the code as short as
possible:

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 53Web site Examples

WHILE LoopsWHILE Loops

while(eax < ebx)
eax = eax + 1;

A WHILE loop is really an IF statement followed by the body
of the loop, followed by an unconditional jump to the top of
the loop. Consider the following example:

top:cmp eax,ebx ; check loop condition
jae next ; false? exit loop
inc eax ; body of loop
jmp top ; repeat the loop

next:

This is a possible implementation:

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 54Web site Examples

Your turn . . .Your turn . . .

top:cmp ebx,val1 ; check loop condition
ja next ; false? exit loop
add ebx,5 ; body of loop
dec val1
jmp top ; repeat the loop

next:

while(ebx <= val1)
{

ebx = ebx + 5;
val1 = val1 - 1

}

Implement the following loop, using unsigned 32-bit integers:

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 55Web site Examples

TableTable--Driven SelectionDriven Selection (1 of 3)(1 of 3)

•Table-driven selection uses a table lookup to
replace a multiway selection structure

•Create a table containing lookup values and the
offsets of labels or procedures

•Use a loop to search the table
•Suited to a large number of comparisons

‘A’ 00000120 ‘B’ 00000130 ‘C’ 00000140 ‘D’ 00000150

EntrySize

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 56Web site Examples

TableTable--Driven SelectionDriven Selection (2 of 3)(2 of 3)

.data
CaseTable BYTE 'A' ; lookup value

DWORD Process_A ; address of procedure
EntrySize = ($ - CaseTable)
BYTE 'B'
DWORD Process_B
BYTE 'C'
DWORD Process_C
BYTE 'D'
DWORD Process_D

NumberOfEntries = ($ - CaseTable) / EntrySize

Step 1: create a table containing lookup values and procedure
offsets:

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 57Web site Examples

TableTable--Driven SelectionDriven Selection (3 of 3)(3 of 3)

mov ebx,OFFSET CaseTable ; point EBX to the table
mov ecx,NumberOfEntries ; loop counter

L1: cmp al,[ebx] ; match found?
jne L2 ; no: continue
call NEAR PTR [ebx + 1] ; yes: call the procedure
jmp L3 ; and exit the loop

L2: add ebx,EntrySize ; point to next entry
loop L1 ; repeat until ECX = 0

L3:

Step 2: Use a loop to search the table. When a match is found,
we call the procedure offset stored in the current table entry:

required for
procedure pointers

Indirect call requires the NEAR PTR operator.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 58Web site Examples

What's NextWhat's Next

•Boolean and Comparison Instructions
•Conditional Jumps
•Conditional Loop Instructions
•Conditional Structures
•Application: Finite-State Machines
•Decision Directives

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 59Web site Examples

Application: FiniteApplication: Finite--State MachinesState Machines

•A finite-state machine (FSM) is a graph structure that changes state
based on some input. Also called a state-transition diagram.

•We use a graph to represent an FSM, with squares or circles called
nodes, and lines with arrows between the circles called edges (or
arcs).

•A FSM is a specific instance of a more general structure called a
directed graph (or digraph).

•Three basic states, represented by nodes:

•Start state

•Terminal state (s)

•Nonterminal state (s)

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 60Web site Examples

FiniteFinite--State MachineState Machine

•Accepts any sequence of symbols that puts it into an
accepting (final) state

•Can be used to recognize, or validate a sequence of
characters that is governed by language rules (called a regular
expression)

•Advantages:

•Provides visual tracking of program's flow of
control

•Easy to modify

•Easily implemented in assembly language

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 61Web site Examples

FSM ExamplesFSM Examples
• FSM that recognizes strings beginning with 'x', followed by

letters 'a'..'y', ending with 'z':

start 'x'

'a'..'y'

'z
'

A B

C

• FSM that recognizes signed integers:

start

digit

+,-

digit digit

A B

C

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 62Web site Examples

Your turn . . .Your turn . . .

•Explain why the following FSM does not work as well
for signed integers as the one shown on the previous
slide:

start
digit

+,-A B

digit

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 63Web site Examples

Implementing an FSMImplementing an FSM

StateA:
call Getnext ; read next char into AL
cmp al,'+' ; leading + sign?
je StateB ; go to State B
cmp al,'-' ; leading - sign?
je StateB ; go to State B
call IsDigit ; ZF = 1 if AL = digit
jz StateC ; go to State C
call DisplayErrorMsg ; invalid input found
jmp Quit

The following is code from State A in the Integer FSM:

View the Finite.asm source code.

start

digit

+,-

digit digit

A B

C

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 64Web site Examples

IsDigitIsDigit ProcedureProcedure

IsDigit PROC
cmp al,'0' ; ZF = 0
jb ID1
cmp al,'9' ; ZF = 0
ja ID1
test ax,0 ; ZF = 1

ID1: ret
IsDigit ENDP

Receives a character in AL. Sets the Zero flag if the character
is a decimal digit.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 65Web site Examples

Flowchart of State AFlowchart of State A StateA

GetNext

AL = '+' ?

DisplayErrorMsg

true

AL = '-' ?
true

ZF = 1 ? true

IsDigit

false

false

false

quit

StateB

StateB

StateC

State A accepts a plus or
minus sign, or a decimal
digit.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 66Web site Examples

Your turn . . .Your turn . . .

•Draw a FSM diagram for hexadecimal integer
constant that conforms to MASM syntax.

•Draw a flowchart for one of the states in your FSM.
• Implement your FSM in assembly language. Let the

user input a hexadecimal constant from the keyboard.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 67Web site Examples

What's NextWhat's Next

•Boolean and Comparison Instructions
•Conditional Jumps
•Conditional Loop Instructions
•Conditional Structures
•Application: Finite-State Machines
•Decision Directives

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 68Web site Examples

Decision DirectivesDecision Directives

•MASM provides decision directives
•Make it easy to code multiway branching logic

•The directives cause the assembler to generate CMP
and conditional jump instructions in the background
•Listing file

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 69Web site Examples

Using the .IF DirectiveUsing the .IF Directive

•Runtime Expressions
•Relational and Logical Operators
•MASM-Generated Code
• .REPEAT Directive
• .WHILE Directive

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 70Web site Examples

Runtime ExpressionsRuntime Expressions

.IF eax > ebx
mov edx,1

.ELSE
mov edx,2

.ENDIF

•.IF, .ELSE, .ELSEIF, and .ENDIF can be used to evaluate
runtime expressions and create block-structured IF
statements.

•Examples:

•MASM generates "hidden" code for you, consisting of
code labels, CMP and conditional jump instructions.

.IF eax > ebx && eax > ecx
mov edx,1

.ELSE
mov edx,2

.ENDIF

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 71Web site Examples

Relational and Logical OperatorsRelational and Logical Operators

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 72Web site Examples

MASMMASM--Generated CodeGenerated Code

mov eax,6
cmp eax,val1
jbe @C0001
mov result,1

@C0001:

.data
val1 DWORD 5
result DWORD ?
.code
mov eax,6
.IF eax > val1
mov result,1

.ENDIF

Generated code:

MASM automatically generates an unsigned jump (JBE)
because val1 is unsigned.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 73Web site Examples

MASMMASM--Generated CodeGenerated Code

mov eax,6
cmp eax,val1
jle @C0001
mov result,1

@C0001:

.data
val1 SDWORD 5
result SDWORD ?
.code
mov eax,6
.IF eax > val1
mov result,1

.ENDIF

Generated code:

MASM automatically generates a signed jump (JLE) because
val1 is signed.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 74Web site Examples

MASMMASM--Generated CodeGenerated Code

mov ebx,5
mov eax,6
cmp eax,ebx
jbe @C0001
mov result,1

@C0001:

.data
result DWORD ?
.code
mov ebx,5
mov eax,6
.IF eax > ebx
mov result,1

.ENDIF

Generated code:

MASM automatically generates an unsigned jump (JBE) when
both operands are registers . . .

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 75Web site Examples

MASMMASM--Generated CodeGenerated Code

mov ebx,5
mov eax,6
cmp eax,ebx
jle @C0001
mov result,1

@C0001:

.data
result SDWORD ?
.code
mov ebx,5
mov eax,6
.IF SDWORD PTR eax > ebx
mov result,1

.ENDIF

Generated code:

. . . unless you prefix one of the register operands with the
SDWORD PTR operator. Then a signed jump is generated.

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 76Web site Examples

.REPEAT Directive.REPEAT Directive

; Display integers 1 – 10:

mov eax,0
.REPEAT

inc eax
call WriteDec
call Crlf

.UNTIL eax == 10

Executes the loop body before testing the loop condition
associated with the .UNTIL directive.

Example:
.REPEAT

statements
.UNTIL condition

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 77Web site Examples

.WHILE Directive.WHILE Directive

; Display integers 1 – 10:

mov eax,0
.WHILE eax < 10

inc eax
call WriteDec
call Crlf

.ENDW

Tests the loop condition before executing the loop body
The .ENDW directive marks the end of the loop.

Example:
.WHILE condition

statements
.ENDW

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 78Web site Examples

SummarySummary

• Bitwise instructions (AND, OR, XOR, NOT, TEST)
•manipulate individual bits in operands

• CMP –compares operands using implied subtraction
•sets condition flags

• Conditional Jumps & Loops
•equality: JE, JNE
• flag values: JC, JZ, JNC, JP, ...
•signed: JG, JL, JNG, ...
•unsigned: JA, JB, JNA, ...
•LOOPZ, LOOPNZ, LOOPE, LOOPNE

• Flowcharts –logic diagramming tool
• Finite-state machine –tracks state changes at runtime

Irvine, Kip R. Assembly Language for Intel-Based Computers 5/e, 2007. 79Web site Examples

The EndThe End

