
1

Chapter 2Chapter 2
Instructions:Instructions:

Language of the ComputerLanguage of the Computer

2

OutlineOutline

Operations
Operands
Control flow
MIPS addressing mode

3

OutlineOutline

 Instruction set architecture
(taking MIPS ISA as an example)

Operands (2.3)
–Register operands and their organization
–Memory operands, data transfer
–Immediate operands

 Instruction format
Operations

–Arithmetic and logical
–Decision making and branches
–Jumps for procedures

4

IntroductionIntroduction

Computer language
–Words: instructions
–Vocabulary: instruction set
–Similar for all, like regional dialect

 Design goalgoal of computer language
–To find a language that makes it easy to build the

hardware and the compiler while maximizing
performance and minimizing cost

5

Instructions: Difference with HLLInstructions: Difference with HLL

 Language of the Machine
– More primitiveprimitive than higher level

languages
 e.g., no sophisticated control flow

– Very restrictive
 e.g., MIPS Arithmetic Instructions

 We’ll be working with the MIPS
instruction set architecture
– similar to other architectures

developed since the 1980's
– Almost 100 million MIPS processors

manufactured in 2002
– used by NEC, Nintendo, Cisco,

Silicon Graphics, Sony, …

6

How to Design the Instructions?How to Design the Instructions?

 Operations (運算元)
–Arithmetic
–Logical
–=> Datapath

Operands (運算子)
–=> Datapath

Control flow
–Decision control
–Procedures calls
–=> Control

int add5 (int a)
{

int tmp = a + 5;
return tmp;

}
void main ()
{

int a = 7;
int c;
if (a == 7)
c = add5(a);

}

7

Assembly provides convenient symbolic representation
–much easier than writing down numbers
–e.g., destination first

Machine language is the underlying reality
–e.g., destination is no longer first

Assembly can provide 'pseudoinstructions'
–e.g., “move $t0, $t1”exists only in Assembly
–would be implemented using “add $t0,$t1,$zero”

When considering performance you should count real
instructions

Assembly Language vs. Machine LanguageAssembly Language vs. Machine Language

8

Recall in C LanguageRecall in C Language

Operators: +, -, *, /, % (mod), ...
–7/4==1, 7%4==3

Operands:
–Variables: lower, upper, fahr, celsius
–Constants: 0, 1000, -17, 15.4

Assignment statement:
variable = expression

–Expressions consist of operators operating on operands,
e.g.,
celsius = 5*(fahr-32)/9;
a = b+c+d-e;

9

When Translating to Assembly ...When Translating to Assembly ...

a = b + 5;

load $r1, M[b]
load $r2, 5
add $r3, $r1, $r2
store $r3, M[a]

Register
Memory

Constant

Operands

Operator (op code)

Statement

10

Organization of programmable storage
–registers
–memory: flat, segmented
–Modes of addressing and accessing data items and

instructions

Data types and data structures
–encoding and representation (next chapter)

Instruction formats
Instruction set (or operation code)

–ALU, control transfer, exceptional handling

Components of an ISAComponents of an ISA

11

MIPS ISA as an ExampleMIPS ISA as an Example

Instruction categories:
–Load/Store
–Computational
–Jump and Branch
–Floating Point
–Memory Management
–Special

$r0 - $r31

PC
HI

LO

OP

OP

OP

$rs $rt $rd sa funct

$rs $rt immediate

jump target

3 Instruction Formats: all 32 bits wide

Registers

12

Operations: MIPS arithmeticOperations: MIPS arithmetic

Each arithmetic instructions performs only one
operation and have 3 operands

Operand order is fixed (destination first)

“The natural number of operands for an operation like
addition is three…requiring every instruction to have
exactly three operands, no more and no less, conforms
to the philosophy of keeping the hardware simple”

13

MIPS arithmeticMIPS arithmetic

 Design Principle 1: simplicity favors regularity.
 All arithmetic instructions have 3 operands
 Operand order is fixed (destination first)

Example:

C code: a = b + c

MIPS ‘code’: add a, b, c

(we’ll talk about registers in a bit)

14

MIPS arithmeticMIPS arithmetic

 Of course this complicates some things...

C code: a = b + c + d;

MIPS code: add a, b, c
add a, a, d

 Operands must be registers, only 32 registers provided
 Each register contains 32 bits

15

Design PrincipleDesign Principle

Simplicity favors regularity
Smaller is faster

16

Registers vs. MemoryRegisters vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

Arithmetic instructions operands must be registers,
— only 32 registers provided

Compiler associates variables with registers
What about programs with lots of variables

17

OutlineOutline

 Instruction set architecture
(using MIPS ISA as an example)

Operands of Hardware (2.3)
–Register operands and their organization
–Memory operands, data transfer
–Immediate operands

 Instruction format
Operations

–Arithmetic and logical
–Decision making and branches
–Jumps for procedures

18

Operands of the Computer HardwareOperands of the Computer Hardware

Difference with HLL like C
–Limited number, why ?
–Operands are restricted to hardware-built registers
–Registers are primitive and visible to programmer

MIPS Register operands
–Only 32 registers provided
–Each register contains 32 bits
–Why 32?

Design Principle 2: smaller is faster.

19

Operand TypeOperand Type

3 Types
–Register operands

All arithmetic operations are in the register operands

–Memory operands
Array or structure
Only load/store can access memory

–Constant or immediate operands
Small value will be in the instruction
Large value will be stored separately

20

Operands and RegistersOperands and Registers

Unlike high-level language, MIPS assembly don’t use
variables
=> assembly operands are registers
–Limited number of special locations built directly into the

hardware
–Operations are performed on these

Benefits:
–Registers in hardware => faster than memory
–Registers are easier for a compiler to use

 e.g., as a place for temporary storage

–Registers can hold variables to reduce memory traffic and
improve code density (since register named with fewer bits than
memory location)

21

MIPS RegistersMIPS Registers
 32 registers, each is 32 bits wide

–Why 32? smaller is faster
–Groups of 32 bits called a word in MIPS
–Registers are numbered from 0 to 31
–Each can be referred to by number or name
–Number references:

$0, $1, $2, … $30, $31
–By convention, each register also has a name to make it easier to

code, e.g.,
$16 - $23  $s0 - $s7 (C variables)
$8 - $15  $t0 - $t7 (temporary)

 32 x 32-bit FP registers (paired DP)
Others: HI, LO, PC

22

Registers Conventions for MIPSRegisters Conventions for MIPS

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address (HW)

Fig. 2.18

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

23

CPU

Registers

$0

$31

Arithmetic
unit

Multiply
divide

Lo Hi

Coprocessor 1 (FPU)

Registers

$0

$31

Arithmetic
unit

Registers

BadVAddr

Coprocessor 0 (traps and memory)

Status

Cause

EPC

Memory

MIPS R2000
Organization

Fig. A.10.1

24

Register OperandRegister Operand

Syntax of basic MIPS arithmetic/logic
instructions:

1 2 3 4

add $s0,$s1,$s2 # f = g + h

1) operation by name
2) operand getting result (“destination”)
3) 1st operand for operation (“source1”)
4) 2nd operand for operation (“source2”)

Each instruction is 32 bits
Syntax is rigid: 1 operator, 3 operands

–Why? Keep hardware simple via regularity

25

Register Operand ExampleRegister Operand Example

 Register representation
–$**, in MIPS

 $s0, $s1.. Registers corresponding to the variables of C
programs

 $t0, $t1… temporary registers need to compile the program

–(this might be different in other assembly language)

How to do the following C statement?
f = (g + h) - (i + j);

Assume f, g, h, i, j uses $s0, .. $s4

add $s0,$s1,$s2 # f = g + h
add $t0,$s3,$s4 # t0 = i + j
sub $s0,$s0,$t0 # f=(g+h)-(i+j)

26

HW/SW IF: How Compiler Use RegistersHW/SW IF: How Compiler Use Registers

Problem: more variables than available registers
Solution

–Keep the most frequently used variables in registers
–Place the rest in memory (called spilling registers), use

load and store to move variables between registers and
memory

–Why?
Register is faster but its size is small
Compiler must use register efficiently

27

OutlineOutline

 Instruction set architecture
(using MIPS ISA as an example)

Operands(2.3)
–Register operands and their organization
–Memory operands, data transfer
–Immediate operands

 Instruction format
Operations

–Arithmetic and logical
–Decision making and branches
–Jumps for procedures

28

Memory Operands: Array and StructuresMemory Operands: Array and Structures

 Data are stored in memory
“data transfer instructions”

–Transfer data between memory and registers
–Load lw: move data from memory to a register
–Store st: move data from a register to memory

29

Memory OperandsMemory Operands

C variables map onto registers; what about large
data structures like arrays?
–Memory contains such data structures

But MIPS arithmetic instructions operate on
registers, not directly on memory
–Data transfer instructions (lw, sw, ...) to transfer

between memory and register
–A way to address memory operands

30

Array ExampleArray Example

Load format
–lw register names, const offset(base register)

31

Memory and Data SizesMemory and Data Sizes

 So far, we’ve only talked about uniform data sizes. Actual
data come in many different sizes:
–Single bits: (“boolean”values, true or false)
–Bytes (8 bits): Characters (ASCII), very small integers
–Halfwords (16 bits): Characters (Unicode), short integers
–Words (32 bits): Long integers, floating-point (FP) numbers
–Double-words (64 bits): Very long integers, double-precision FP
–Quad-words (128 bits): Quad-precision floating-point numbers

32

Different Data SizesDifferent Data Sizes

Today, almost all machines (including MIPS) are
“byte-addressable”–each addressable location in
memory holds 8 bits.

33

Memory OrganizationMemory Organization -- Byte AddressingByte Addressing

Viewed as a large, single-dimension array, with an
address.

A memory address is an index into the array
"Byte addressing" means that the index points to a

byte of memory.

...

34

Memory OrganizationMemory Organization

 Bytes are nice, but most data items use larger "words"
 For MIPS, a word is 32 bits or 4 bytes.

 232 bytes with byte addresses from 0 to 232-1
 230 words with byte addresses 0, 4, 8, ... 232-4
 Words are aligned

i.e., what are the least 2 significant bits of a word address?
 To select the byte

 Alignment restriction in MIPS
– Words must start at addresses that are multiples of 4

35

 MIPS requires that all words start at addresses that are multiples of
4 bytes

 Called Alignment: objects must fall on address that is multiple of
their size

0 1 2 3
Aligned

Not
Aligned

A Note about Memory: AlignmentA Note about Memory: Alignment

36

Array Example for Real MIPS MemoryArray Example for Real MIPS Memory
AddressAddress

Code for byte addressable memory

Remember arithmetic operands are registers, not memory!
Can’t write: add 48($s3), $s2, 32($s3)

37

ByteByte--Order (Order (““EndiannessEndianness””))

For a multi-byte datum, which part goes in which
byte?

If $1 contains 1,000,000 (F4240H) and we store it
into address 80:

On a “big-endian”machine, the “big”end goes
into address 80

On a “little-endian”machine, it’s the other way
around

38

BigBig--EndianEndian vs. Littlevs. Little--EndianEndian

Big-endian machines: MIPS, Sparc, 68000
Little-endian machines: most Intel processors,

Alpha, VAX
–No real reason one is better than the other…
–Compatibility problems transferring multi-byte data

between big-endian and little-endian machines –
CAREFUL!

 Bi-endian machines: ARM, User’s choice

39

Registers Operands vs. MemoryRegisters Operands vs. Memory
OperandsOperands

Arithmetic instructions operands must be registers,
–only 32 registers provided
–Compiler associates variables with registers

What about programs with lots of variables ? Like
array and structures
–Data structures are kept in memory
–Data transfer instructions

Load: lw copy data from memory to registers
Store: sw copy data from registers to memory
How: instruction supplies the memory address

40

Data Transfer: Memory to RegisterData Transfer: Memory to Register
(1/2)(1/2)

To transfer a word of data, need to specify two
things:
–Register: specify this by number (0 - 31)
–Memory address: more difficult

Think of memory as a 1D array
Address it by supplying a pointer to a memory address
Offset (in bytes) from this pointer
The desired memory address is the sum of these two

values, e.g., 8($t0)
Specifies the memory address pointed to by the value in
$t0, plus 8 bytes (why “bytes”, not “words”?)

Each address is 32 bits

41

Data Transfer: Memory to RegisterData Transfer: Memory to Register
(2/2)(2/2)

 Load Instruction Syntax:
1 2 3 4

lw $t0,12($s0)
1) operation name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory

 Example: lw $t0,12($s0)
– lw (Load Word, so a word (32 bits) is loaded at a time)
– Take the pointer in $s0, add 12 bytes to it, and then load the value from the

memory pointed to by this calculated sum into register $t0
 Notes:

– $s0 is called the base register, 12 is called the offset
– Offset is generally used in accessing elements of array: base register points to the

beginning of the array

42

Data Transfer: Register to MemoryData Transfer: Register to Memory

Also want to store value from a register into
memory

Store instruction syntax is identical to Load
instruction syntax

Example: sw $t0,12($s0)
–sw (meaning Store Word, so 32 bits or one word are

loaded at a time)
–This instruction will take the pointer in $s0, add 12

bytes to it, and then store the value from register $t0
into the memory address pointed to by the calculated
sum

43

 Compile by hand using registers:
$s1:g, $s2:h, $s3:base address of A

g = h + A[8];

 What offset in lw to select an array element A[8] in a C program?
– 4x8=32 bytes to select A[8]
– 1st transfer from memory to register:

lw $t0,32($s3) # $t0 gets A[8]
– Add 32 to $s3 to select A[8], put into $t0

 Next add it to h and place in g
add $s1,$s2,$t0 # $s1 = h+A[8]

Compilation with MemoryCompilation with Memory

44

MIPS Data Transfer InstructionsMIPS Data Transfer Instructions

Instruction Comment
sw $t3,500($t4) Store word
sh $t3,502($t2) Store half
sb $t2,41($t3) Store byte
lw $t1, 30($t2) Load word
lh $t1, 40($t3) Load halfword
lhu $t1, 40($t3) Load halfword unsigned
lb $t1, 40($t3) Load byte
lbu $t1, 40($t3) Load byte unsigned
lui $t1, 40 Load Upper Immediate

(16 bits shifted left by 16)

What does it mean?

45

lb $t1, 0($t0) F7 Sign-extended

lbu $t2, 0($t0) F7

$t0

$t1

$t2

F7 F012 …… F7F7

FFFFFF

000000 Zero-extended

Load Byte Signed/UnsignedLoad Byte Signed/Unsigned

46

What if more variables than registers?
–Compiler tries to keep most frequently used variables in

registers
–Writes less common variables to memory

Why not keep all variables in memory?
–Smaller is faster:

registers are faster than memory
–Registers more versatile:

MIPS arithmetic instructions can read 2 registers, operate on
them, and write 1 per instruction

MIPS data transfers only read or write 1 operand per
instruction, and no operation

Role of Registers vs. MemoryRole of Registers vs. Memory

47

OutlineOutline

 Instruction set architecture
(using MIPS ISA as an example)

Operands (Sec 2.3)
–Register operands and their organization
–Memory operands, data transfer, and addressing
–Immediate operands

 Instruction format
Operations

–Arithmetic and logical
–Decision making and branches
–Jumps for procedures

48

Constant or Immediate OperandsConstant or Immediate Operands

 Small constants used frequently (>50% of operands in SPEC2000
benchmark)

e.g., A = A + 5;
B = B + 1;
C = C - 18;

 Solutions? Why not?
– put 'typical constants' in memory and load them
– create hard-wired registers (like $zero) for constants

 MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

 Design Principle: Make the common case fast
 Q: why only “addi”and no “subi”

– Negative constants

49

Constant or Immediate OperandsConstant or Immediate Operands

 Immediate: numerical constants
–Often appear in code, so there are special instructions for them
–Add Immediate:

f = g + 10 (in C)
addi $s0,$s1,10 (in MIPS)

where $s0,$s1 are associated with f,g
–Syntax similar to add instruction, except that last argument is a

number instead of a register
–One particular immediate, the number zero (0), appears very

often in code; so we define register zero ($0 or $zero) to
always 0

–This is defined in hardware, so an instruction like
addi $0,$0,5 will not do anything

50

How about larger constants?How about larger constants?

We'd like to be able to load a 32 bit constant into a
register

Must use two instructions, new "load upper
immediate" instruction

 Then must get the lower order bits right, i.e.,

51

So farSo far

52

INFO: MIPS RegistersINFO: MIPS Registers

32 regs with R0 = 0
Reserved registers : R1, R26, R27.
Special usage:

–R28: pointer to global area
–R29: stack pointer
–R30: frame pointer
–R31: return address

53

Registers Conventions for MIPSRegisters Conventions for MIPS

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address (HW)

Fig. 2.18

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

54

INFO: Standard Register ConventionsINFO: Standard Register Conventions

The 32 integer registers in the MIPS are “general-
purpose”–any can be used as an operand or result
of an arithmetic op

But making different pieces of software work
together is easier if certain conventions are
followed concerning which registers are to be used
for what purposes.

These conventions are usually suggested by the
vendor and supported by the compilers

55

INFO: MIPS Registers and UsageINFO: MIPS Registers and Usage
ConventionConvention

56

INFO: MIPS Registers and UsageINFO: MIPS Registers and Usage
ConventionConvention

57

Our First ExampleOur First Example

 Can we figure out the code? $4: v的start address
$5: index k

58

So far weSo far we’’ve learned:ve learned:

 MIPS
–loading words but addressing bytes
–arithmetic on registers only

59

OutlineOutline

 Instruction set architecture
(using MIPS ISA as an example)

Operands
–Register operands and their organization
–Memory operands, data transfer
–Immediate operands

 Instruction format (Sec. 2.4.~2.9)
Operations

–Arithmetic and logical
–Decision making and branches
–Jumps for procedures

60

MIPS Instruction FormatMIPS Instruction Format

One instruction is 32 bits
=> divide instruction word into “fields”
–Each field tells computer something about instruction

We could define different fields for each
instruction, but MIPS is based on simplicity, so
define 3 basic types of instruction formats:
–R-format: for register
–I-format: for immediate, and lw and sw (since the

offset counts as an immediate)
–J-format: for jump

61

 simple instructions all 32 bits wide
 very structured, no unnecessary baggage
 only three instruction formats

Overview of MIPSOverview of MIPS

62

6 5 5 5 65
opcode rs rt rd functshamt

RR--Format Instructions (1/2)Format Instructions (1/2)

 Define the following “fields”:

– opcode: operation of instruction (Note: 0 for all R-Format instructions)
– rs (Source Register): generally used to specify register containing first

operand
– rt (Target Register): generally used to specify register containing second

operand
– rd (Destination Register): generally used to specify register which will

receive result of computation
– shamt: shift amount
– funct: function; this field selects the variant of the operation in the op field

called function code
Question: Why aren’t opcode and funct a single 12-bit field?

63

RR--Format Instructions (2/2)Format Instructions (2/2)

Notes about register fields:
–Each register field is exactly 5 bits, which means that it

can specify any unsigned integer in the range 0-31.
Each of these fields specifies one of the 32 registers by
number.

Final field:
–shamt: contains the amount a shift instruction will

shift by. Shifting a 32-bit word by more than 31 is
useless, so this field is only 5 bits

–This field is set to 0 in all but the shift instructions

64

Instruction Format : ExampleInstruction Format : Example

Instructions, like registers and words of data, are
also 32 bits long
–Example: add $t1, $s1, $s2
–registers have numbers, $t1=9, $s1=17, $s2=18

Instruction Format:

65

RR--Format ExampleFormat Example

MIPS Instruction:
add $8,$9,$10 //$8=$9+$10
–opcode = 0 (look up in table)
–funct = 32 (look up in table)
–rs = 9 (first operand)
–rt = 10 (second operand)
–rd = 8 (destination)
–shamt = 0 (not a shift)

000000 01001 01010 01000 10000000000
binary representation:

called a Machine Language Instruction

66

What if Longer Field is Required?What if Longer Field is Required?

Consider the load-word and store-word instructions
–Load word: two registers and a constant
–Constant < 32 if any above 5-bit fields is used
–What would the regularity principle have us do?
–Principle 4: Good design demands a compromise

 Introduce a new type of instruction format
–I-type for immediate and data transfer instructions
–other format was R-type for register

Example: lw $t0, 32($s2)

 Where's the compromise?
–Keep instruction the same length with different formats
–Keep the formats similar

67

6 5 5 16
opcode rs rt immediate

II--Format InstructionsFormat Instructions

Define the following “fields”:

–opcode: uniquely specifies an I-format instruction
–rs: specifies the only register operand and is the base register
–rt: specifies register which will receive result of computation

(target register)
–addi, slti, immediate is sign-extended to 32 bits, and treated

as a signed integer
–16 bits can be used to represent immediate up to 216 different

values
Key concept: Only one field is inconsistent with R-format.

Most importantly, opcode is still in same location

68

II--Format Example 1Format Example 1

MIPS Instruction:
addi $21,$22,-50 //$21=$22-50
–opcode = 8 (look up in table)
–rs = 22 (register containing operand)
–rt = 21 (target register)
–immediate = -50 (by default, this is decimal)

8 22 21 -50

001000 10110 10101 1111111111001110

decimal representation:

binary representation:

69

II--Format Example 2Format Example 2

MIPS Instruction:
lw $t0,1200($t1)
–opcode = 35 (look up in table)
–rs = 9 (base register)
–rt = 8 (destination register)
–immediate = 1200 (offset)

35 9 8 1200

100011 01001 01000 0000010010110000

decimal representation:

binary representation:

70

II--Format ProblemFormat Problem

What if immediate is too big to fit in immediate field?
Load Upper Immediate:

lui register, immediate
–puts 16-bit immediate in upper half (high order half) of

the specified register, and sets lower half to 0s
addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

0000 … 0000

LUI R1

R1

71

Complete MIPS Instruction FormatsComplete MIPS Instruction Formats

72

Fields in MIPS InstructionsFields in MIPS Instructions

op: Specifies the operation; tells which format to
use

rs: First source register
rt: second source register (or dest. For load)
rd: Destination register
shamt: Shift amount
funct: Further elaboration on opcode
address: immediate constant, displacement, or

branch target

73

Big Idea: StoredBig Idea: Stored--Program ConceptProgram Concept

 Instructions are represented as numbers
Programs are stored in memory

–to be read or written just like data

 Fetch & Execute Cycle
–Instructions are fetched and put into a special register
–Bits in the register "control" the subsequent actions
–Fetch the “next”instruction and continue

74

Big Idea: StoredBig Idea: Stored--Program ConceptProgram Concept

One consequence: everything addressed
–Everything has a memory address: instructions, data

 both branches and jumps use these

–One register keeps address of the instruction being
executed: “Program Counter”(PC)
Basically a pointer to memory: Intel calls it Instruction

Address Pointer, which is better

–A register can hold any 32-bit value. That value can be
a (signed) int, an unsigned int, a pointer (memory
address), etc.

75

OutlineOutline

 Instruction set architecture
(using MIPS ISA as an example)

Operands
–Register operands and their organization
–Memory operands, data transfer, and addressing
–Immediate operands

 Instruction format
Operations

–Arithmetic and logical (Sec 2.5)
–Decision making and branches
–Jumps for procedures

76

Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands;
subtract sub $1,$2,$3 $1 = $2 - $3 3 operands;
add immediate addi $1,$2,100 $1 = $2 + 100 + constant;

MIPS Arithmetic InstructionsMIPS Arithmetic Instructions

77

Bitwise OperationsBitwise Operations

Up until now, we’ve done arithmetic (add, sub, addi)
and memory access (lw and sw)

All of these instructions view contents of register as a
single quantity (such as a signed or unsigned integer)

New perspective: View contents of register as 32 bits
rather than as a single 32-bit number

 Since registers are composed of 32 bits, we may want to
access individual bits rather than the whole.

 Introduce two new classes of instructions:
–Logical Operators
–Shift Instructions

78

MIPS Logical OperationsMIPS Logical Operations

Why logical operations
–Useful to operate on fields of bit or individual bits

79

Logical OperatorsLogical Operators

 Logical instruction syntax:
1 2 3 4
or $t0, $t1, $t2

1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or immediate (numerical constant)

 Instruction names:
– and, or: expect the third argument to be a register
– andi, ori: expect the third argument to be immediate

 MIPS Logical Operators are all bitwise, meaning that bit 0 of the
output is produced by the respective bit 0’s of the inputs, bit 1 by the
bit 1’s, etc.

80

Use for Logical Operator AndUse for Logical Operator And

 and operator can be used to set certain portions of a bit-string to 0s,
while leaving the rest alone => mask

 Example:
1011 0110 1010 0100 0011 1101 1001 1010
0000 0000 0000 0000 0000 1111 1111 1111

 The result of anding these two is:
0000 0000 0000 0000 0000 1101 1001 1010

 In MIPS assembly: andi $t0,$t0,0xFFF

Mask:

81

Use for Logical Operator OrUse for Logical Operator Or

or operator can be used to force certain bits of a
string to 1s

For example,
$t0 = 0x12345678, then after

ori $t0, $t0, 0xFFFF
$t0 = 0x1234FFFF
(e.g. the high-order 16 bits are untouched, while

the low-order 16 bits are set to 1s)

82

Shift Instructions (1/3)Shift Instructions (1/3)

 Shift Instruction Syntax:
1 2 3 4

sll $t2,$s0,4
1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant)

 MIPS has three shift instructions:
– sll (shift left logical): shifts left, fills empties with 0s
– srl (shift right logical): shifts right, fills empties with 0s
– sra (shift right arithmetic): shifts right, fills empties by sign extending

83

Shift Instructions (2/3)Shift Instructions (2/3)

 Move (shift) all the bits in a word to the left or right by a number of
bits, filling the emptied bits with 0s.

 Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

 Example: shift left by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000

84

Shift Instructions (3/3)Shift Instructions (3/3)

 Example: shift right arithmetic by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

 Example: shift right arithmetic by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

85

 Suppose we want to get byte 1 (bit 15 to bit 8) of a word in
$t0. We can use:

sll $t0,$t0,16
srl $t0,$t0,24

0001 0010 0011 0100 0101 0110 0111 1000

0101 0110 0111 1000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0101 0110

Uses for Shift Instructions (1/2)Uses for Shift Instructions (1/2)

86

Uses for Shift Instructions (2/2)Uses for Shift Instructions (2/2)

 Shift for multiplication: in binary
–Multiplying by 4 is same as shifting left by 2:

 112 x 1002 = 11002

 10102 x 1002 = 1010002

–Multiplying by 2n is same as shifting left by n

 Since shifting is so much faster than multiplication (you
can imagine how complicated multiplication is), a good
compiler usually notices when C code multiplies by a
power of 2 and compiles it to a shift instruction:

a *= 8; (in C)
would compile to:
sll $s0,$s0,3 (in MIPS)

87

MIPS Logical InstructionsMIPS Logical Instructions

Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, zero exten.
or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, zero exten.
shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)

88

So Far...So Far...

All instructions have allowed us to manipulate data.
So we’ve built a calculator.
In order to build a computer, we need ability to

make decisions…

89

OutlineOutline

 Instruction set architecture
(using MIPS ISA as an example)

Operands
–Register operands and their organization
–Memory operands, data transfer, and addressing
–Immediate operands

 Instruction format
Operations

–Arithmetic and logical
–Decision making and branches (Sec. 2.6, 2.9)
–Jumps for procedures

90

Decision Making InstructionsDecision Making Instructions

Decision making instructions
–alter the control flow,
–i.e., change the "next" instruction to be executed

Branch Classifications
–Two basic types of branches

 Unconditional: Always jump to the specified address
 Conditional: Jump to the specified address if some condition is true;

otherwise, continue with the next instruction

Destination addresses can be specified in the same way as
other operands (combination of registers, immediate
constants, and memory locations), depending on what is
supported in the ISA

91

 Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4≠ $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

 Formats:

 Addresses are not 32 bits
— How do we handle this with load and store instructions?

op rs rt 16 bit address

op 26 bit address
I

J

Addresses in Branches and JumpsAddresses in Branches and Jumps

92

 Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

 Formats:

 Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

 Jump instructions just use high order bits of PC
– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in BranchesAddresses in Branches

93

Decision Making: BranchesDecision Making: Branches

Decision making: if statement, sometimes combined with goto and labels

beq register1, register2, L1(beq: Branch if equal)

Go to the statement labeled L1 if the value in register1 equals the value
in register2

bne register1, register2, L1(bne: Branch if not equal)

Go to the statement labeled L1 if the value in register1 does not equal
the value in register2

beq and bne are termed Conditional branches

What instruction format is beq and bne?

94

MIPS Decision InstructionsMIPS Decision Instructions

beq register1, register2, L1

Decision instruction in MIPS:
beq register1, register2, L1
“Branch if (registers are) equal”
meaning :
if (register1==register2) goto L1

Complementary MIPS decision instruction
bne register1, register2, L1
“Branch if (registers are) not equal”
meaning :
if (register1!=register2) goto L1

These are called conditional branches

95

MIPSMIPS GotoGoto InstructionInstruction

j label

 MIPS has an unconditional branch:
j label

– Called a Jump Instruction: jump directly to the given label without testing any
condition

– meaning :
goto label

 Technically, it’s the same as:
beq $0,$0,label

since it always satisfies the condition

 It has the j-type instruction format

96

Conditional Branch InstructionsConditional Branch Instructions

beq register1, register2, L1 #branch equal
bne register1, register2, L1 #branch if not equal

97

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

Compiling an ifCompiling an if--thenthen--elseelse

Compile by hand
if (i == j) f=g+h;
else f=g-h;

Use this mapping:
f: $s0, g: $s1, h: $s2,
i: $s3, j: $s4

Final compiled MIPS code:
beq $s3,$s4,True # branch i==j
sub $s0,$s1,$s2 # f=g-h(false)
j Fin # go to Fin

True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Note: Compiler automatically creates labels to handle decisions
(branches) appropriately

98

Inequalities in MIPSInequalities in MIPS
 Until now, we’ve only tested equalities (== and != in C), but

general programs need to test < and >
 Set on Less Than:

slt reg1,reg2,reg3
meaning :

if (reg2 < reg3)
reg1 = 1; # set

else reg1 = 0; # reset
 Compile by hand: if (g < h) goto Less;

Let g: $s0, h: $s1

slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # goto Less if $t0!=0

MIPS has no “branch on less than”=> too complex

99

C

M
I
P
S

Immediate in InequalitiesImmediate in Inequalities

 There is also an immediate version of slt to test against constants:
slti

if (g >= 1) goto Loop
Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if $s0<1 (g<1)
beq $t0,$0,Loop # goto Loop if $t0==0

 Unsigned inequality: sltu, sltiu
$s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex
slt $t0, $s0, $s1 => $t0 = ?
sltu $t1, $s0, $s1 => $t1 = ?

1

0

100

10/16 第二章 小考

101

opcode rs rt immediate

Branches: Instruction FormatBranches: Instruction Format

 Use I-format:

– opcode specifies beq or bne
– rs and rt specify registers to compare

 What can immediate specify? PC-relative addressing
– Immediate is only 16 bits, but PC is 32-bit

=> immediate cannot specify entire address
– Loops are generally small: < 50 instructions

 Though we want to branch to anywhere in memory, a single branch only need to
change PC by a small amount

– How to use PC-relative addressing
 16-bit immediate as a signed two’s complement integer to be added to the PC if

branch taken
 Now we can branch +/- 215 bytes from the PC ?

相對於PC的位置，如
果值是正的，代表示
後面之指令。否則，
則是前面的指令。

102

Branches: Instruction FormatBranches: Instruction Format

 Immediate specifies word address
–Instructions are word aligned (byte address is always a

multiple of 4, i.e., it ends with 00 in binary)
 The number of bytes to add to the PC will always be a multiple

of 4
–Specify the immediate in words (confusing?)
–Now, we can branch +/- 215 words from the PC (or +/-

217 bytes),
 Immediate specifies PC + 4

–Due to hardware, add immediate to (PC+4), not to
PC

–If branch not taken: PC = PC + 4
–If branch taken: PC = (PC+4) + (immediate*4)

103

Branch ExampleBranch Example

 MIPS Code:
Loop: beq $9,$0,End

add $8,$8,$10
addi $9,$9,-1
j Loop

End: sub $6,$7,$8
 Branch is I-Format:

opcode = 4 (look up in table)
rs = 9 (first operand)
rt = 0 (second operand)
immediate = ???
– Number of instructions to add to (or subtract from) the PC, starting at the

instruction following the branch

– => immediate = 3

opcode rs rt immediate

104

MIPS Code:
Loop: beq $9,$0,End

add $8,$8,$10
addi $9,$9,-1
j Loop

End: sub $6,$7,$8

decimal representation:

binary representation:

4 9 0 3

000100 01001 00000 0000000000000011

Branch ExampleBranch Example

105

Branch Example 2Branch Example 2

 MIPS Code:
Label: add $8,$8,$10

addi $9,$9,-1
beq $9,$0,Label
sub $6,$7,$8

 Branch is I-Format:

opcode = 4 (look up in table)
rs = 9 (first operand)
rt = 0 (second operand)
immediate = ???
– Number of instructions to add to (or subtract from) the PC, starting at the

instruction following the branch
=> immediate = -3

opcode rs rt immediate

106

Unconditional Branch Instructions andUnconditional Branch Instructions and
MIPS Control forMIPS Control for ifif--thenthen--elseelse

MIPS unconditional branch instructions:
j label

Example:

107

Unconditional Branch Instructions andUnconditional Branch Instructions and
MIPS Control forMIPS Control for ifif--thenthen--elseelse

MIPS unconditional branch instructions:
j label

Example:

108

setset--onon--lessless--than in MIPSthan in MIPS

 We have: beq, bne, what about Branch-if-less-than?
 New instruction:

 Can use this instruction with beq/bne to build "blt $s1, $s2, Label"
– blt => slt + bne/beq
– can now build general control structures
– Q. why not “blt”in MIPS?

 Simplicity

 Note that the assembler needs a register to do this,
– there are policy of use conventions for registers

 Constant operands are popular in comparisons
– $zero always has 0
– Other value: immediate version, slti
– slti $t0, $s2, 10 # $t0 = 1 if $s2 < 10

109

MIPS approach for ==, !=, <, <=, >, >=MIPS approach for ==, !=, <, <=, >, >=

Combine slt, slti, beq, bne and $zero to create all
relative conditions

110

Observation on BranchesObservation on Branches

Most conditional branches go a short and constant
distance

Fancy addressing modes not often used
No use for auto-increment/decrement
So in keeping with the RISC philosophy of

simplicity, MIPS has only a few basic branch types.

111

INFO: Complete MIPS Branch TypesINFO: Complete MIPS Branch Types

Conditional branch:
–beq/bne reg1, reg2, addr
–If reg1 =/≠ reg2, jump to PC+addr (PC-relative)

Register jump:
–jr reg
–Fetch address from specified register, and jump to it

Unconditional branch:
–j addr
–Always jump to PC: addr (use “pseudodirect”

addressing) 將addr當作要跳過去
的絕對位置

112

INFO: Branch Instructions ExampleINFO: Branch Instructions Example

Conditional branches
–beq R1, R2, L1 # if R1 = R2 go to L1
–bne R1, R2, L1 # if R1 ≠ R2 go to L1
–These are I-type instructions

Unconditional branches
–jr R8 # Jump based on register 8

Test if < 0
slt R1, R16, R17 # R1 gets 1 if R16 < R17
bne R1, 0, less # branch to less if R1 =\= 0

113

Generating Branch Targets in MIPSGenerating Branch Targets in MIPS

由於MIPS是32 bit機器，需要將26 bit的
address轉成32 bit，需要從PC暫存器中拿取前
面的4bit來湊出32bit

114

Compiling Other Control StatementsCompiling Other Control Statements

 Loops:
–for, while: test before loop body; jump past loop body if

false
–Do: test condition at end of loop body; jump to

beginning if true

switch: (called “case”statements in some other
languages)
–Build a table of addresses
–Use jr (or equiv. In non-MIPS processor)
–Be sure to check for default and unused cases!

115

Decision for Iterating a Computation:Decision for Iterating a Computation:
Loop (P.74)Loop (P.74)

116

Switch Compilation ExampleSwitch Compilation Example
先去除小於0或是大
於3的

117

INFO: Assembly Language vs. MachineINFO: Assembly Language vs. Machine
LanguageLanguage

Assembly provides convenient symbolic representation
–much easier than writing down numbers
–e.g., destination first

Machine language is the underlying reality
–e.g., destination is no longer first

Assembly can provide 'pseudoinstructions'
–e.g., “move $t0, $t1”exists only in Assembly
–would be implemented using “add $t0,$t1,$zero”

When considering performance you should count real
instructions

118

MIPS Jump, Branch, CompareMIPS Jump, Branch, Compare
Instruction Example Meaning
branch on equal beq $1,$2,25 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
branch on not eq. bne $1,$2,25 if ($1!= $2) go to PC+4+100

Not equal test; PC relative
set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.
set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp..
jump j 2500 go to 10000 28-bit+4-bit of PC

這種寫法在組語是不可能存
在的，只是為了讓我們知道
原來的label所代表的值

119

So farSo far

120

OutlineOutline

 Instruction set architecture
(using MIPS ISA as an example)

Operands
–Register operands and their organization
–Immediate operands
–Memory operands, data transfer, and addressing

 Instruction format
Operations

–Arithmetic and logical
–Decision making and branches
–Jumps for procedures (Sec. 2.7)

121

JJ--Format Instructions (1/3)Format Instructions (1/3)

For branches, we assumed that we won’t want to
branch too far, so we can specify change in PC.

For general jumps (j and jal), we may jump to
anywhere in memory.

Ideally, we could specify a 32-bit memory address
to jump to.

Unfortunately, we can’t fit both a 6-bit opcode and
a 32-bit address into a single 32-bit word, so we
compromise.

122

JJ--Format Instructions (2/3)Format Instructions (2/3)

 Define “fields”of the following number of bits each:

 As usual, each field has a name:

 Key concepts:
– Keep opcode field identical to R-format and I-format for

consistency
– Combine other fields to make room for target address

 Optimization:
– Jumps only jump to word aligned addresses

 last two bits are always 00 (in binary)
 specify 28 bits of the 32-bit bit address

6 bits 26 bits

opcode target address

123

JJ--Format Instructions (3/3)Format Instructions (3/3)

Where do we get the other 4 bits?
–Take the 4 highest order bits from the PC
–Technically, this means that we cannot jump to anywhere in

memory, but it’s adequate 99.9999…% of the time, since
programs aren’t that long

–Linker and loader avoid placing a program across an address
boundary of 256 MB

 Summary:
–New PC = PC[31..28] || target address (26 bits) || 00
–Note: means concatenation

4 bits || 26 bits || 2 bits = 32-bit address

 If we absolutely need to specify a 32-bit address:
–Use jr $ra # jump to the address specified by $ra

124

ProceduresProcedures

Six steps in the execution of a procedure
–Place parameters in a place where the procedure can

access them
–Transfer control to the procedure
–Acquire the storage resources needed for the procedure

(local variables)
–Perform the desired task
–Place the result value in a place where the calling

program can access it
–Return control to the point of origin

125

Function Calls in the MIPSFunction Calls in the MIPS

Function calls an essential feature of programming
languages
–The program calls a function to perform some task
–When the function is done, the CPU continues where it

left off in the calling program

But how do we know where we left off?

126

ProceduresProcedures

•Procedure/Subroutine

A set of instructions stored in memory which perform a set of operations
based on the values of parameters passed to it and returns one or more
values

•Steps for execution of a procedure or subroutine

The program (caller) places parameters in places where the procedure
(callee) can access them

The program transfers control to the procedure

The procedure gets storage needed to carry out the task

The procedure carries out the task, generating values

The procedure (callee) places values in places where the program (caller)
can access them

The procedure transfers control to the program (caller)

127

Procedures

 int f1 (inti, intj, intk, intg)
{ ::::

return 1; callee
}

 int f2 (ints1, ints2)
{
::::::
add $3,$4, $3
i = f1 (3,4,5, 6); caller
add $2, $3, $3
::::
}

 How to pass parameters & results?
 How to preserve caller register values?
 How to alter control? (i.e., go to callee, return from callee)

128

MIPS Procedures

 How to pass parameters & results
– $a0-$a3: four argument registers. What if # of parameters is larger than 4? –

push to the stack
– $v0-$v1: two value registers in which to return values

 How to preserve caller register values?
– Caller saved register
– Callee saved register
– Use stack

 How to switch control?
– How to go to the callee

 jal procedure_address(jump and link)
–Store the the return address (PC +4) at $ra
– set PC = procedure_addres

– How to return from the callee
 Callee exectues jr $ra

緊接的下一個指令位置

129

Calling a Function in the MIPSCalling a Function in the MIPS

Use the jal (“jump and link”) instruction
jal addr just j addr except

–The “return address”(PC) + 4 placed in $ra (R31)
–This is the address of the next instruction after the jal
–Use jr $ra to return

130

Instructions Supporting Procedure CallsInstructions Supporting Procedure Calls

 Parameter passing
– $a0 ~ $a3 are used for these
– Q. what if parameters exceed four?
– Spilling registers, place parameters in stack, $sp (R29)

 Transfer control: Jump and link
– jal procedure address
– note: return address is stored in $ra (R31)

 Return value
– $v0 ~ $v1 for return values
– Q. What if returns results exceed two?
– Saving return address on stack

 $sp (R29) is used as stack pointer

 Return
– jr $ra

131

Procedure Call ExampleProcedure Call Example

132

133

Improve the ExampleImprove the Example

 Problem in previous example
–A lot of saving and restoring temporary registers

How to avoid it in MIPS registers convention
–Temporary registers, $t0..$t9

Value won’t be preserved in the procedure call

–Saved registers, $s0..$s7
Value must be preserved
 If used, these must be saved and stored

134

Difficulties with Function CallsDifficulties with Function Calls

This example works OK. But what if:
–The function F calls another function?
–The caller had something important in regs R6 and/or

R7?
–The called function calls itself, (nested procedure)?

Register conflict

Solution
–Each version of a function should have its own copies

of variables
–These are arranged in a stack, as a pile of frames.

135

Procedure Call Stack (Frame)

Frame pointer points to the first word of the procedure frame

136

Procedure Call Stack (Frame)

137

Nested ProceduresNested Procedures

 Problems:
–Register conflicts

Solutions:
–Push all the other register that must be preserved onto

the stack
–Procedure

The caller pushed any argument register $a0-$a3 or
temporary registers $t0..$t9 that are needed after the call

The callee push the return address $ra and any saved registers
$s0..$s7 used by the callee

Stack push and store

138

Stack Examples for Nested FunctionalStack Examples for Nested Functional
CallsCalls

Assume function A calls B, which calls C.
Function C calls itself once:

139

Examples for Nested Functional CallsExamples for Nested Functional Calls

140

141

142

INFO: Parameter PassingINFO: Parameter Passing

Stack
–Ideal data structure for spilling registers

Caller save. The calling procedure (caller) is
responsible for saving and restoring any registers
that must be preserved across the call. The called
procedure (callee) can then modify any register
without constraint.

Callee save. The callee is responsible for saving
and restoring any registers that it might use. The
caller uses registers without worrying about
restoring them after a call.

143

Stack FramesStack Frames

If a function needs more memory and/or may call
others, it uses a stack frame, which holds:
–Automatic variables (non-static variables declared

within function)
–Arguments to the function (just another type of local

variable)
–The “return address”(since $ra overwritten by call)
–Saved registers from caller ($s0-$s7) if you need to use

them
–“Spill”registers, including $t0-$t9 when calling others

144

Layout of a Stack FrameLayout of a Stack Frame

145

Allocating Space for New Data on the StackAllocating Space for New Data on the Stack
Details of Stack for Procedure Calls (1)Details of Stack for Procedure Calls (1)

146

Details of Stack for Procedure Calls (2)Details of Stack for Procedure Calls (2)

Calling a Non-Leaf Function (Caller)
–Put arguments to the function in $a0-$a3
–Save contents of $t0-9 if they will be needed later
–If more than 4 args, push them onto stack
–jal to beginning of the function code

147

Details of Stack for Procedure Calls (3)Details of Stack for Procedure Calls (3)

Calling a Non-Leaf Function (Callee)
–Push current fp onto stack
–Move fp to top of frame (just below old sp)
–Set sp to (fp –frame size)

Frame size is the same for every call of the same function
Known at compile-time

–Use displacement addressing to get at local variables
–Save $s0-$s7 (whichever you need to reuse) and $ra in

frame
–Save $a0-$a3 to frame if needed (e.g., calling another

function)

148

Details of Stack for Procedure Calls (4)Details of Stack for Procedure Calls (4)

Returning from Non-Leaf Function (Callee)
–Put return values (if any) in $v0 and $v1
–Restore $s0-$s7 (whichever were saved) and $ra from

frame
–Restore sp to just above current fp
–Restore old fp from stack frame
–Jump to $ra (jr)
–Caller can get return args in $v0 and $v1, if any

149

Register Conventions in the MIPSRegister Conventions in the MIPS

150

Other Storage: Global VariablesOther Storage: Global Variables

In C/C++, “global variables”are
–Variables declared outside of any functions
–Static variables (inside or outside a function)
–Static data members of a class (C++)

Properties:
–Only one copy of each (unlike automatic variables)
–Initialization allowed (set value before main () starts)
–All in one region of memory, accessed through $gp

(r28)

151

Other Storage: Dynamic Storage (Heap)Other Storage: Dynamic Storage (Heap)

In C/C++, the “heap”contains
–Blocks of memory allocated by malloc () etc.
–Objects created using the new keyword (C++)
–Properties:

Stored in a big chunk of memory between globals and stack
Controlled by the programming language’s library (e.g., libc)
Can be grown if needed
No dedicated reg. Like $gp; everything goes through pointers

152

Typical Layout of ProgramTypical Layout of Program

153

What an Executable Program Looks LikeWhat an Executable Program Looks Like

When you execute a program, it is in the form of
an “executable”

The executable contains everything you need to
run your program
–Every function used, starting with main() –the “text

segment”
–Values of all initialized global variables –the “data

segment”
–Information about uninitialized globals

Every function and every global variable has an
absolute address in memory

154

Executing an ExecutableExecuting an Executable

When you execute a program, the loader:
–Allocates space for your program (details vary by OS)
–Copies the text and data segments of the executable to memory
–Jumps to a known starting address (specified in the executable)

Once the executable starts running at that starting address,
it
–Initializes regs such as $gp and $sp; initializes heap (if used)
–Sets uninitialized globals to 0 (if the language requires this)
–Sets up command line args into data structure (e.g., argc/argv)
–Does jal to start of main () function

155

So farSo far

156

INFO: MIPS RegistersINFO: MIPS Registers

32 regs with R0 = 0
Reserved registers : R1, R26, R27.
Special usage:

–R28: pointer to global area
–R29: stack pointer
–R30: frame pointer
–R31: return address

157

OutlineOutline

 Instruction set architecture
(using MIPS ISA as an example)

Operands
–Register operands and their organization
–Immediate operands
–Memory operands, data transfer, and addressing

 Instruction format
Operations

–Arithmetic and logical
–Decision making and branches
–Jumps for procedures
–Communicating with People (Sec. 2.8)

158

Communicating with PeopleCommunicating with People

 For communication
–Use characters and strings

Characters
–8-bit (one byte) data for ASCII
lb $t0, 0($sp) ; load byte

 Load a byte from memory, placing it in the rightmost 8-bits of registers
sb $t0, 0($gp) ; store byte

 Takes a byte from the rightmost 8-bits of a register and writes it to the
memory

–Unicode in Java (16-bits)
lh $t0, 0($sp) ; load halfword

 Load a byte from memory, placing it in the rightmost 16-bits of registers
sh $t0, 0($gp) ; store halfword

 Takes a byte from the rightmost 16-bits of a register and writes it to the
memory

159

Q. Impact of Word Alignment to Byte/Q. Impact of Word Alignment to Byte/HalfwordHalfword
StorageStorage

MIPS software tries to keep the stack aligned to
word address
–A char variable will occupy four bytes, even though it

requires less
–Solution

Software will pack C string in 4 bytes per word, Java string in
2 halftwords per word

160

OutlineOutline

 Instruction set architecture
(using MIPS ISA as an example)

Operands
–Register operands and their organization
–Immediate operands
–Memory operands, data transfer, and addressing

 Instruction format
Operations

–Arithmetic and logical
–Decision making and branches
–Jumps for procedures
–Communicating with People
–MIPS Addressing for 32-Bit Immediates and Addresses (2.9)

161

MIPS Addressing ModeMIPS Addressing Mode

Addressing mode
–A method that help you identify and find where the

operand is
–What you learned now

Register addressing
 Immediate addressing
Base or displacement addressing

162

Review: HandleReview: Handle 3232--bit Constantsbit Constants in MIPSin MIPS
We'd like to be able to load a 32 bit constant into a

register
Must use two instructions, new "load upper

immediate" instruction

 Then must get the lower order bits right, i.e.,

163

Addresses in Branches and JumpsAddresses in Branches and Jumps

 Instructions:

Q. What’s the destination address of next
instruction? And How far do you can jump (or
branch)?

164

Addresses in Branches and JumpsAddresses in Branches and Jumps

Destination Address
–MIPS uses PC-relative address (relative to PC+4, +/- 215) for all

conditional branches
Next PC = (PC +4) + (16-bit address <<2)

–MIPS uses long addresses (26-bits) (pseduodirect addressing)
for both jump and jump-and-link instructions

Next PC ={PC[31:28], (26-bit address <<2)}
–Note. PC-relative addressing refer to the number of words to the

next instruction instead of number of bytes (word address)
–16-bit field => 18-bit byte address displacement
–26-bit field => 28-bit byte address displacement

165

How Far Do You Can Jump or Branch?How Far Do You Can Jump or Branch?

 Formats:

Branch limitation: +/-215 , (218 = 256KB address
boundaries)
–Is it enough: most branches are local (principle of locality)
–How about larger space? Branch + Jump

beq $s0, $s1, L1 bne $s0, $s1, L2
j L1

L2: …….
 Jump limitation: +/-225 , (228 = 256MB address boundaries)

–How about larger space? Jump registers (32-bit value)
 jr $s0

166

Addressing in Branches and JumpsAddressing in Branches and Jumps

J-type

I-type

–Program counter = Register + Branch address
PC-relative addressing

–We can branch within ±215 words of the current instruction.

–Conditional branches are found in loops and in if
statements, so they tend to branch to a nearby
instruction.

6 bits 26 bits

6 bits 5 bits 5 bits 16 bits

167

JJ--typetype

26-bit field is sufficient to represent 32-bit address?
–PC is 32 bits

The lower 28 bits of the PC come from the 26-bit field
–The field is a word address
–It represents a 28-bit byte address

The higher 4 bits
–Come from the original PC content

An address boundary of 256 MB (64 million
instructions)

168

Addressing ModesAddressing Modes

Addressing mode Example Meaning
Immediate addi R4,R4,3 R4  R4+3
Register add R4,R4,R3 R4  R4+R3
Base/Displacement lw R4,100(R1) R4  Mem[100+R1]
PC-relative beq R1, R2, L1
Pseudodirect j L2

169

MIPS Addressing ModeMIPS Addressing Mode

170

To Summarize

171

Overview of MIPSOverview of MIPS

simple instructions all 32 bits wide
very structured, no unnecessary baggage
only three instruction formats

rely on compiler to achieve performance
–what are the compiler's goals?

help compiler where we can

172

2.10 Translating and Starting a Program2.10 Translating and Starting a Program

173

174

IAIA--32 instruction Formats32 instruction Formats

175

Summary: MIPS ISASummary: MIPS ISA

 32-bit fixed format instructions (3 formats)
 32 32-bit GPR (R0 = zero), 32 FP registers, (and HI LO)

–partitioned by software convention
 3-address, reg-reg arithmetic instructions
Memory is byte-addressable with a single addressing

mode: base+displacement
–16-bit immediate plus LUI

Decision making with conditional branches: beq, bne
–Often compare against zero or two registers for =
–To help decisions with inequalities, use: “Set on Less

Than”called slt, slti, sltu, sltui
 Jump and link puts return address PC+4 into link register

$ra (R31)
Branches and Jumps were optimized to address to words,

for greater branch distance

176

Summary: MIPS ISASummary: MIPS ISA

 Immediates are extended as follows:
– logical immediate: zero-extended to 32 bits
– arithmetic immediate: sign-extended to 32 bits
– Data loaded by lb and lh are similarly extended:

lbu, lhu are zero extended; lb, lh are sign extended

 Simplifying MIPS: Define instructions to be same size as data (one
word), so they can use same memory

 Stored Program Concept: Both data and actual code (instructions)
are stored in the same memory

 Instructions formats are kept as similar as possible

opcode rs rt rd functshamt
opcode rs rt immediate

R
I

opcode target addressJ

177

SummarySummary

 Instruction complexity is only one variable
–lower instruction count vs. higher CPI / lower clock

rate
Design Principles:

–simplicity favors regularity
–smaller is faster
–good design demands compromise
–make the common case fast

Instruction set architecture
–a very important abstraction indeed!

