Chapter 2
Instructions:
Language of the Computer

Outline

e Operations

e Operands

e Control flow

e MI|PS addressing mode

Outline

e |nstruction set architecture
(taking MIPS ISA as an example)

e Operands (2.3)
— Register operands and their organization

— Memory operands, data transfer
— Immediate operands

e |nstruction format

e Operations
— Arithmetic and logical
— Decision making and branches
— Jumps for procedures

Introduction

e Computer language
— Words: instructions
— Vocabulary: instruction set
— Smilar for al, like regional dialect

e Design goal of computer language

— To find alanguage that makes it easy to build the
hardwar e and the compiler while maximizing
performance and minimizing cost

Instructions: Difference with HLL

e L anguage of the Machine

More primitive than higher level
languages

e €.0., no sophisticated control flow
Very restrictive

e e.0., MIPS Arithmetic Instructions

e We’ll be working with the MIPS
Instruction set architecture

similar to other architectures
developed since the 1980's

Almost 100 million MIPS processors
manufactured in 2002

used by NEC, Nintendo, Cisco,
Silicon Graphics, Sony, ...

Millicns of processars

1400
1300

1200

1100 H
1000 4
900
800
700
600

500

400
400
200

100

L] Other

B SPARC

B Hitachi SH
B FowerPC

|| Motorola 68K
Bl miPs

[14-32

M ARM - . <
—

&

I I 1

1998 1999 2000 2001 2002

How to Design the Instructions?

e Operations (i1 fT7) int adds (int a)
— Arithmetic {
— Logical INttmp =a + 5;
_=> Datapath return tmp,
e Operands (iZ §T~") oo
_ => Datapath void main ()
e Control flow {int a=7
— Decision control int c:
— Procedures calls if (a==7)
_ => Control c = add5(a);

}

6

Assembly Language vs. Machine Language

e Assembly provides convenient symbolic representation
— much easier than writing down numbers
— e.g., destination first

e Machine language isthe underlying reality
— e.g., destination is no longer first

e Assembly can provide 'pseudoinstructions
— e.0., “move $t0, $t1” exists only in Assembly
— would be implemented using “add $t0,$t1,$zero”

e \When considering performance you should count real
Instructions

Recall in C Language

e Operators. +,-,*, /, %(mod), ...
-7/ 4==1, 7%==3
e Operands:

— Variables: | ower , upper, fahr, cel si us
— Constants: 0, 1000,-17,15. 4

e Assignment statement:
variable = expression

— Expressions consist of operators operating on operands,

e.g.,
cel sius = 5*(fahr-32)/09;

a = b+c+d-e:

When Translating to Assembly ...

=b+5;
Statement

oad $r1 MID

$r2 5 ~

¥
add $r3, $r1, $r2 Constant
styre $r3, M[a] > Operands
\' Memory
Register ~

Operator (op code)

Components of an ISA

e Organization of programmable storage
— registers
— memory: flat, segmented

— Modes of addressing and accessing data items and
Instructions

e Datatypes and data structures
— encoding and representation (next chapter)
e |nstruction formats

® |nstruction set (or operation code)
— AL U, control transfer, exceptional handling

10

MIPS ISA as an Example

® |nstruction categories. Registers

— Load/Store S0 - $r31

— Computational

— Jump and Branch

— Floating Point ﬁ?

— Memory Management e

— Specid

3 Instruction Formats: all 32 bits wide

op | srs | gt | srd | sa | funct
OoP [srs | gt | immediate

op_ | jump target

11

Operations: MIPS arithmetic

e Each arithmetic instructions performs only one

operation and have 3 operands
e Operand order isfixed (destination first)

add a, b, c # a =Db + cC

AN e

One operation Exact three
operands

“The natural number of operands for an operation like
addition is three...requiring every instruction to have
exactly three operands, no more and no less, conforms
to the philosophy of keeping the hardware simple”

12

MIPS arithmetic

e Design Principle 1: smplicity favorsregularity.
e All arithmetic instructions have 3 operands
e Operand order isfixed (destination first)

Example:
C code; a=»>b + c
MIPS ‘code: add a, b, c

(we'll talk about registersin a bit)

13

MIPS arithmetic

e Of course this complicates some things...
C code: a=>b+c + d;

MIPScode: add a, b, c
add a, a, d

e Operands must be registers, only 32 registers provided
e Each register contains 32 bits

14

Design Principle

e Simplicity favors regularity
e Smaller isfaster

15

Registers vs. Memory

e Arithmetic instructions operands must be registers,
— only 32 registers provided

e Compiler associates variables with registers

e \What about programs with lots of variables

Datapath

Processor

16

Outline

e |nstruction set architecture
(using MIPS ISA as an example)

e Operands of Hardware (2.3)
— Register operands and their organization

— Memory operands, data transfer
— Immediate operands

e |nstruction format

e Operations
— Arithmetic and logical
— Decision making and branches
— Jumps for procedures

17

Operands of the Computer Hardware

e Difference with HLL like C

— Limited number, why ?

— Operands are restricted to hardware-built registers

— Registers are primitive and visible to programmer
e MI|PS Register operands

— Only 32 registers provided

— Each register contains 32 bits

— Why 32?

Design Principle 2. smaller is faster.
18

Operand Type

® 3 Types
— Register operands
o All arithmetic operations are in the register operands
— Memory operands

e Array or structure
o Only load/store can access memory

— Constant or immediate operands
o Small value will be in the instruction
o Large value will be stored separately

19

Operands and Registers

e Unlike high-level language, MIPS assembly don’t use
variables
=> assembly operands are registers
— Limited number of special locations built directly into the
hardware

— Operations are performed on these

e Benefits:
— Registersin hardware => faster than memory
— Registers are easier for a compiler to use
e €., asaplacefor temporary storage

— Registers can hold variables to reduce memory traffic and
Improve code density (since register named with fewer bits than
memory location)

20

MIPS Registers

e 32 registers, each is 32 bitswide
— Why 32? smaller isfaster
— Groups of 32 bits called aword in MIPS
— Registers are numbered from 0 to 31
— Each can be referred to by number or name
— Number references:
$0, $1, $2, .. $30, $31

— By convention, each register also has a name to make it easier to
code, e.q.,

$16 - $23 > $s0 - $s7 (Cvariables)
$8 - $15 = $t0 - $t7 (temporary)

e 32 x 32-bit FP registers (paired DP)
e Others: HI, LO, PC 21

Registers Conventions for MIPS

vO

2 expression evaluation &

3 vl function results

4 a0 arguments

5 al

6 a2

[/ a3

8 t0 temporary: caller saves
(callee can clobber)

15 t7

16 sO callee saves
(caller can clobber)
23 _s7

24 t8
25 t9

temporary (cont’d)

28 gp pointerto global area
29 sp stack pointer
30 fp

frame pointer

Fig. 2.18

MIPS R2000
Organization

Fig. A.10.1

— Memory

/\

CPU

/—%

N Arlthmetlc /
: unit | 4

Coprocessor 1 (FPU)
Registers
$0 $0
$31 $31
/
Multiply
divide
|—|—| Arithmetic
Lo Hi unit

Registers

Coprocessor 0 (traps and memory)

BadVAddr

Cause

Status

EPC

23

Register Operand

e Syntax of basic MIPS arithmetic/logic

INstructions:
1 2 3 4
add $s0, $s1, $s2 # f = g + h

1) operation by name
2) operand getting result (“destination™)
3) 1st operand for operation (“sourcel”)
4) 2nd operand for operation (“source2”)
e Each instruction is 32 bits
e Syntax isrigid: 1 operator, 3 operands
— Why? Keep hardware ssimple via regularity

24

Register Operand Example

e Register representation
— $*, iIn MIPS

e $30, $sl.. Registers corresponding to the variables of C
programs

o $t0, $t1... temporary registers need to compile the program
— (this might be different in other assembly language)

e How to do the following C statement?
o =(g+h - (0 +]);
Assumef, g, h, i,] uses $0, .. $4
add $s0, $s1,%$s2 # f =g + h

add $t 0, $s3, $s4 #t0 =0 + |
sub $s0, $s0, $t 0 # f=(g+h)-(i+) 2

HW/SW IF. How Compiler Use Registers

e Problem: more variables than available registers

e Solution
— Keep the most frequently used variables in registers

— Place the rest in memory (called spilling registers), use
oad and store to move variables between registers and
memory

— Why?
o Register isfaster but its size is small
o Compiler must use register efficiently

26

Outline

e |nstruction set architecture
(using MIPS ISA as an example)

e Operands(2.3)
— Register operands and their organization

— Memory operands, data transfer
— Immediate operands

e |nstruction format

e Operations
— Arithmetic and logical
— Decision making and branches
— Jumps for procedures

27

Memory Operands: Array and Structures

e Dataare stored in memory

e “datatransfer instructions”
— Transfer data between memory and registers
— Load Ilw: move data from memory to aregister
— Store st: move data from aregister to memory

28

Memory Operands

e C variables map onto registers; what about large
data structures like arrays?

— Memory contains such data structures
e But MIPS arithmetic instructions operate on
registers, not directly on memory

— Data transfer instructions (Iw, sw, ...) to transfer
between memory and register

— A way to address memory operands

29

Array Example

e | oad format
— Iw register names, const offset(base register)

g =nh + al8] offset
assume g, h => $s1, $s2 /_ |

base address => $s3

B o= M e
=

lw $t0, 8(Ss3) #lw:load word ——+—{ Base
add S$sl1l, $2, $tO B mm:ﬂwm | address
|

Memory and Data Sizes

e S0 far, we’'ve only talked about uniform data sizes. Actual
data come in many different sizes:
— Single bits: (“boolean” values, true or false)
— Bytes (8 bits): Characters (ASCII), very small integers
— Halfwords (16 bits): Characters (Unicode), short integers
— Words (32 bits): Long integers, floating-point (FP) numbers
— Double-words (64 bits): Very long integers, double-precision FP
— Quad-words (128 bits). Quad-precision floating-point numbers

31

Different Data Sizes

e Today, aimost all machines (including MIPS) are
“byte-addressable” — each addressable location In
memory holds 8 bits.

32

Memory Organization - Byte Addressing

e Viewed asalarge, single-dimension array, with an
address.

e A memory address is an index into the array

e "Byte addressing” means that the index pointsto a
byte of memory.

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

v n e w a — O

8 bits of data

33

Memory Organization

o
o
0 32 bits of data
4 32 bits of data
8 32 bits of data
12 32 bits of data
o
o

e \Wordsare aligned

Bytes are nice, but most data items use larger "words"
For MIPS, aword is 32 bits or 4 bytes.

Registers hold 32 bits of data

232 bytes with byte addresses from 0 to 23%-1
230 words with byte addresses 0, 4, 8, ... 2%%-4

I.e., what are the least 2 significant bits of aword address?

e To select the byte

® Alignment restriction in MIPS

— Words must start at addresses that are multiples of 4

34

A Note about Memory: Alignment

e MIPSrequiresthat al words start at addresses that are multiples of
4 bytes

O 1 2 3

Aligned

Not
Aligned

e Called Alignment: objects must fall on address that is multiple of
their size

35

Array Example for Real MIPS Memory

Address
e Code for byte addressable memory
Original Updated
all2] = h + a[8] all2] = h + a[8]

assume g, h => $s1, $s2
base address => $s3

1w $t0, 8(S$s3)
add $sl1, $2, StO
sw 12 ($Ss3), S$sl

assume g, h => $s1, $s2
base address => $s3, word data

lw $St0, 32 ($s3)
add $sl1, $2, StO
sw 48 ($s3), Ssl

Remember arithmetic operands are registers, not memory!
Can't write: add 48($s3), $s2, 32($s3)

36

Byte-Order (“Endianness”)

For a multi-byte datum, which part goes in which
byte?

e |f $1 contains 1,000,000 (F4240H) and we store it
Into address 80:

e On a‘“big-endian” machine, the “big” end goes
Into address 80

00 OF |42 40
79 80 81 82 83 84

e On a“little-endian” machine, it’s the other way
around

40 42 |OF 00
. 79 80 81 82 83 84

37

Big-Endian vs. Little-Endian

e Big-endian machines. MIPS, Sparc, 68000

e Little-endian machines. most Intel processors,
Alpha, VAX
— No real reason one is better than the other...

— Compatibility problems transferring multi-byte data
between big-endian and little-endian machines —
CAREFUL!

e Bi-endian machines. ARM, User’s choice

38

Registers Operands vs. Memory
Operands

e Arithmetic instructions operands must be registers,
— only 32 registers provided
— Compiler associates variables with registers

e \What about programs with lots of variables ? Like
array and structures
— Data structures are kept in memory

— Data transfer instructions
e Load: Iw copy data from memory to registers
e Store: sw copy data from registers to memory
o How: instruction supplies the memory address

39

Data Transfer. Memory to Reqister
(1/2)

e To transfer aword of data, need to specify two
things:
— Register: specify this by number (O - 31)
— Memory address. more difficult
e Think of memory asa 1D array
o Address it by supplying a pointer to a memory address
o Offset (in bytes) from this pointer

e The desired memory address is the sum of these two
values, e.g., 8($t 0)

o Specifies the memory address pointed to by the value in
$t 0, plus 8 bytes (why “bytes”, not “words”’?)

e Each addressis 32 bits 40

Data Transfer. Memory to Reqister
(2/2)

e Load Instruction Syntax:
1 2 3 4

lw $t 0, 12($s0)

1) operation name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory
e Example: |l w $t 0, 12($s0)
— Iw (Load Word, so aword (32 bits) is loaded at atime)

— Takethe pointer in $s0, add 12 bytesto it, and then load the value from the
memory pointed to by this calculated sum into register $t 0

e Notes
- $s0 iscalled the baseregister, 12 is called the offset

— Offset isgenerally used in accessing elements of array: base register points to the
beginning of the array
7|

Data Transfer: Register to Memory

e Also want to store value from aregister into
memory

e Store instruction syntax Is identical to Load
Instruction syntax

e Example: sw $t 0, 12($s0)

— sw (meaning Store Word, so 32 bits or one word are
loaded at atime)

— Thisinstruction will take the pointer in $s0, add 12
bytesto it, and then store the value from register $t O

Into the memory address pointed to by the calculated
sum

42

Compilation with Memory

e Compile by hand using registers:
$s1:9, $s2:h, $s3:base address of A
g =h+ AB8J;

e What offset in| wto select an array element Al 8] in aC program?
— 4x8=32 bytes to select A[8]
— 1st transfer from memory to register:

lw $t 0, 32($s3) # $t0 gets Al 8]
— Add 32 to $s3 toselect Al 8] , putinto $t O

e Nextaddittoh and placeing
add $s1, $s2, $t 0 # $s1 = h+A[8]

43

MIPS Data Transfer Instructions

| nstruction

SwW

sh

sb
W
L

Nu
¢
ou
uli

$t3,500($t4)
$t3,502($t2)
$t2,41($t3)
$t1, 30($t2)
$t1, 40($t3)
$t1, 40($t3)
$t1, 40($t3)
$t1, 40($t3)
$t1, 40

Comment

Store word
Store half

Store byte
|_oad word
| oad halfword What does it mean?
_oad halfword ypergned

_oad Upper Immediate
(16 bits shifted left by 16) ,,

Load Byte Sighed/Unsigned

$t0

$tl

b $t1, O($t0) |FFFFFF F7| Sign-extended

$t2
Ibu $t2, 0($t0) ‘OOOOOO F7‘ Zero-extended

45

Role of Registers vs. Memory

e \What iIf more variables than registers?

— Compiler tries to kegp most frequently used variablesin
registers
— Writes less common variables to memory

e \Why not keep all variables in memory?

— Smaller isfaster:
registers are faster than memory

— Registers more versatile:

o MIPS arithmetic instructions can read 2 registers, operate on
them, and write 1 per instruction

o MIPS datatransfers only read or write 1 operand per
Instruction, and no operation 46

Outline

e |nstruction set architecture
(using MIPS ISA as an example)

e Operands (Sec 2.3)
— Register operands and their organization
— Memory operands, data transfer, and addressing
— Immediate operands

e |nstruction format

e Operations
— Arithmetic and logical
— Decision making and branches
— Jumps for procedures

47

Constant or Immediate Operands

Small constants used frequently (>50% of operands in SPEC2000

benchmark)
eg, A=A+5
B=B +1;
C=C-18;
Solutions? Why not?

— put 'typical constants in memory and load them
— create hard-wired registers (like $zero) for constants

MIPS Instructions:;
addi $29, $29, 4
dti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

Design Principle: Make the common case fast
Q: why only “addi”” and no ““subi”
— Negative constants

48

Constant or Immediate Operands

e Immediate: numerical constants
— Often appear in code, so there are specia instructions for them

— Add Immediate:
f = g + 10 (In C)
addi $s0, $s1, 10 (in MIPS)

where $s0, $s1 are associated withf , g

— Syntax similar to add instruction, except that last argument isa
number instead of a register

— One particular immediate, the number zero (0), appears very
often in code; so we define register zero ($0 or $zer 0) to

aways 0
— Thisisdefined in hardware, so an instruction like
addi $0, $0, 5 will not do anything 49

How about larger constants?

e \We'd liketo be able to load a 32 bit constant into a
register
e Must use two Instructions, new "load upper

Immediate” 1nstruction
lui $t0, 1010101010101010

filled with zeros

1010101010101010 0oo000O0OOOOOOOCQO

e Then must get the lower order bitsright, 1.e.,
ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

ori

1010101010101010 1010101010101010 0]

So far
MIPS operands

Name Example Comme nts
$s0-$s7, $10-519, Fast locations for data. In MIPS, data must be in registers to perform
32 registers $zero, $a0-%a3, Sv0- |arithmetic. MIPS register $zero always equals 0. $gp (28) is the global

$vl, $gp, $fp, $sp, $ra |pointer, $sp(29) is the stack pointer, $1tp (30) is the frame pointer, and $ra
(31) is the return address.

Memory [0], Accessed only by data transfer mstructions. MIPS uses byte addresses, so
2*¢ memory words |Memory [4]..... sequential words differ by 4. Memory holds data structures, such as arrays,
Memory[42949672920 Jand spilled register, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments
Arithmetic add add $s1, Ss2, $s3 Ss1 = $s2 + 853 Three operands; data in registers
subtract sub $s1. 852, 53 $sl = $s2 - $s3 Three operands: data in registers
Data transfer load word lw $51.100 ($s2) &s1 = Memory [$s2 + 100] Data from memory to register
store word sw S5, 100 (5s2) Memory [$s2 + 100] = $s1 Data from register to memory
branch on equal |beg $sl. $s2. L if ($51 == $s2) go to L Equal test and branch
branch on not bne $s1, $s2. L if ($s1 !=%s2) go to L Mot equal test and branch

Conditional branch |egual

set on less than [slt Ss1, $s2, $s3 if ($s52 < 8s3) $s1 = 1; else Compare less than: for beq, bne

851 =10
jump i 2500 oo to 10000 jump to target address
Unconditional jump [jump register ir $ra oo to Sra For switch, procedure return
jump and link jal 2500 Sra = PC + 4 go to 1000 For procedure call

J

INFO: MIPS Registers

® 32regswithRO=0
e Reserved registers: R1, R26, R27.

e Special usage:
- R28: pointer to global area
- R29: stack pointer
- R30: frame pointer

R31:

return address

52

Registers Conventions for MIPS

vO

2 expression evaluation &

3 vl function results

4 a0 arguments

5 al

6 a2

[/ a3

8 t0 temporary: caller saves
(callee can clobber)

15 t7

16 sO callee saves
(caller can clobber)
23 _s7

24 t8
25 t9

temporary (cont’d)

28 gp pointerto global area
29 sp stack pointer
30 fp

frame pointer

Fig. 2.18

INFO: Standard Register Conventions

e The 32 integer registersin the MIPS are “general -
purpose” — any can be used as an operand or result
of an arithmetic op

e But making different pieces of software work
together Iseasier If certain conventions are
followed concerning which registers are to be used
for what purposes.

e These conventions are usually suggested by the
vendor and supported by the compilers

54

INFO: MIPS Registers and Usage

Convention

Name |Register number Usage
Szero 0 the constant value 0
Sv0-5vl 2-3 values for results and expression evaluation
$5al-%a3 4-7 arguments
$t0-5t7 8-15 temporaries
$s0-$s7 16-23 saved
5t8-St9 24-25 more temporaries
Sgp 28 global pointer
Ssp 29 stack pointer
$fp 30 frame pointer
Sra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system

95

INFO: MIPS Registers and Usage

Convention

Register name | Number |Usage

ZEro 0 Constant 0
at 1 Reserved for assembler
v0 2 Expression evaluation and results of a function
v 3 Expression evaluation and results of a function
al 4 Argument 1
al 5 Argument 2
a2 5] Argument 3
ald 7 Argument 4
t0 8 Temporary (not preserved aross call)
i1 9 Temporary (not preserved aross call)
2 10 Temporary (not preserved aross call)
t3 11 Termporary (not preserved aross call)
t4 12 Temporary (not preserved aross call)
15 13 Temporary (not preserved aross call)
t6 14 Temporary (not preserved aross call)
t7 15 Temporary (not preserved aross call)
s0 16 Saved temporary (preserved across call)
51 17 Saved temporary (preserved across call)
s2 18 Saved temporary (preserved across call)
53 19 Saved temporary (preserved across call)
s4 20 Saved temporary (preserved across call)
55 21 Saved temporary (preserved across call)
s6 22 Saved temporary (preserved across call)
s7 23 Saved temporary (preserved across call)
8 24 Temporary (not preserved aross call)
19 25 Temporary (not preserved aross call)
kO 26 Reserved for OS kernel
k1 27 Reserved for OS5 kernel
ap 28 Pointer to global area
sp 29 Stack pointer
fp 30 Frame pointer
ra 3 Return address (used by function call)

56

Our First Example

e Can we figure out the code? 34: vpustart address

$5: index k

swap(int v[], int k),
{ int temp;
temp = v[k]
vik] = v[k+1l];
vik+l] = temp;
} swap:

Q muli $2, $5, 4
add $2, 54, $2
1w $15, 0($2)
1w $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

S/

So far we’ve learned:

o MIPS
— loading words but addressing bytes
— arithmetic on registers only

Instruction Meaning

add $sl1, $s2, $s3 $sl = $s2 + $s3

sub $sl1, $s2, $s3 Ssl = $s2 - Ss3

1w S$s1, 100(Ss2) Ssl = Memory[$s2+100]

sw $sl1, 100(S$Ss2) Memory[$s2+4100] = $sl

58

Outline

e |nstruction set architecture
(using MIPS ISA as an example)

e Operands
— Register operands and their organization
— Memory operands, data transfer
— Immediate operands

e Instruction format (Sec. 2.4.~2.9)

e Operations
— Arithmetic and logical
— Decision making and branches
— Jumps for procedures

59

MIPS Instruction Format

® Oneinstruction i1s 32 bits
=> divide instruction word into ““fields”

— Each field tells computer something about instruction

e \We could define different fields for each
Instruction, but MIPS is based on ssmplicity, so
define 3 basic types of instruction formats:

— R-format: for register
— |-format: for immediate, and | wand sw (sincethe
offset counts as an Immediate)

— J-format: for jump

60

Overview of MIPS

e simpleinstructions all 32 bitswide
e Vvery structured, no unnecessary baggage

e only three instruction formats

R-Format
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
I-Format
op rs rt address
6 bits 5 bits 5 bits 16 bits
J-Format
op address
6 bits 26 bits

61

R-Format Instructions (1/2)

e Definethefollowing “fields”:

6 S S S S 6

| opcode| rs rt rd |[shant | funct |

opcode: operation of instruction (Note: O for all R-Format instructions)
r s (Source Register): generally used to specify register containing first
operand

rt (Target Register): generally used to specify register containing second
operand

r d (Destination Register): generally used to specify register which will
receive result of computation

shamt: shift amount

f unct : function; thisfield selects the variant of the operation in the op field
called function code

Question: Why aren’t opcode and f unct asingle 12-bit field?

62

R-Format Instructions (2/2)

e Notes about register fields:

— Each register field is exactly 5 bits, which means that it
can specify any unsigned integer in the range 0-31.
Each of these fields specifies one of the 32 registers by
number.

e Final field:

-~ shant : contains the amount a shift instruction will

shift by. Shifting a 32-bit word by morethan 31 s
useless, so thisfield isonly 5 bits

— Thisfield isset to O in al but the shift instructions

63

Instruction Format : Example

e |nstructions, like registers and words of data, are
also 32 bitslong

— Example: add $t1, $s1, $s2
— registers have numbers, $t1=9, $s1=17, $s2=18

® Instruction Format:

000000 (10001} 1001001000 |OOOQCO [100000

op rs rt rd shamt |funct

64

R-Format Example

e MIPS Instruction:
add $8, $9, $10 [1 $8=%$9+$10
— opcode =0 (look up in table)
— funct = 32 (look up in table)
— rs= 9 (first operand)
— 1t = 10 (second operand)
— rd = 8 (destination)
— shamt = 0 (not a shift)

binary representation:
\OOOOOO 01001|01010]01000|00000 100000\

op rs rt rd shamt funct

called a Machine Language I nstruction 65

What if Longer Field is Required?

e Consider the load-word and store-word instructions
— Load word: two registers and a constant
— Constant < 32 if any above 5-bit fields is used
— What would the regularity principle have us do?
— Principle 4: Good design demands a compromise

e Introduce anew type of instruction format
— |-type for immediate and data transfer instructions
— other format was R-type for register

e Example: |w $t0, 32($s2) [55 [1s 9 32

op rs rt 16 bit number

e \Where's the compromise?
— Keep instruction the same length with different formats
— Keep the formats similar

l-Format Instructions

e Definethefollowing “fields”:

6 S S 16

| opcode| rs rt i mredi at e

— opcode: uniguely specifies an I-format instruction

- 1 s: specifies the only register operand and is the base register

— 1t : specifiesregister which will recelve result of computation
(target register)

- addi, sl ti1, immediate Is sign-extended to 32 bits, and treated
as asigned integer

— 121 bits =» can be used to represent immediate up to 216 different
values

e Key concept: Only onefield isinconsistent with R-format.
Most importantly, opcode isstill in same location

67

I-Format Example 1

e MIPS Instruction:

addi $21, $22,-50 //$21=%$22-50

— opcode = 8 (look up in table)

— rs= 22 (register containing operand)

— rt = 21 (target register)

— Immediate = -50 (by default, thisis decimal)
decimal representation:

| 8 22 21 - 50 |
binary representation:

| 001000(10110{10101f 1111111111001110 |

68

I-Format Example 2

e MIPS Instruction:

lw $t0, 1200($t 1)

— opcode = 35 (look up in table)

— rs=9 (base register)

— rt = 8 (destination register)

— Immediate = 1200 (offset)
decimal representation:

| 35 9 8 1200 |
binary representation:

| 100011{01001{01000/ 0000010010110000 |

69

I-Format Problem

What if immediate istoo big to fit in immediate field?

e | oad Upper Immediate:
| ul register, Immedi ate

— puts 16-bit immediate in upper half (high order half) of
the specified register, and sets lower half to Os

addi $t 0, $t 0, OxABABCDCD

becomes:
| ui $at, OxABAB
or i $at, Pat, OxCDCD

add $t 0, $t 0, $at

LUl R1

70

R1 0000 ... 0000

Complete MIPS Instruction Formats

R-Format

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

I-Format

op rs rt address

6 bits 5 bits S bits 16 bits

J-Format

op address

6 bits 26 bits

Simple and regular format

71

Fields in MIPS Instructions

® op: Specifies the operation,; tellswhich format to
use

® I's. First source register

e rt: second source register (or dest. For load)
e rd: Destination register

e shamt: Shift amount

e funct: Further elaboration on opcode

e address. Immediate constant, displacement, or
branch target

72

Big Idea: Stored-Program Concept

e Instructions are represented as numbers

e Programs are stored in memory
— to beread or written just like data

Processor Memory

/

e Fetch & Execute Cycle
— Instructions are fetched and put into a special register
— Bitsintheregister "control" the subsequent actions
— Fetch the “next” instruction and continue

memory for data, programs,
compilers, editors, etc.

73

Big Idea: Stored-Program Concept

e One conseguence: everything addressed

— Everything has a memory address: instructions, data
e both branches and jumps use these

— Oneregister keeps address of the instruction being
executed: “Program Counter” (PC)
o Basically apointer to memory: Intel callsit Instruction
Address Pointer, which is better
— A register can hold any 32-bit value. That value can be
a (signed) int, an unsigned int, a pointer (memory
address), etc.

74

Outline

e |nstruction set architecture
(using MIPS ISA as an example)

e Operands
— Register operands and their organization

— Memory operands, data transfer, and addressing
— Immediate operands

e |nstruction format

e Operations
— Arithmetic and logical (Sec 2.5)
— Decision making and branches
— Jumps for procedures

75

MIPS Arithmetic Instructions

| nstruction Example Meaning Comments
add add $1,$2,$3 $1=9%2+3%3 3 operands;
subtract sub $1,$2,$3 $1=9%2-%3 3 operands;

add immediate addi $1,$2,100 $1=3%2+ 100 + constant:

76

Bitwise Operations

e Up until now, we’ve done arithmetic (add, sub, addi)
and memory access (I wand sw)

e All of these instructions view contents of register as a
single quantity (such as asigned or unsigned integer)

e New perspective: View contents of register as 32 bits
rather than as a single 32-bit number

e Since registers are composed of 32 bits, we may want to
access individual bits rather than the whole.

e |ntroduce two new classes of Instructions:
— Logical Operators
— Shift Instructions

77

MIPS Logical Operations

e Why logical operations
— Useful to operate on fields of bit or individual bits

operations C operators mips
shift left << sl

shift right >> sri
bit-by-bit and & and, andi
bit-by-bit or | or, Ofi
bit-by-bit not ~ nor

78

Logical Operators

e Logical instruction syntax:
1 2 3 4

or $t0, $t1, $t2

1) operation name

2) register that will receive value

3) first operand (register)

4) second operand (register) or immediate (numerical constant)
e |nstruction names:

- and, or : expect the third argument to be aregister

- andi , or i : expect the third argument to be immediate

e MIPS Logica Operators are al bitwise, meaning that bit O of the
output is produced by the respective bit 0’s of the inputs, bit 1 by the
bit 1’s, etc.

79

Use for Logical Operator And

e and operator can be used to set certain portions of a bit-string to Os,
while leaving the rest alone => mask

e Example:
Mask: 1011 0110 1010 0100 0011}1101 1001 1010
0000 0000 0000 0000 0000 1111 111111112

e Theresult of anding thesetwo is:
0000 0000 0000 0000 000031101 1001 1010

e In MIPS assembly: andi $t 0, $t 0, OXFFF

80

Use for Logical Operator Or

® Or operator can be used to force certain bits of a
string to 1s

e For example,
$t 0 =0x12345678, then after

ori $t0, $t0, OxFFFF
$t 0 = 0x1234FFFF

(e.g. the high-order 16 bits are untouched, while
the low-order 16 bits are set to 1)

81

Shift Instructions (1/3)

e Shift Instruction Syntax:
1 2 3 4

s| | $t 2, $s0, 4

1) operation name

2) register that will receive value
3) first operand (register)

4) shift amount (constant)

e MIPS has three shift instructions:
— sl | (snift left logical): shifts left, fills empties with Os
- sr| (shift right logical): shiftsright, fills empties with Os
— sr a (shift right arithmetic): shiftsright, fills empties by sign extending

82

Shift Instructions (2/3)

e Move (shift) all the bitsin aword to the left or right by a number of
bits, filling the emptied bits with Os.

e Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110§0111 1000

o~

0000 00030001 0010 0011 0100 0101 0110

e Example: shift left by 8 bits

0001 0010j0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 100d 83

Shift Instructions (3/3)

e Example: shift right arithmetic by 8 bits

0001 0010 0011 0100 0101 011030111 1000

0001 0010 0011 0100 0101 0110

e Example: shift right arithmetic by 8 bits

1001 0010 0011 0100 0101 0110P111 1000

0000 000a

1111 111741001 0010 0011 0100 0101 0110

84

Uses for Shift Instructions (1/2)

e Suppose we want to get byte 1 (bit 15 to bit 8) of aword in
$t 0. We can use:

sl | $t 0, $t 0, 16
srl $t 0, $t 0, 24

0001 0010 0011 0104 0101 0110 0111 1000

=

0101 0110 0111 1000000 OOOO 0000 0000

B

0000 0000 0000 0000 0000 000 0101 0110

85

Uses for Shift Instructions (2/2)

e Shift for multiplication: in binary
— Multiplying by 4 is same as shifting left by 2:
o 11, x 100, = 1100,
e 1010, x 100, = 101000,

— Multiplying by 2" is same as shifting left by n
e 3Since shifting Is so much faster than multiplication (you

can imagine how complicated multiplication is), a good
compiler usually notices when C code multiplies by a
power of 2 and compilesit to a shift instruction:

a *= 8§; (in C)
would compile to:

s| | $s0, $s0, 3 (inMIPS)

86

MIPS Logical Instructions

3 reg. operands; Logical AND
3 reg. operands; Logical OR
3 reg. operands; Logical NOR
L ogical AND reg, zero exten.
L ogical OR reg, zero exten.

| nstruction Example Meaning Comment

and and $1,$2,$3 $1=%2& $3

or or $1,$2,$3 $1=9%2|%$3

nor nor $1,$2,$3 $1 = ~($2 [$3)

and immediate andi $1,$2,10 $1=%$2& 10

or immediate ori $1,$2,10 $1=%2|10

shift left logical sl $1,$2,10 $1=9%2<<10 Shift left by constant
shift right logical srl $1,%$2,10 $1=%$2>>10 Shift right by constant
shift right arithm. sra$1,$2,10 $1=%$2>>10

Shift right (sign extend)

87

So Far...

e All instructions have allowed us to manipulate data.
e So we’ve built acalculator.

e |n order to build a computer, we need ability to
make decisions...

88

Outline

e Instruction set architecture
(using MIPS ISA as an example)
e Operands
— Register operands and their organization
— Memory operands, data transfer, and addressing
— Immediate operands

e |nstruction format

e Operations
— Arithmetic and logical
— Decision making and branches (Sec. 2.6, 2.9)
— Jumps for procedures

89

Decision Making Instructions

e Decision making instructions
— dlter the control flow,
— 1.e., change the "next" instruction to be executed

e Branch Classifications

— Two basic types of branches
o Unconditional: Always jump to the specified address

o Conditional: Jump to the specified address if some condition istrue;
otherwise, continue with the next instruction

e Destination addresses can be specified in the same way as
other operands (combination of registers, immediate
constants, and memory locations), depending on what Is
supported in the |SA

90

Addresses in Branches and Jumps

e Instructions:

bne $t 4, $t 5, Label
beq $t 4, $t 5, Label

| Label

e Formats:.

Next instruction isat Label if $t4+ $t 5
Next instructionisat Label if $t4 = $t 5
Next instruction is at Label

I op

rs

rt

16 bit address

J op

26 bit address

e Addresses are not 32 hits

— How do we handle this with load and store instructions?

91

Addresses In Branches

Instructions:
bne $t4, $t 5, Label Next instruction is at Label if $t4+ $t5
beq $t4, $t 5, Label Next instruction is at Label if $t4=$t5
Formats:

| op rs rt 16 bit address

Could specify aregister (like lw and sw) and add it to address
— use Instruction Address Register (PC = program counter)
— most branches are local (principle of locality)

Jump instructions just use high order bits of PC
— address boundaries of 256 MB

Decision Making: Branches

Decision making: if statement, sometimes combined with goto and labels
beq registerl, register2, L1(beq: Branch if equal)

Go to the statement labeled L1 if the value in registerl equals the value
INn register2

bne registerl, register2, L1(bne: Branch if not equal)

Go to the statement labeled L1 if the value in registerl does not equal
the value in register2

beg and bne are termed Conditional branches

What instruction format is beq and bne?

93

MIPS Decision Instructions

beq registerl, register2, L1

e Decision instruction in MIPS;
beq registerl, register2, L1
“Branchif (registersare) equal”
meaning :
| f (registerl==reqgister2) goto L1

e Complementary MIPS decision instruction

bne registerl, register2, L1
“Branchif (registersare) not equal”™

meaning :

I f (registerl!=register2) goto L1

e These are called conditional branches

94

MIPS Goto Instruction

] | abel

e MIPS has an unconditional branch:

] | abel
— Called a Jump Instruction: jump directly to the given label without testing any
condition
—~ meaning :
got o | abel
e Technicaly, it’sthe same as.
beq $0, $0, | abel

since it always satisfies the condition
e It hasthe|-type instruction format

95

Conditional Branch Instructions

® beg registerl, register2, L1 #oranch equal
® bneregisterl, register2, L1 #oranch if not equal

Ex:

assume f,g,h,i,j, stored in $s0..S5s4

beq $s3, $s4, L1
add $s0, $sl, $s2
Ll:sub $s0, $sl1, $s3

Explicit address
Calculated bv the assembler

Compiling an if-then-else

e Compile by hand
if (i ==1j) f=g+h;
el se f=g-h;

e Use this mapping:
f:%$s0,g:%$s1, h:$s2,
| :$s3,] : $s4

e Final compiled MIPS code:

beq $s3, $s4, True
sub $s0, $s1, $s2

Fi n

J
Tr ue: add $s0, $s1, $s2

Fi n:

(true) (f_alse_)
| ==] | 1=

f =g+h f=g-h

l

Exit

branch | =5
f=g-h(false)
go to Fin

f=g+h (true)

Note: Compiler automatically creates labels to handle decisions

(branches) appropriately

97

Inequalities in MIPS

e Until now, we’ve only tested equalities (== and ! = in C), but
general programs need to test < and >

e SetonlLessThan:
slt regl,reg2,reg3

meaning :
1f (reg2 < reg3)
regl = 1, # set
el se regl = O; # reset

e Compilebyhand:if (g < h) goto Less;
Letg: $sO, h: $si

slt $t0,$s0,%$s1 # $t0 =1 if g<h
bne $t 0, $0, Less # goto Less if $t0!=0

MIPS has no “branch on less than” => too complex

98

Immediate in Inequalities

e Thereisaso animmediate version of sl t to test against constants:
slti

I1f (g >= 1) goto Loop
CLoop:
M
| slti $t0, $s0, 1 # $t0 =1 if $s0<1 (g<l)
P beq $t0,%$0,Loop # goto Loop if $t0==0
S

e Unsigned inequality: sl tu,sl tiu
$s0 = FFFF FFFA..,, $s1 = 0000 FFFA,,

slt $t0, $s0, $s1 =>$t 0 ? 1
sltu $t1, $s0, $si =%t 1 ? 0

99

100

ﬂcJ

/l ,J\

i

J
JIL

)

10/16

Branches: Instruction Format

e Usel-format:

| opcode| rs

't

i mredi at e |

— opcode specifiesbeq or bne
- rs andrt specify registersto compare

e \What cani mmedi at e specify? PC-relative addressing

- | mredi at e isonly 16 bits, but PC is 32-bit

FEISEHEPCY e -

=> | mmredi at e cannot specify entire address N ERLLY > 3

— Loops are generally small: < 50 instructions

l’.%zrglj/i['y[—lé o 7\[El”)

PR ot 4

e Though we want to branch to anywhere in memory, a single branch only need to

change PC by a small amount
— How to use PC-relative addressing

e 16-biti nmedi at e asasigned two’s complement integer to be added to the PC if

branch taken

o Now we can branch +/- 2% bytesW ?
101

Branches: Instruction Format

e | nmedi at e specifies word address

— Instructions are word aligned (byte address is always a
multiple of 4, i.e., it ends with 00 in binary)

e The number of bytesto add to the PC will always be a multiple
of 4

— Specify thei nmedi at e inwords (confusing?)

— Now, we can branch +/- 215 words from the PC (or +/-
217 bytes),

e | medi at e specifiesPC + 4

— Dueto hardware, add i mredi at e to (PC+4), not to
PC

— If branch not taken: PC=PC+ 4

— If branch taken: PC = (PC+4) + (I mmedi at e*4)

102

Branch Example

e MIPS Code:
Loop: beq $9, $0, End
add $8, $8, $10
addi $9, $9, -1
] Loop
End: sub $6, $7, $8

e BranchislI-Format:

| opcode| rs rt i mredi at e

opcode =4 (look up in table)

rs =9 (first operand)

rt =0 (second operand)

| medi at e =77?

— Number of instructions to add to (or subtract from) the PC, starting at the
Instruction following the branch

— =imedi ate=3

103

Branch Example

e MIPS Code:

Loop:

beq $9, $0, End

End:

add $8, $8, $10
addi $9, $9, -1
] Loop

sub $6, $7, $8

decimal representation:

| 4

9 0

binary representation:

| 000100

01001|00000] 0000000000000011

104

Branch Example 2

e MIPS Code:

Label : add $8, $8, $10
addi $9, $9, -1

beq $9, $0, Label
sub $6, $7, $8

e BranchislI-Format:

| opcode| rs rt i mredi at e

opcode =4 (look up in table)
rs =9 (first operand)

rt =0 (second operand)

| mmedi at e =?77?

— Number of instructions to add to (or subtract from) the PC, starting at the

Instruction following the branch
=>| medi ate =-3

105

Unconditional Branch Instructions and
MIPS Control for if-then-else

e MIPS unconditional branch instructions:

j label
e Example:

bne $s4, $s5, Else
add $s3, $s4, Ssb
j Lab2
Else:sub $s3, $s4, $sb5
Exit:...

106

Unconditional Branch Instructions and
MIPS Control for if-then-else

e MIPS unconditional branch instructions:
j label

e Example:
if (i==7) beg $s4, Ssb, Labl
f=g+h; add $s3, $s4, S$sb
else 7 Lab?Z
h=1-7; Labl:sub $s3, S$s4, S$s5

LabZ2:...

set-on-less-than in MIPS

We have: beg, bne, what about Branch-if-less-than?

New Instruction: if $sl1 < $s2 then
St0 = 1

slt $t0, $sl, $s2 else
$t0 = 0

Can use thisinstruction with beg/bne to build "blt $s1, $s2, Label"
— blt=> dt + bne/beq
— can now build general control structures
— Q. why not “blt” in MIPS?
o Smplicity
Note that the assembler needs aregister to do this,
— there are policy of use conventions for registers

Constant operands are popular in comparisons
— $zero alwayshasO
— Other value: immediate version, dti

— dti $t0, $s2, 10 #$0= 1if $s2< 10

108

MIPS approach for ==, I=, <, <=, >, >=

e Combine dit, dti, beg, bne and $zero to create all
relative conditions

109

Observation on Branches

e Most conditional branches go a short and constant
distance

e Fancy addressing modes not often used
e No use for auto-increment/decrement

e S0 In keeping with the RISC philosophy of
simplicity, MIPS has only afew basic branch types.

110

INFO: Complete MIPS Branch Types

e Conditional branch:

— beg/bneregl, reg2, addr

— If regl =/ reg2, jump to PC+addr (PC-relative)
e Register jJump:

— Jrreg

— Fetch address from specified register, and jump to it
e Unconditional branch:

— | addr

— Always jump to PC: addr (use “pseudodirect”

addreSS| ng) }Ifj/addrf'[I‘E]E;lfgl‘*j]@'}fl
R
111

INFO: Branch Instructions Example

e Conditional branches
~-beqg R1,R2, L1 # ITR1=R2gotolLl
~-bne R1,R2, L1 # If R1 + R2gotoL1l
— These are |-type Instructions

e Unconditional branches
—Jr R8 # Jump based on register 8

e Testif <O
gt R1, R16, R17 #R1lgetslif R16< R17
bne R1,0,less #branchtolessif R1=\=0

112

Generating Branch Targets in MIPS

| |PC-relative addressing

op

rs

rt

Address

Memory

Word

qg__

| IPseudodirect addressing

Dp\

Address

Memory

PC

|

Word

HIFTMIPSEL32 bitg$Es -
addressiElsy 32 bit > §=§,|
FIpU4bitdsy2 I;32b|t

l}["’26 bitp~
CF [£ H Iﬁ?VFJ"]

113

Compiling Other Control Statements

® | oops.

— for, while: test before loop body; jump past loop body if
false

— Do: test condition at end of loop body; jump to
beginning If true
e switch: (called “case” statements in some other
languages)
— Build atable of addresses
— Usejr (or equiv. In non-MIPS processor)
— Besureto check for default and unused cases!

114

Decision for Iterating a Computation:
Loop (P.74)

while (save[l] ==k)
1 += 1; Loop:

Assume i, k use register $s3,
$s5, base of array “save”
IS in $s6

Exit:

index Stl = 4 * 1
sll Stl1, $s3, 2

add index to base
add $tl, tl, Ss6

load array value
1w $t0, 0($tl)
ftest 1f savel[i]==
bne $t0, $sb, Exit
1 = 1+1

add $s3, $s3, 1

7 Loop;

115

Switch Compilation Example

(T [PO RLA
Compile the following: (Assume k in r13) @

#switch test
switch (k) { slti 814, $13, O # set rld if rl3 1t O
case0: f = f+ 1; break; |bne 514, 50, Exit # Go to Exit if k < 0
case 1: f = f-2; break; |slti $14, $13, 4 # set r14d if k < 4
case 3: f =-f; beq $14, $0, Exit # Go to Exit if k 4
break; add S$14, $13, $13 # r1d4 = 2%k
} add $14, $14, $14 4 rld = 4%k
ote the gap (case 2); 1w $14, 1000 ($14) 4 Base of table at 1000
jr $14 # Jump to the address table
#Switch body
LO:addi $8, 58, 1 # add 1 to r8 (£)
i Exit # Jump to Exit (break)
1000 | address of LO Ll:subi $8, $8, 2 # subtract 2 from r8
7 Exit # Another break
1004 | address of L1 L3:sub $8, $0, $8 $f = 0 - f
1008 | address of Exit j Exit # Another break
1012 | address of L3

116

INFO: Assembly Language vs. Machine
Language
e Assembly provides convenient symbolic representation
— much easier than writing down numbers
~ e.g., destination first
e Machine language is the underlying reality
— e.g., destination is no longer first
e Assembly can provide 'pseudoinstructions

— eg., “move $t0, $t1” existsonly in Assembly
— would be implemented using “add $t0,$t1,$zero”

e \When considering performance you should count real
Instructions

117

MIPS Jump, Branch, Compare

| nstruction

Example

Meaning

branch on equal

beq $1,$2,25

branch on not eq. bne $1,%$2,25

set on lessthan

dt $1,$2,$3

set lessthan imm. dti $1,$2,100

jump

j 2500

if ($1 == $2) goto PC+4+100
Equal test; PC relative branch
iIf ($1!=3$2) goto PC+4+100
Not equal test; PC relative

If ($2 <$3) $1=1; else $1=0
Compare less than; 2’s comp.
If ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp..

go to 10000 28-bit+4-bit of PC

Bifn

p

»ﬁiﬂirﬂ DfliT p uw\

EfY o pURLEL RS lF'ﬁjEIl
EUR plabel Fr 3 J@

g

118

So far

MIPS operands
[Name [Example [Commems |

$50-8s7, $t0-5t9, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $zero, $a0-8a3, Sv0- |arithmetic. MIPS register $zero always equals 0. $gp (28) is the global
Svl, $gp, $fp, $sp, $ra |pointer, $sp(29) is the stack pointer, $fp (30) is the frame pointer, and Sra
(31) is the return address.

Memory [0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

2% memory words |Memory [4]...., sequential words differ by 4. Memory holds data structures, such as arrays
Memory[42949672920 |and spilled register, such as those saved on procedure calls.

MIPS assembly language
[Category instructon _ Example Meaming Comments |

Arithmetic add add $s1, $s2, §s3 Ss1 = $s2 + §s3 Three operands; data in registers
subtract sub Ssl, $s2, Ss3 551 = %52 - $53 Three operands; data in registers
Data transfer load word Iw $s1,100 ($s2) &sl = Memory [$s2 + 100] Data from memory to register
store word sw 851,100 (8s2) Memory [$52 + 100] = 8sl Data from register to memory
branch on equal |beq $sl1, $s52, L if ($s] ==8s2) goto L Equal test and branch
branch on not bne $sl, $s2, L if (351 1=8s2) go to L Not equal test and branch
Conditional branch |equal
set on less than slt Ss1, 552, 5s3 if ($s2 < §s3) §sl = 1; clse Compare less than: for beq, bne
Ss1 =10
jump i 2500 o o 10000 jump to target address
Unconditional jump |[jump register r $ra go to $ra For switch, procedure return
jump and link jal 2500 Sra = PC + 4; go to 1000 For procedure call

Outline

e |nstruction set architecture
(using MIPS ISA as an example)

e Operands
— Register operands and their organization

— Immediate operands
— Memory operands, data transfer, and addressing

e |nstruction format

e Operations
— Arithmetic and logical
— Decision making and branches
— Jumps for procedures (Sec. 2.7)

120

J-Format Instructions (1/3)

e [or branches, we assumed that we won't want to
branch too far, so we can specify change in PC.

e For general jumps (] andj al), we may jJump to
anywhere in memory.

e |deally, we could specify a 32-bit memory address
to jump to.
e Unfortunately, we can’t fit both a 6-bit opcode and

a 32-bit address into a single 32-bit word, so we
compromise.

121

J-Format Instructions (2/3)

e Define “fields” of the following number of bits each:

|6 bits 26 bits

e Asusud, each field has a name:

\opcode target address

e Key concepts:

— Keep opcode fied identical to R-format and I-format for
consistency

— Combine other fields to make room for target address
e Optimization:
— Jumps only jump to word aligned addresses

e last two bits are always 00 (in binary)
e specify 28 bits of the 32-bit bit address 122

J-Format Instructions (3/3)

e \Where do we get the other 4 bits?
— Takethe 4 highest order bits fromthe PC

— Technically, this means that we cannot jump to anywherein
memory, but it’s adequate 99.9999...% of the time, since
programs aren’t that long

— Linker and loader avoid placing a program across an address
boundary of 256 MB

e Summary:
— New PC = PC[31..28] || target address (26 bits) || 00

— Note: means concatenation
4 bits || 26 bits|| 2 bits = 32-bit address

e |f we absolutely need to specify a 32-bit address:
— Use jr $ra #jumpto the address specified by $ra 123

Procedures

® SiX steps in the execution of a procedure

— Place parameters in a place where the procedure can
access them

— Transfer control to the procedure

— Acquire the storage resources needed for the procedure
(local variables)

— Perform the desired task

— Place theresult value in a place where the calling
orogram can access it

— Return control to the point of origin

124

Function Calls in the MIPS

e Function calls an essential feature of programming
languages
— The program calls a function to perform some task

— When the function 1s done, the CPU continues where it
left off in the calling program

e But how do we know where we | eft off?

125

Procedures

*Procedure/Subroutine

A set of instructions stored in memory which perform a set of operations
based on the values of parameters passed to it and returns one or more
values

«Steps for execution of a procedure or subroutine

» The program (caller) places parameters in places where the procedure
(callee) can access them

» The program transfers control to the procedure
» The procedure gets storage needed to carry out the task
» The procedure carries out the task, generating values

» The procedure (callee) places values in places where the program (caller)
can access them

» The procedure transfers control to the program (caller) 126

Procedures

int f1 (inti, intj, intk, intg)
{

}
Int f2 (intsl, ints2)

return 1; callee

add $3,$4, $3
i =f1(3,4,5, 6); caller
add $2, $3, $3

How to pass parameters & results?
How to preserve caller register values?
How to alter control? (i.e., go to callee, return from callee)

127

MIPS Procedures

e How to pass parameters & results

— $a0-%a3: four argument registers. What if # of parametersis larger than 4? —
push to the stack

— $v0-$v1: two value registers in which to return values

e How to preserve caller register values?
— Caller saved register
— Callee saved register
— Use stack

e How to switch control?

— How togotothecallee
e jal procedure_address(jump and link)
— Store the the return address (PC+4) at $ra

— set PC = procedure addres . e e
P - BRI — W] 'ir’f‘g]

— How to return from the callee
o Callee exectuesjr $ra

128

Calling a Function in the MIPS

e Usethejal (“jump and link™) instruction

e jal addr just | addr except

— The “return address” (PC) + 4 placed in $ra (R31)
— Thisisthe address of the next instruction after the jal
— Usejr $rato return

129

Instructions Supporting Procedure Calls

Parameter passing

— $a0 ~ $a3 are used for these

— Q. what if parameters exceed four?

— Spilling registers, place parametersin stack, $sp (R29)
Transfer control: Jump and link

— Jal procedure address

— note: return addressis stored in $ra (R31)

Return value
— $v0 ~ $v1 for return values

— Q. What if returns results exceed two?

— Saving return address on stack
o $5p (R29) isused as stack pointer

Return
— jr $ra

130

Procedure Call Example

int leaf example (int g, int h, int 1, int 3Jj)
{

int f£;

f = (g+h) - (1+3);

return f;

131

Assume g, h, 1, 7 use $a0,..%a3, £ uses $s0
Refer p. 11
leaf example:
#push old values into stack to avoid damage
. High addmss
addi $sp, Ssp, -12;

$fp-~ $fp—=
SW $tlr 8($Sp}
$5p = Ut $sp~|
sw St0, 4(51313} #fn = saved agument
registers (¥ any)
sw $s0, 0($sp) e
#functional body Mn;udh
lm' army
add $t0, $sl, $s2 o
add $t1; 553; $S4 $5p—+ mﬂmﬂ
sub $s0, $t0, S$tl Low address '— b.

#return value, copy f to return registers
add $v0, $s0, $zero
#pop old values from stack
lw $s0, 0($sp)
lw $t0, 4(Ssp)
lw $t1, 8($sp)
addi sp, Ssp, 12
Jjr Sra

Improve the Example

e Problem in previous example
— A lot of saving and restoring temporary registers

e How to avoid it in MIPS registers convention

— Temporary registers, $t0..$t9
o Value won’t be preserved in the procedure call

— Saved registers, $90..$s7

e Value must be preserved
e If used, these must be saved and stored

133

Difficulties with Function Calls

e This example works OK. But what if:
— Thefunction F calls another function?

— The caller had something important in regs R6 and/or
R77?

— The called function calls itself, (nested procedure)?
o Register conflict

e Solution

— Each version of afunction should have its own copies
of variables

— These are arranged in a stack, as apile of frames.

134

Procedure Call Stack (Frame)

Sfp ——
argument registers
return registers
Callee saved registers
Local vanables
$sp .

Higher memory address

Procedure Frame

;tacl-; SIOWS

¥

1

ower memaory address

Frame pointer points to the first word of the procedure frame

135

Procedure Call Stack (Frame)

fsp >

i =

$sp >

Before the procedure call during the procedure call after the procedure call

136

Nested Procedures

® Problems:

Register conflicts

e Solutions;

Push all the other register that must be preserved onto
the stack

Procedure

e The cadler pushed any argument register $a0-$a3 or
temporary registers $t0..$t9 that are needed after the call

e The callee push the return address $ra and any saved registers
$s0..$s7 used by the callee

e Stack push and store

137

Stack Examples for Nested Functional
Calls

e Assume function A calls B, which calls C.
Function C calls itsalf once:

C’s vars

C’s vars C’s vars

B’s vars B's vars B’s vars

A'svars | A's vars A's vars A’s vars

start A A calls B B calls C Ccalls C

138

Examples for Nested Functional Calls

int factorial (int n)

{

1f(n < 1) return 1;
else return (n * factorial (n - 1);

139

Parameter n => $al
factorial:
#push old values into stack to avoid damage
addi sp, Ssp, -8;
Sra, 4(S$Ssp)
<§E:;é;, 0(Ss
#functional body
slti $t0, $al0, 1 # test if n < 1
beq $t0, S$zero, L1 # if n >= 1, go to L1
freturn 1
addi Sv0, S$Szero, 1 # return 1

addi S$sp, $sp, 8 fpop 2 1tems off stack
r Sra

140

#another return
Ll:
addi $a0, $a0, -1 # N >>= 1, new factorial (n-1)
jJjal factorial
#pop values to restore
lw $al0, 0($sp)
lw S$ra, 4($sp)
addi S$sp, $sp, 8
mul $v0, $a0, $vO #$return n * factorial(n-1)
jr S$ra

141

INFO: Parameter Passing

e Stack
— |ldeal data structure for spilling registers

e Caller save. The calling procedure (caller) is
responsible for saving and restoring any registers
that must be preserved acrossthe call. The called
procedure (callee) can then modify any register
without constraint.

e Callee save. The calleeisresponsible for saving
and restoring any registersthat it might use. The
caller uses registers without worrying about
restoring them after acall.

142

Stack Frames

e |f afunction needs more memory and/or may call
others, it uses a stack frame, which holds:

— Automatic variables (non-static variables declared
within function)

— Arguments to the function (just another type of local
variable)

— The “return address” (since $ra overwritten by call)

— Saved registers from caller ($s0-$s7) if you need to use
them

— “Sill” registers, including $t0-$t9 when calling others

143

Sfp —

$sp —

Layout of a Stack Frame

Argument 5

Argument 6

Saved registers

[.ocal variables

Higher memory addresses

Stack
Srows

Lower memory addresses

144

Allocating Space for New Data on the Stack
Detalls of Stack for Procedure Calls (1)

High address

$fp — $fp —

$sp —

$fp —— Saved argument $sp —
Register (if any)

Saved return address

Saved saved
Registers (if any)

Local arrays and
Structures (if any

—

$sp ——

ow address

A: before B: during C: after

Procedure frame

the segment of stack containing a procedure’s
saved reaqisters and local variables

145

Detalls of Stack for Procedure Calls (2)

e Calling a Non-Leaf Function (Caller)

— Put arguments to the function in $a0-$a3

— Save contents of $t0-9 if they will be needed later
— |If more than 4 args, push them onto stack

— Jal to beginning of the function code

146

Detalls of Stack for Procedure Calls (3)

e Calling a Non-Leaf Function (Callee)

— Push current fp onto stack

— Movefp to top of frame (just below old sp)

— Set sp to (fp — frame size)
o Frame size isthe same for every call of the same function
e Known at compile-time

— Use displacement addressing to get at local variables

— Save $30-$s7 (whichever you need to reuse) and $rain
frame

— Save $a0-$a3 to frame if needed (e.g., caling another
function)

147

Details of Stack for Procedure Calls (4)

e Returning from Non-Leaf Function (Callee)

— Put return values (if any) in $v0 and $v1

— Restore $s0-$s7 (whichever were saved) and $rafrom
frame

— Restore sp to just above current fp

— Restore old fp from stack frame

— Jump to $ra(jr)

— Caller can get return argsin $v0 and $v1, if any

148

Register Conventions in the MIPS

Names Regs Purpose
$zero 0 Constant 0
- 1 (Reserved for assembler)
$v0-$v1 2-3 Return values (NOT Preserved across the calls)
$a0-%$a3 4-7 Args to functions (NOT Preserved across the calls)
$t0-$t9 8-15, 24-25 Temporaries (NOT Preserved across the calls)
$s0-$s7 16-23 Saved values (Preserved across the calls)
- 26-27 (Reserved for OS kernel)
$gp 28 Global pointer to global data
$sp 29 Stack pointer (Preserved across the calls)
Sfp 30 Frame pointer (Preserved across the calls)
$ra 31 Return address (Preserved across the calls)

149

Other Storage: Global Variables

e |n C/C++, “global variables’ are
— Variables declared outside of any functions
— Static variables (inside or outside a function)
— Static data members of aclass (C++)
® Properties.
— Only one copy of each (unlike automatic variables)
— Initialization allowed (set value before main () starts)

— All in one region of memory, accessed through $gp
(r28)

150

Other Storage: Dynamic Storage (Heap)

e |n C/C++, the “heap” contains

— Blocks of memory allocated by malloc () etc.

— Objects created using the new keyword (C++)

— Properties:
e Stored in a big chunk of memory between globals and stack
o Controlled by the programming language’s library (e.g., libc)
o Can be grown if needed
o No dedicated reg. Like $gp; everything goes through pointers

151

Typical Layout of Program

$ED—"?ﬁ‘f fftf stack

hex l

Dynamic date

Sgp —»1000 8000 | Static data
1000 8000 hex Text
pc —»0040 0000 | oy

Reserved

What an Executable Program Looks Like

e \When you execute a program, it isin the form of
an “executable”

e The executable contains everything you need to
run your program

— Every function used, starting with main() — the “text
segment

— Values of all initialized global variables— the “data
segment”

— Information about uninitialized globals

e Every function and every global variable has an
absol ute address in memory

153

Executing an Executable

e \When you execute a program, the loader:
— Allocates space for your program (details vary by OS)
— Copiesthe text and data segments of the executable to memory
— Jumps to a known starting address (specified in the executable)

e Once the executable starts running at that starting address,
It
— Initializes regs such as $gp and $sp; initializes heap (if used)
— Setsuninitialized globals to O (if the language requires this)
— Sets up command line args into data structure (e.g., argc/argv)
— Doesjal to start of main () function

154

So far
MIPS operands

Name

Example

Comments

32 registers

$50-557, $t0-519,
Szero, $ald-5a3, 5vi-
Svl, Sgp, $ip, Ssp, bra

Fast locations for data. In MIPS, data must be in registers to perform
arithmetic. MIPS register $zero always equals 0. Sgp (28) 1 the global
pomter, 5sp(29) 15 the stack pomter, 5fp (30) 15 the frame pomter, and $ra

(31) 15 the return address.

2*" memory words

Memory [0],

Memory [4].....,
Memory[42949672920

Accessed only by data transfer mstructions. MIPS uses byte addresses, so
sequential words differ by 4. Memory holds data structures, such as arrays,

and spilled register, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments
Arithmetic add add $s1, $s2, $s3 |5s] = 8552 + §s3 Three operands: data in registers
subtract sub $s1, $s2, §s3 B51 = 552 - 553 Three operands: data in registers
Data transfer load word lw Ss1,100 ($52) &sl = Memory [$s2 + 100] | Data from memory to register
store word sw $s1.100 (Ss2) Memory [$s2 + 100] = $s1 Data from register to memory

Conditional branch

branch on equal

beq Ssl, $s2. L

if ($51 == Ss2) go to L

Equal test and branch

branch on not
equal

bne %sl1, $s2, L

if ($s1 !=%s2)goto L

Not equal test and branch

set on less than

sl $s1, 5s2, $s3

if ($52 < $s3) %8sl = 1; else
51 =10

Compare less than: for beq, bne

Unconditional jump

jUITIp

i 2500

oo to 10000

jump to target address

jump register

ir $ra

oo to bra

For switch, procedure return

jump and link

al 2500

$ra= PC + 4; oo to 1000

For procedure call

INFO: MIPS Registers

® 32regswithRO=0
e Reserved registers: R1, R26, R27.
e Special usage:

- R28: pointer to global area

- R29: stack pointer

- R30: frame pointer
- R31: return address

156

Outline

e |nstruction set architecture
(using MIPS | SA as an example)

e Operands
— Register operands and their organization
— Immediate operands
— Memory operands, data transfer, and addressing

e |nstruction format

e Operations
— Arithmetic and logical
— Decision making and branches
— Jumps for procedures
— Communicating with People (Sec. 2.8)

157

Communicating with People

e For communication
— Use characters and strings

e Characters
— 8-bit (one byte) data for ASCI|

Ib $t0, O($sp) ; load byte
o Load abyte from memory, placing it in the rightmost 8-bits of registers

sb $t0, 0($gp) . store byte

o Takes abyte from the rightmost 8-bits of aregister and writesit to the
memory

— Unicode in Java (16-bits)

Ih $t0, O($sp) . load halfword
o Load abyte from memory, placing it in the rightmost 16-bits of registers

sh $t0, 0($gp) . store halfword

o Takes abyte from the rightmost 16-bits of aregister and writes it to the
memory

158

Q. Impact of Word Alignment to Byte/Halfword
Storage

e MI|PS software tries to keep the stack aligned to
word address

— A char variable will occupy four bytes, even though it
requires |ess

— Solution

o Software will pack C string in 4 bytes per word, Java string in
2 halftwords per word

159

Outline

e |nstruction set architecture
(using MIPS | SA as an example)

e Operands
— Register operands and their organization
— Immediate operands
— Memory operands, data transfer, and addressing

e Instruction format

e Operations
— Arithmetic and logical
— Decision making and branches
— Jumps for procedures

— Communicating with People
— MIPS Addressing for 32-Bit Immediates and Addresses (2.9)

160

MIPS Addressing Mode

e Addressing mode

— A method that help you identify and find where the
operand IS
— What you |earned now
o Register addressing
o Immediate addressing
o Base or displacement addressing

lw $t0, 32 ($s3)

161

Review: Handle 32-bit Constants in MIPS

e \We'd liketo be ableto |load a 32 bit constant into a
register
e Must use two instructions, new "load upper

Immediate” 1nstruction
lui $t0, 1010101010101010

filled with zeros

1010101010101010 00000000000O00CQO

® T hen must aet the lower order bitsriaht. 1.e..
ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010
ori

1010101010101010 1010101010101010

Either compiler or assembler to break and then reassemble this
Sn $at is reserved for assembler

Addresses in Branches and Jumps

® |nstructions:
bne 5s0,$sl,Exit

I op rs rt 16 bit address

7 1000 =
J op 26 bit address

e Q. What’s the destination address of next

Instruction? And How far do you can jump (or
branch)?

163

Addresses in Branches and Jumps

e Destination Address

— MIPS uses PC-relative address (relative to PC+4, +/- 215) for all
conditional branches

Next PC = (PC +4) + (16-bit address <<2)

— MIPS uses |long addresses (26-bits) (pseduodirect addressing)
for both jump and jump-and-link instructions

Next PC ={ PC[31:28], (26-bit address <<2)}

— Note. PC-relative addressing refer to the number of words to the
next instruction instead of number of bytes (word address)

— 16-bit field => 18-bit byte address displacement
— 26-bit field => 28-hit byte address displacement

164

How Far Do You Can Jump or Branch?

e Formats: . op rs rt 16 bit address

J op 26 bit address

e Branch limitation: +/-215, (218 = 256K B address
boundaries)

— Isit enough: most branches are local (principle of locality)
— How about larger space? Branch + Jump
beq $0, $s1, L1 bne $0, $s1, L2
jL1
L2: ...
e Jump limitation: +/-2%>, (228 = 256M B address boundaries)

— How about larger space? Jump registers (32-bit value)
° jl’ $0

165

Addressing Iin Branches and Jumps

® J-type
|6 bits 26 bits
® |-type
| 6 bits|5 bits|5 bits 16 bits

— Program counter = Register + Branch address

o PC-relative addressing

— We can branch within £2% words of the current instruction.

— Conditional branches are found in loops and in if
statements, so they tend to branch to a nearby

| nstruction.

166

J-type

e 26-bit field is sufficient to represent 32-bit address?

- PCis 32 hits

e Thelower 28 bhits of the PC come from the 26-hit field
— Thefield isaword address
— It represents a 28-bit byte address

e The higher 4 bits

— Come from the original PC content

e An address boundary of 256 MB (64 million
Instructions)

167

Addressing Modes

Addressing mode Example

Meaning

| mmediate
Register

addi R4,R4,3
add R4,R4,R3

Base/Displacement |w R4,100(R1)

PC-rdative
Pseudodirect

beqR1, R2, L1
jL2

R4 < R4+3
R4 < R4+R3
R4 « Mem[100+R1]

168

1. Immediate addressing

op IS rt Immediate

2. Register addressing

op rs rt rd

funct

MIPS Addressing Mode

Registers

Register

3. Base addressing

op rs rt Address

Memory

Register

l

e _Tramwor

Waord

4. PC-relative addressing

op rs rt Address

Memory

PC

Word

5. Pseudodirect addressing

op Address

[

Memory

PC

Word

169

To Summarize

MIPS operands

____Name Example Comments
Fa0=5=27, Stl=-5T%, Szero, |Fastlocalions for data. In MIPS, data must be in registers lo perform
32 registers |5a0-%a3, svil-svl, Sgp, arithmetic. MIPS register $zero always equals 0, Register Sat is
$fp, Ssp, Sra, Sat reserved for the assembler to handle large constants.
Memaory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
0 .
23 memaory |Memary[4], ..., saquential words differ by 4. Memory holds data strucluras, such as arrays,
words Memory[42949672032] and spilled registers, such as thase saved on procaedura calls,
MIPS assembly language
Category In tion Exampls Meaning Comments
add add $sl, $s2, $=3 551 = 582 + 583 Three oparands: data in registers
Arithmetic subtract sub S=l, $s82, 5§83 $sl = 5§82 - 5§83 Three operands; data in registers
add immediate addi %=1, §$s=2, 100 J%=s1 = 522 + 100 Used to add constants
load word lw $sl, 100({$s2) 551 = Memory[552 + 100]|Word from memory to register
store word sw 5sl, 100(5s2) Memory[75Z + 100] = $51 |Word from register to memory
Data transfer |load byte lb $sl, 100{5s2) 55l = Memory[55Z + 100]|Byte from memory to register
store byte sbh $s1, 100({3s2) Memory[552 + 100] = 851 |Byte from register to memory
load upper immediate |lui $=s1, 100 $51 =100 * 2'° Loads constant in upper 16 bits
branch an equal beg %81, 582, 25 if{$51 == §s5Z)goto Equal test; PC-relative branch
PC+4 + 100
branch an nof equal |bne 5s1, 5s2, 25 if{ss1 != 3s52)gote Mot aqual test: PC-relative
. PC +4 + 100
Conditional
branch st on less than slt =1, 5s82, 553 |if{5s32 < $s3) 321 =4; Compare less than: for beq, bne
glse 521 =0
set less than slti 3sl, 332, 100 [jf($=s2 < 100) $=1=9; Compare less than constant
immediate glse 321 =10
jump J 2500 go to 10000 Jump fo target address
Uncondi- jump register 1T Fra goto Sra For switch, procedure return
tional jump jump and link jal 2500 Fra=PC + 4: go to 10000 |For procedure call

Overview of MIPS

e ssimple instructions all 32 bits wide
® Vvery structured, no unnecessary baggage
e only three instruction formats

R op rs rt rd shamt funct
I op rs rt 16 bit address
J op 26 bit address

e rely on compiler to achieve performance
— what are the compiler's goals?

e help compiler where we can

171

2.10 Translating and Starting a Program

172

Starting A Program

Transtorms the C program Into an assembly language program.

173

|A-32 Instruction Formats

d.JZ EIP + digplacement
-]

4 4
JE :1':;_:"_':"' Displacement
b CALL
g 32
CALL CriTset

c. MOV ESK [EDI + 48]
i} 1 1 E g

MOow [d |w . Displacemsan

Posioyle

d. PUSH ES

PUSH |Rep

e ADD EAX, S6FES
4 31 32

ADD |Reg|w mmedlatz

L TEST EDX, #42
F 1 3 32

TEZT (w| Postbyta Immedate

|A-32 variable-length encoding vs. MIPS fixed-length encoding

174

Summary: MIPS ISA

e 32-bit fixed format Instructions (3 formats)

e 32 32-bit GPR (RO = zero), 32 FP registers, (and HI LO)
— partitioned by software convention

e 3-address, reg-reg arithmetic instructions

e Memory Is byte-addressable with a single addressing

mode: base+displacement
— 16-bit immediate plus LUI

e Decision making with conditional branches: beq, bne

— Often compare against zero or two registersfor =

— To help decisions with inegualities, use: “Set on Less
Than’called dlt, dti, dtu, dltu

e Jump and link puts return address PC+4 into link register
$ra (R31)

e Branches and Jumps were optimized to address to words,
for greater branch distance e

Summary: MIPS ISA

e |Immediates are extended as follows:
— logical immediate: zero-extended to 32 bits
— arithmetic immediate: sign-extended to 32 bits
— Dataloaded by |b and |h are smilarly extended:
Ibu, Ihu are zero extended; Ib, |h are sign extended
e Simplifying MIPS: Define instructions to be same size as data (one
word), so they can use same memory

e Stored Program Concept: Both data and actual code (instructions)
are stored in the same memory

e Instructions formats are kept as similar as possible

R| opcode| rs rt rd |shant | funct

| | opcode | medi at e
J | opcode target address

145

Summary

e |nstruction complexity isonly one variable

— lower instruction count vs. higher CPI / lower clock
raie

e Design Principles:
— simplicity favors regularity
— smaller isfaster
— good design demands compromise
— make the common case fast
® |nstruction set architecture
— avery important abstraction indeed!

177

