
1

Computer Architecture
- Introduction

Chin-Fu Kuo

2

About This Course

Textbook
–J. L. Hennessy and D. A. Patterson, Computer

Architecture: A Quantitative Approach, 3rd Edition,
Morgan Kaufmann Publishing Co., 2002.

Course Grading
–30% Project and Quiz
–35% Mid-term Examination
–35% Final-term Examination
–5~10% Class Participation & Discussion

3

This Is an Advanced Course

Have you taken “Computer Organization”before?

 If you never took “Computer Organization”before
–You MUST take it if you are an undergraduate student;
–You may still take this course if you insist, but be prepared to

work hard and read some chapters in “Computer Organization
and Design (COD)3/e”

4

Reference Resources

 Patterson, UC-Berkeley Spring 2001
http://www.cs.berkeley.edu/~pattrsn/252S01/

 David E. Culler, UC-Berkeley, Spring 2002
http://www.cs.berkeley.edu/~culler/cs252-s02/

 David E. Culler, UC-Berkeley, Spring 2005
http://www.cs.berkeley.edu/~culler/courses/cs252-s05/

 Many slides in this course were adapted from UC Berkeley’s
CS252 Course. Copyright 2005, UC Berkeley.

5

Outline

What is Computer Architecture?
–Fundamental Abstractions & Concepts

 Instruction Set Architecture & Organization
Why Take This Course?
Technology
Performance
Computer Architecture Renaissance

6

What is “Computer Architecture”?

Applications

Instruction Set
Architecture (ISA)

Compiler

Operating
System

Firmware

Coordination of many levels of abstraction
Under a rapidly changing set of forces
Design, Measurement, and Evaluation

I/O systemInstr. Set Proc.

Digital Design
Circuit Design

Datapath & Control

Layout & fab

Semiconductor Materials

7

Outline

What is Computer Architecture?
–Fundamental Abstractions & Concepts

 Instruction Set Architecture & Organization
Why Take This Course?
Technology
Performance
Computer Architecture Renaissance

8

The Instruction Set: a Critical Interface

instruction set

Software (SW)

Hardware (HW)

 Properties of a good abstraction
– Lasts through many generations (portability)
– Used in many different ways (generality)
– Provides convenient functionality to higher levels
– Permits an efficient implementation at lower levels

9

Instruction Set Architecture

... the attributes of a [computing] system as seen by the
programmer, i.e. the conceptual structure and functional
behavior, as distinct from the organization of the data
flows and controls the logic design, and the physical
implementation. –Amdahl, Blaaw, and Brooks, 1964

SOFTWARESOFTWARE
-- Organization of Programmable Storage

-- Data Types & Data Structures:
Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

10

Computer (Machine) Organization

Logic Designer's View

ISA Level

FUs & Interconnect

Capabilities & Performance Characteristics of
Principal Functional Units (FUs)

–(Registers, ALU, Shifters, Logic Units, ...)
Ways in which these components are

interconnected (Bus, Network, …)

Information flows between components (Data,
Messages, Packets, Data path)

Logic and means by which such information
flow is controlled (Controller, Protocol handler,
Control path, Microcode)

Choreography of FUs to realize the ISA
(Execution, Architectural description)

Register Transfer Level (RTL) Description
(Implementation description)

11

Fundamental Execution Cycle

Instruction
Fetch

Instruction

Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction
from program
storage

Determine required
actions and
instruction size

Locate and obtain
operand data

Compute result value
or status

Deposit results in
storage for later
use

Determine successor
instruction

Processor

regs

F.U.s

Memory

program

Data

von Neuman

bottleneck

12

Elements of an ISA

 Set of machine-recognized data types
– bytes, words, integers, floating point, strings, . . .

 Operations performed on those data types
– Add, sub, mul, div, xor, move, ….

 Programmable storage
– regs, PC, memory

 Methods of identifying and obtaining data referenced by instructions
(addressing modes)
– Literal, reg., absolute, relative, reg + offset, …

 Format (encoding) of the instructions
– Op code, operand fields, …

Current Logical State

of the Machine

Next Logical State

of the Machine

13

Computer as a State Machine

State: defined by storage
–Registers, Memory, Disk, …

Next state is influenced by the operation
–Instructions, I/O events, interrupts, …

When is the next state decided?
–Result Store: Register write, Memory write
–Output: Device (disk, network) write

Current Logical State

of the Machine

Next Logical State

of the Machine

14

Time for a Long Break and Please …

 Partner w/ a classmate who you didn’t know
 Get the following information from your partner:

– Personal Information & Interests:
Name, Department, Hometown, Favorite sports, …

– Research Directions:
Research Lab, Advisor, Projects, …

– Career Plan:
Engineer, Manager, Teacher, …

– Why take this course

 Introduce your partner to the class after the break.

15

Example: MIPS R3000

0r0
r1
°
°
°
r31
PC
lo
hi

Programmable storage

2^32 x bytes

31 x 32-bit GPRs (R0=0)

32 x 32-bit FP regs (paired DP)

HI, LO, PC

Data types ?

Format ?

Addressing Modes?

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, SW, SWL, SWR

Control
J, JAL, JR, JALR
BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

16

Basic ISA Classes

Accumulator:
1 address add A acc  acc + mem[A]
1+x addressaddx A acc  acc + mem[A + x]

Stack:
0 address add tos  tos + next

General Purpose Register:
2 address add A B EA(A)  EA(A) + EA(B)
3 address add A B C EA(A)  EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra  Rb + Rc

load Ra Rb Ra  mem[Rb]
store Ra Rb mem[Rb]  Ra

17

MIPS Addressing Modes & Formats

•Simple addressing modes
•All instructions 32 bits wide

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

•Register Indirect?

18

Instruction Formats & RISC
Variable:

Fixed:

Hybrid:

…

•Addressing modes
–each operand requires addess specifier => variable format

•Code size => variable length instructions

•Performance => fixed length instructions
–simple decoding, predictable operations

•RISC: With load/store instruction arch, only one memory address
and few addressing modes => simple format, address mode given
by opcode (Why would RISC perform better than CISC?)

19

Cray-1: the Original RISC

Op

015

Rd Rs1 R2

2689

Load, Store and Branch

35

Op

015

Rd Rs1 Immediate

2689 35 15 0

Register-Register

20

VAX-11: the Canonical CISC

 Rich set of orthogonal address modes
– immediate, offset, indexed, autoinc/dec, indirect, indirect+offset
– applied to any operand

 Simple and complex instructions
– synchronization instructions
– data structure operations (queues)
– polynomial evaluation

1. In programming, canonical means "according to the rules.”
2. A canonical book is considered inspired and authoritative and is a part
of the rule or standard of faith.

OpCode A/M A/M A/M

Byte 0 1 n m

Variable format, 2 and 3 address instruction

21

Load/Store Architectures

MEM reg

° Substantial increase in instructions
° Decrease in data BW (due to many registers)
° Even more significant decrease in CPI (pipelining)
° Cycle time, Real estate, Design time, Design complexity

° 3-address GPR
° Register-to-register arithmetic
° Load and store with simple addressing modes (reg + immediate)
° Simple conditionals

compare ops + branch z
compare&branch
condition code + branch on condition

° Simple fixed-format encoding

op

op

op

r r r

r r immed

offset

22

MIPS R3000 ISA (Summary)

 Instruction Categories
– Load/Store
– Computational
– Jump and Branch
– Floating Point

 coprocessor

– Memory Management
– Special

R0 - R31

PC
HI

LO

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

Registers

23

Evolution of Instruction Sets

Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based (Stack) Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,Sparc,HP-PA,IBM RS6000, 1987)iX86?

24

Outline

What is Computer Architecture?
–Fundamental Abstractions & Concepts

 Instruction Set Architecture & Organization
Why Take This Course?
Technology
Performance
Computer Architecture Renaissance

25

Why Take This Course?

 To design the next great instruction set?...well...
– instruction set architecture has largely converged
– especially in the desktop / server / laptop space
– dictated by powerful market forces

 Tremendous organizational innovation relative to established ISA
abstractions

 Many New instruction sets or equivalent
– embedded space, controllers, specialized devices, ...

 Design, analysis, implementation concepts vital to all aspects of EE
& CS
– systems, PL, theory, circuit design, VLSI, comm.

 Equip you with an intellectual toolbox for dealing with a host of
systems design challenges

26

Related Courses

Computer
Organization
Computer

Organization
Computer

Architecture
Computer

Architecture

Parallel & Advanced
Computer Architecture

Parallel & Advanced
Computer Architecture

Embedded
Systems
Software

Embedded
Systems
Software

How to build it,
Implementation
details

Why, Analysis,
Evaluation

Parallel Architectures,
Hardware-Software Interactions
System Optimization

RTOS, Tools-chain,
I/O & Device drivers,

Compilers

Hardware-Software
Co-design

Hardware-Software
Co-design

How to make
embedded systems better

SoftwareSoftware

OS,
Programming Lang,
System Programming

Special Topics on
Computer Performance

Optimization

Special Topics on
Computer Performance

Optimization

Performance tools,
Performance skills,
Compiler optimization tricks

27

Computer Industry

Desktop Computing
–Price-performance, Graphics performance
–Intel, AMD, Apple, Microsoft, Linux
–System integrators & Retailers

Servers
–Availability, Scalability, Throughput
–IBM, HP-Compaq, Sun, Intel, Microsoft, Linux

Embedded Systems
–Application-specific performance
–Power, Integration

28

Forces on Computer Architecture

Computer
Architecture

Technology Programming
Languages

Operating
Systems

History

Applications

29

Course Focus

Understanding the design techniques, machine
structures, technology factors, evaluation
methods that will determine the form of
computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
Evaluation

Parallelism

Computer Architecture:
•Instruction Set Design
•Organization
•Hardware/Software Boundary Compilers

30

Outline

What is Computer Architecture?
–Fundamental Abstractions & Concepts

 Instruction Set Architecture & Organization
Why Take This Course?
Technology Trend
Performance
Computer Architecture Renaissance

31

Dramatic Technology Advance

 Prehistory: Generations
– 1st Tubes
– 2nd Transistors
– 3rd Integrated Circuits
– 4th VLSI….

 Discrete advances in each generation
– Faster, smaller, more reliable, easier to utilize

 Modern computing: Moore’s Law
– Continuous advance, fairly homogeneous technology

32

Moore’s Law

 “Cramming More Components onto Integrated Circuits”
– Gordon Moore, Electronics, 1965

 # on transistors on cost-effective integrated circuit double every 18 months
(IC上可容納的電晶體數目，約每隔18個月便會增加一倍，性能也
將提升一倍。)

33
Year

1000

10000

100000

1000000

10000000

100000000

1970 1975 1980 1985 1990 1995 2000

i80386

i4004

i8080

Pentium

i80486

i80286

i8086

Technology Trends:
Microprocessor Capacity

CMOS improvements:
•Die size: 2X every 3 yrs
•Line width: halve / 7 yrs

Itanium II: 241 million
Pentium 4: 55 million
Alpha 21264: 15 million
Pentium Pro: 5.5 million
PowerPC 620: 6.9 million
Alpha 21164: 9.3 million
Sparc Ultra: 5.2 million

Moore’s Law

34

size

Year

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

Memory Capacity
(Single Chip DRAM)

year size(Mb) cyc time
1980 0.0625 250 ns
1983 0.25 220 ns
1986 1 190 ns
1989 4 165 ns
1992 16 145 ns
1996 64 120 ns
2000 256 100 ns
2003 1024 60 ns

35

Optimizing the Design

 Functional requirements set by:
– market sector
– particular company’s product plan
– what the competition is expected to do

 Usual pressure to do everything
– minimize time to market
– maximize performance
– minimize cost & power

 And you only get 1 shot
– no time to try multiple prototypes and evolve to a polished product
– requires heaps of simulations to quantify everything

 quantify model is focus of this course

– requires deep infrastructure and support

36

Technology Trends

 Integrated Circuits
– density increases at 35%/yr.
– die size increases 10%-20%/yr
– combination is a chip complexity growth rate of 55%/yr
– transistor speed increase is similar but signal propagation doesn’t track

this curve - so clock rates don’t go up as fast

 DRAM
– density quadruples every 3-4 years (40 - 60%/yr) [4x steps]
– cycle time decreases slowly - 33% in 10 years
– interface changes have improved bandwidth however

 Network
– rapid escalation - US bandwidth doubles every year at the machine the

expectation bumps periodically - gigabit ether is here now

37

3 Categories Emerge

Desktop
–optimized for price-performance (frequency is a red herring)

Server
–optimized for: availability, scalability, and throughput
–plus a new one: power ==> cost and physical plant site

Embedded
–fastest growing and the most diverse space

 washing machine controller to a network core router

–optimizations: cost, real-time, specialized performance, power
 minimize memory and logic for the task at hand

38

Outline

What is Computer Architecture?
–Fundamental Abstractions & Concepts

 Instruction Set Architecture & Organization
Why Take This Course?
Technology
Cost and Price
Performance
Computer Architecture Renaissance

39

Cost

Clearly a market place issue
–time, volume, commoditization play a big role
–WCT (whole cost transfer) also a function of volume

 CS is all about the cheap copy

However it’s not that simple –what kind of cost
–cost to buy –this is really price
–cost to maintain
–cost to upgrade –never known at purchase time
–cost to learn to use –Apple won this one for awhile
–cost of ISV (indep. SW vendor) software
–cost to change platforms –the vendor lock
–cost of a failure –pandora’s box opens …

 Let’s focus on hardware costs
–it’s simpler

40

Cost Impact

Fast paced industry
–early use of technology is promoted

 Learning curve & process stabilization
–reduces costs over time

Yield - metric of technology maturity
–yield is % of manufactured chips that actually work
–==> things get cheaper with time till they hit 10-20% of initial

 Increasing cost of fab capital
–price per unit has increased
–BUT - cost/function/second going down very rapidly

 what’s missing from this metric??

41

Cost of an IC

 More integration IC cost is bigger piece of total

42

DRAM costs

43

Cost of Die

 Compute
– # dies/wafer & yield as a

function of die area

44

Modern Processor Die Sizes

Pentium Clones
–AMD

 .35u K6 = 162 mm2

 .25u K6-2 = 68 mm2

 .25u K6-3 (256K L1) = 135 mm2

 .18u Athlon, 37M T’s, 6-layer copper, = 120mm2

–Cyrix (they died)
 6u 6x86 = 394/225 mm2

 .35u 6x86 = 169 mm2

 .25u 6x86 (64K L1) = 65 mm2

–IDT (they died)
 .35u Centaur C6 = 88 mm2

 .25u C6 = 60 mm2

45

More Die Sizes

 Intel
–Pentium

 .8u Pentium 60 = 288 mm2

 .6u Pentium 90 = 156 mm2

 .35u = 91 mm2

 .35u MMX = 140/128 mm2

–Pentium Pro
 .6u = 306 mm2

 .35u = 195 mm2

 .6u w/ 256K L2 = 202 mm2

 .35u w/512K L2 = 242 mm2

Pentium II
 .35u = 205 mm2

 .25u = 105 mm2

46

RISC Die Sizes

 HP
– .5u PA-8200 = ~400 mm2

– .25u PA-8600, 116M T’s, 5-metal = 468mm2

– .18u SOI, 186M T’s, 7-copper = 305mm2

 DEC
– .5u 21164 = 298 mm2

– .35u 21264 = 310 mm2

 Motorola
– .5u PPC 604 = 196 mm2

– .35u PPC 604e = 148/96mm2

– .25u PPC 604e = 47.3 mm2

– .81u, G4 7410, 10.5M T’s, 6-metal = 62mm2

 •Transmeta
– Crusoe TM5600
– .18u, 5-copper, 36.8M T’s = 88 mm2

47

Final Chip Cost vs. Size

48

Turning Cost into Price

Direct Costs: labor costs, purchasing components

49

Outline

What is Computer Architecture?
–Fundamental Abstractions & Concepts

 Instruction Set Architecture & Organization
Why Take This Course?
Technology
Performance
Computer Architecture Renaissance

50

Measuring Performance

Several kinds of time”
–stopwatch - it’s what you see but is dependent on

 load
 I/O delays
 OS overhead

–CPU time - time spent computing your program
 factors out time spent waiting for I/O delays
 but includes the OS + your program

–Hence system CPU time, and user CPU time

51

OS Time

Unix time command reports
27.2u 11.1s 56.6 68%
–27.2 seconds of user CPU time
–11.1 seconts of system CPU time
–56.6 seconds total elapsed time
–% of elapsed time that is user + system CPU time

 tells you how much time you spent waiting as a %

52

Benchmarks

Toy benchmarks
–quicksort, 8-queens

 best saved for intro. to programming homeworks

Synthetic benchmarks
–most commonly used since they try to mimic real programs
–problem is that they don’t - each suite has it’s own bias
–no user really runs them
–they aren’t even pieces of real programs
–they may reside in cache & don’t test memory performance

At the very least you must understand what the
benchmark code is in order to understand what it
might be measuring

53

Benchmarks

 Lots of suites - examples
– Dhrystone - tells you how well integers work
– Loops and Linpack - mostly floating point matrix frobbing
– PC specific

 Business Winstone - composite of browser and office apps
 CC Winstone - content creation version - Photoshop, audio editing etc.
 Winbench - collection of subsystem tests that target CPU, disk, and video

subsystems

 SPEC2000 (text bias lies here - see table 1.12 for details)
– 4th generation - primarily designed to test CPU performance
– CINT2000 - 11 integer benchmarks
– CFP2000 - 14 floating point benchmarks
– SPECviewperf - graphics performance of systems using OpenGL
– SPECapc - several large graphics apps
– SPECSFS - file system test
– SPECWeb - web server test

54

More Benchmarks

 TPC
– transaction processing council
– many variants depending on transaction complexity

 TPC-A: simple bank teller transaction style
 TPC -C: complex database query
 TPC-H: decision support
 TPC-R: decision support but with stylized queries (faster than -H)
 TPC-W: web server

 For embedded systems EEMBC “embassy”
– 35 kernels in 5 classes
– 16 automotive/industrial - arithmetic, pointer chasing, table lookup, bit

manip, ...
– 5 consumer - JPEG codec, RGB conversion, filtering
– 3 networking - shortest path, IP routing, packet classification
– 4 office automation - graphics and text processing
– 6 telecommunications - DSP style autocorrelation, FFT, decode, FIR filter, ...

55

Other Problems

Which is better?
By how much?
Are the programs equally important?

56

Some Aggregate Job Mix Options

57

Weighted Variants

58

Normalized Time Metrics

59

Amdahl’s Law

60

Simple Example

61

P
er

fo
rm

an
ce

0.1

1

10

100

1965 1970 1975 1980 1985 1990 1995

Supercomputers

Minicomputers

Mainframes

Microprocessors

Performance Trends

What do we have Today?

63

0

200

400

600

800

1000

1200

87 88 89 90 91 92 93 94 95 96 97

D
EC

A
lp
ha

21
16

4/
60

0

D
EC

A
lp
ha

5/
50

0

D
EC

A
lp
ha

5/
30

0

D
EC

A
lp
ha

4/
26

6

IB
M

PO
W

ER
10

0

D
EC

A
X
P/

50
0

H
P

90
00

/7
50

S
un

-4
/2

60

IB
M

RS
/6

00
0

M
IP

S
M

/1
20

M
IP

S
M

/2
00

0

Processor Performance
(1.35X before, 1.55X now)

1.54X/yr

64

Will Moore’s Law Continue?

Search “Moore’s Law”on the Internet, and you
will see a lot of predictions and arguments.

Don’t bet your house on it (or any technology
stock)…

65

Performance(X) Execution_time(Y)
n = =

Performance(Y) Execution_time(X)

Definition: Performance

Performance is in units of things per sec
–bigger is better

If we are primarily concerned with response time

performance(x) = 1
execution_time(x)

" X is n times faster than Y" means

66

Metrics of Performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors WiresPins

ISA

Function Units

(millions) of Instructions per second: MIPS
(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per day/month

67

Components of Performance

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

68

What’s a Clock Cycle?

 State changes as Clock “ticks”
 Old days: 10 levels of gates
 Today: determined by numerous time-of-flight issues +

gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

69

Integrated Approach

What really matters is the functioning of the
complete system, I.e. hardware, runtime system,
compiler, and operating system

In networking, this is called the “End to End
argument”

Computer architecture is not just about transistors,
individual instructions, or particular
implementations

Original RISC projects replaced complex
instructions with a compiler + simple instructions

70

How do you turn more stuff into more
performance?

Do more things at once
Do the things that you do faster

Beneath the ISA illusion….

71

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

72

Limits to pipelining

Maintain the von Neumann “illusion”of one
instruction at a time execution

Hazards prevent next instruction from executing
during its designated clock cycle
–Structural hazards: attempt to use the same hardware to do two

different things at once
–Data hazards: Instruction depends on result of prior instruction

still in the pipeline
–Control hazards: Caused by delay between the fetching of

instructions and decisions about changes in control flow
(branches and jumps).

73

A take on Moore’s Law
Tr

an
si

st
or

s













 










 








 













 



 

  



 






1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008
i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

74

Progression of ILP

 1st generation RISC - pipelined
– Full 32-bit processor fit on a chip => issue almost 1 IPC

 Need to access memory 1+x times per cycle
– Floating-Point unit on another chip
– Cache controller a third, off-chip cache
– 1 board per processor multiprocessor systems

 2nd generation: superscalar
– Processor and floating point unit on chip (and some cache)
– Issuing only one instruction per cycle uses at most half
– Fetch multiple instructions, issue couple

 Grows from 2 to 4 to 8 …
– How to manage dependencies among all these instructions?
– Where does the parallelism come from?

 VLIW
– Expose some of the ILP to compiler, allow it to schedule

instructions to reduce dependences

75

Modern ILPModern ILP

 Dynamically scheduled, out-of-order execution
 Current microprocessor fetch 10s of instructions per

cycle
 Pipelines are 10s of cycles deep
=> many 10s of instructions in execution at once
 Grab a bunch of instructionsdetermine all their

dependences, eliminate dep’s wherever possible,
throw them all into the execution unit, let each one
move forward as its dependences are resolved

 Appears as if executed sequentially
 On a trap or interrupt, capture the state of the

machine between instructions perfectly
 Huge complexity

76

Have we reached the end of ILP?

 Multiple processor easily fit on a chip
 Every major microprocessor vendor has gone

to multithreading
– Thread: loci of control, execution context
– Fetch instructions from multiple threads at once,

throw them all into the execution unit
– Intel: hyperthreading, Sun:
– Concept has existed in high performance computing

for 20 years (or is it 40? CDC6600)

 Vector processing
– Each instruction processes many distinct data
– Ex: MMX

 Raise the level of architecture –many
processors per chip

Tensilica Configurable Proc

77

When all else fails - guess
 Programs make decisions as they go

– Conditionals, loops, calls
– Translate into branches and jumps (1 of 5 instructions)

 How do you determine what instructions for fetch when the
ones before it haven’t executed?
– Branch prediction
– Lot’s of clever machine structures to predict future based on history
– Machinery to back out of mis-predictions

 Execute all the possible branches
– Likely to hit additional branches, perform stores

speculative threads
What can hardware do to make programming (with

performance) easier?

78

Numbers and Pictures

 Numbers talk!
– What is a quantitative approach?
– How to collect VALID data?
– How to analyze data and extract useful information?
– How to derive convincing arguments based on numbers?

 Pictures
– A good picture = a thousand words
– Good for showing trends and comparisons
– High-level managers have no time to read numbers
– Business people want pictures and charts

79

The Memory Abstraction

Association of <name, value> pairs
–typically named as byte addresses
–often values aligned on multiples of size

Sequence of Reads and Writes
Write binds a value to an address
Read of addr returns most recently written value

bound to that address

address (name)

command (R/W)

data (W)

data (R)

done

80

µProc
60%/yr.
(2X/1.5yr
)

DRAM
9%/yr.
(2X/10
yrs)

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Joy’s Law”

Processor-DRAM Memory Gap (latency)

81

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<< 1s ns

Cache
10s-100s K Bytes
~1 ns
$1s/ MByte

Main Memory
M Bytes
100ns- 300ns
$< 1/ MByte

Disk
10s G Bytes, 10 ms
(10,000,000 ns)
$0.001/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

circa 1995 numbers

82

The Principle of Locality

 The Principle of Locality:
– Program access a relatively small portion of the address space at any instant of

time.

 Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will tend to be

referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items whose

addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

 Last 30 years, HW relied on locality for speed

P MEM$

83

The Cache Design Space

 Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back

 The optimal choice is a compromise
– depends on access characteristics

 workload
 use (I-cache, D-cache, TLB)

– depends on technology / cost

 Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

84

Is it all about memory system design?

 Modern microprocessors are almost all cache

85

Memory Abstraction and Parallelism

Maintaining the illusion of sequential access to
memory

What happens when multiple processors access
the same memory at once?
–Do they see a consistent picture?

Processing and processors embedded in the

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem Mem

86

System Organization:
It’s all about communication

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

Pentium III Chipset

87

Breaking the HW/Software Boundary

 Moore’s law (more and more trans) is all about volume and
regularity

 What if you could pour nano-acres of unspecific digital logic
“stuff”onto silicon
– Do anything with it. Very regular, large volume

 Field Programmable Gate Arrays
– Chip is covered with logic blocks w/ FFs, RAM blocks, and interconnect
– All three are “programmable”by setting configuration bits
– These are huge?

 Can each program have its own instruction set?
 Do we compile the program entirely into hardware?

88

“Bell’s Law”–new class per decade

year

lo
g

(p
eo

p
le

p
er

co
m

p
u

te
r)

streaming
information
to/from physical
world

Number Crunching
Data Storage

productivity
interactive

•Enabled by technological opportunities

•Smaller, more numerous and more intimately connected

•Brings in a new kind of application

•Used in many ways not previously imagined

89

It’s not just about bigger and faster!

 Complete computing systems can be tiny and cheap
 System on a chip
 Resource efficiency

– Real-estate, power, pins, …

90

The Process of Design

Design

Analysis

Architecture is an iterative process:
•Searching the space of possible designs
•At all levels of computer systems

Creativity

Good IdeasGood Ideas
Mediocre Ideas

Bad Ideas

Cost /
Performance
Analysis

91

Amdahl’s Law

 
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction

Fraction

1
ExTime
ExTime

Speedup



1

Best you could ever hope to do:

 enhanced
maximum Fraction-1

1Speedup 

  









enhanced

enhanced
enhancedoldnew Speedup

Fraction
FractionExTimeExTime 1

92

Computer Architecture Topics

Instruction Set Architecture

Pipelining, Hazard Resolution,
Superscalar, Reordering,
Prediction, Speculation,
Vector, Dynamic Compilation

Addressing,
Protection,
Exception Handling

L1 Cache

L2 Cache

DRAM

Disks, WORM, Tape

Coherence,
Bandwidth,
Latency

Emerging Technologies
Interleaving
Bus protocols

RAID

VLSI

Input/Output and Storage

Memory
Hierarchy

Pipelining and Instruction
Level Parallelism

Network
Communication

O
th

er
Pr

oc
es

so
rs

93

Computer Architecture Topics

M

Interconnection NetworkS

PMPMPMP
° ° °

Topologies,
Routing,
Bandwidth,
Latency,
Reliability

Network Interfaces

Shared Memory,
Message Passing,
Data Parallelism

Processor-Memory-Switch

Multiprocessors
Networks and Interconnections

94

Course Focus

Understanding the design techniques, machine structures,
technology factors, evaluation methods that will determine
the form of computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
Evaluation

Parallelism

Computer Architecture:
•Instruction Set Design
•Organization
•Hardware/Software Boundary Compilers

