Computer Architecture
- Introduction

Chin-Fu Kuo

About This Course

Textbook

- J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, 3rd Edition,
Morgan Kaufmann Publisning Co., 2002.

Course Grading
- 30% Project and Quiz

- 35% Mid-term Examination
- 35% Final-term Examination
- 5~10% Class Participation & Discussion

This Is an Advanced Course

Have you taken "Computer Organization” before?

If you never took "Computer Organization” before
- You MUST take it if you are an undergraduate student;

- You may still take this course if you insist, but be prepared to
work hard and read some chapters in "Computer Organization
and Design (COD)3/e"

Reference Resources

Patterson, UC-Berkeley Spring 2001

David E. Culler, UC-Berkeley, Spring 2002

David E. Culler, UC-Berkeley, Spring 2005

Many slides in this course were adapted from UC Berkeley’s
CS252 Course. Copyright 2005, UC Berkeley.

Outline

What is Computer Architecture?
— Fundamental Abstractions & Concepts

What is "Computer Architecture”?

Applications

Operating
System

Compiler Firmware
b \—‘ Instru_ction Set
Instr. Set Proc. | I/O system Architecture (ISA)

Datapath & Control

Digital Design

Circuit Desian
Layout & fab

Semiconductor Materials

Coordination of many levels of abstraction
Under a rapidly changing set of forces
Design, Measurement, and Evaluation

Outline

Instruction Set Architecture & Organization

The Instruction Set: a Critical Interface

Software (SW)

Hardware (HW)

Properties of a good abstraction
— Lasts through many generations (portability)
— Used in many different ways (generality)
— Provides convenient functionality to higher levels
— Permits an efficient implementation at lower levels

Instruction Set Architecture

... the attributes of a [computing] system as seen by the
programmer, i.e. the conceptual structure and functional
behavior, as distinct from the organization of the data
flows and controls the logic design, and the physical
Implementation. — Amdahl, Blaaw, and Brooks, 1964

SOFTWARE

-- Organization of Programmable Storage

-- Data Types & Data Structures:
Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set
-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

Computer (Machine) Organization

Capabilities & Performance Characteristics of | | |
Principal Functional Units (FUs) Logic Designer’s View

— (Registers, ALU, Shifters, Logic Units, ...)
Ways in which these components are
Interconnected (Bus, Network, ...) FUs & Interconnect

Information flows between components (Data,
Messages, Packets, Data path)

Logic and means by which such information

flow is controlled (Controller, Protocol handler, [TT 11)
Control path, Microcode) /ﬁ

Choreography of FUs to realize the ISA
(Execution, Architectural description)

Register Transfer Level (RTL) Description
(Implementation description)

ISA Level

Instruction
Fetch

N

Instruction
Decode

Operand
Fetch

Execute

v

Result
Store

Next

Instruction
]

Obtain instruction
from program
storage

Determine required
actions and
instruction size

Locate and obtain
operand data

Compute result value
or status

Deposit results in
storage for later
use

Determine successor
instruction

Fundamental Execution Cycle

Memory

Processor program

regs

F.Us

von Neuman

bottleneck

Elements of an ISA

Set of machine-recognized data types

— bytes, words, integers, floating point, strings, . . .
Operations performed on those data types

— Add, sub, mul, div, xor, move,
Programmable storage

— regs, PC, memory

Methods of identifying and obtaining data referenced by instructions

(addressing modes)

— Literal, reg., absolute, relative, reg + offset, ...
Format (encoding) of the instructions

— Op code, operand fields, ...

Current Logical State

of the Machine

Next Logical State

of the Machine

12

Computer as a State Machine

State: defined by storage

— Registers, Memory, Disk, ...

Next state Is influenced by the operation
— Instructions, 1/O events, interrupts, ...

When is the next state decided?
— Result Store: Register write, Memory write
— Output: Device (disk, network) write

Current Logical State Next Logical State
of the Machine ‘ of the Machine

Time for a Long Break and Please ...

Partner w/ a classmate who you didn't know

Get the following information from your partner:

Personal Information & Interests:
Name, Department, Hometown, Favorite sports, ...

Resear ch Directions:
Research Lab, Advisor, Projects, ...

Career Plan:
Engineer, Manager, Teacher, ..

Why takethiscourse
Introduce your partner to the class after the break.

Example: MIPS R3000

Programmable storage Data types ?

32 x 32-bit FP regs (paired DP)

HI, LO, PC

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
AddlI, AddIU, SLTI, SLTIU, Andl, Orl, Xorl, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV
Memory Access
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, SW, SWL, SWR

Control 32-bit instructions on word boundary
J, JAL, JR, JALR
BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

Basic ISA Classes

Accumulator:

1 address add A acc < acc + mem[A]

1+x addressaddx A acc <« acc + mem|A + X]
Stack:

O address add tos « tos + next

General Purpose Register:

2 address add AB EA(A) « EA(A) + EA(B)

3address add ABC EA(A) « EA(B) + EA(C)
Load/Store:

3 address add Ra Rb Rc Ra <« Rb + Rc
load Ra Rb Ra « mem|RD]
store Ra Rb mem[Rb] « Ra

MIPS Addressing Modes & Formats

« Simple addressing modes
* All instructions 32 bits wide

Register (direct) |op st | rd

Immediate

Base+index

Irs rt

\ 4

register

PC-relative

Irs

PC

* Register Indirect?

Instruction Formats & RISC

Variable:
Fixed:

Hybrid:

Addressing modes

—each operand requires addess specifier => variable format
*Code size => variable length instructions
Performance => fixed length instructions

—simple decoding, predictable operations

*RISC: With load/store instruction arch, only one memory address
and few addressing modes => simple format, address mode given
by opcode (Why would RISC perform better than CISC?)

Cray-1: the Original RISC

Register-Register

15

9 8

Op

Rd

Load, Store and Branch

9 8

6 5

3

2

0

15

Op

Rd

Rs1

Immediate

VAX-11: the Canonical CISC

Variable format, 2 and 3 address instruction

Rich set of orthogonal address modes
- Immediate, offset, indexed, autoinc/dec, indirect, indir ect+offset
- applied to any operand

Simple and complex instructions
- synchronization instructions

- data structure operations (queues)
- polynomial evaluation

1. In programming, canonical means " according to the rules.”
2. A canonical book is considered inspired and authoritative and is a part
of therule or standard of faith.

Load/Store Architectures

2
° 3-address GPR red

" Reqister-to-register arithmetic
" Load and store with simple addressing modes (reg + immediate)
" Simple conditionals
compare ops + branch z
compare&branch r
condition code + branch on conditior offset
" Simple fixed-format encoding

r

" Substantial increase in instructions

" Decrease in data BW (due to many registers)

" Even more significant decrease in CPI (pipelining)

" Cycle time, Real estate, Design time, Design complexity

MIPS R3000 ISA (Summary)

Registers

Instruction Categories
L oad/Store RO - R31
Computational
Jump and Branch

Floating Point
e COprocessor

Memory Management
Special

3 Instruction Formats: all 32 bits wide

OP rs rt rd Y: |

OP rs rt immediate

OP jump target

Evolution of Instruction Sets

Single Accumulator (EDSAC 1950)
|

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

/ \

High-level Language Based (Stack) Concept of a Family

(B5000 196{ / (IBM 360 1964)
General Purpose Register Machines
/ \
Complex Instruction Sets Load/Store Architecture

(Vax, Intel 432 1977-80) (C|DC 6600, Cray 1 1963-76)
RISC

(MIPS,Sparc,HP-PA,IBM RS6000, 1987)
23

Outline

Why Take This Course?

Why Take This Course?

To design the next great instruction set?...well...
- instruction set architecture haslargely converged
- especidly in the desktop / server / laptop space
- dictated by powerful market forces

Tremendous organizational innovation relative to established ISA
abstractions

Many New instruction sets or equivalent
- embedded space, controllers, specialized devices, ...

Design, analysis, implementation concepts vital to all aspects of EE
& CS

- systems, PL, theory, circuit design, VLS|, comm.

Equip you with an intellectual toolbox for dealing with a host of
systems design challenges

Related Courses

Parallel & Advanced
Computer Architecture

Parallel Architectures,
Hardware-Software Interactions

Computer I ~ System Optimization

Organization

. Hardware-Software
How to build it, Why. Analysis, Co-design

Implementation Evaluation
details

How to make
embedded systems better

Embedded

Software __ Systems
Software

Special Topics on
Computer Performance
Optimization

0s, RTOS, Tools-chain,

Programming Lang, I/0 & Device drivers,
System Programming Compilers

Performance tools,
Performance skills,
Compiler optimization tricks

26

Computer Industry

Desktop Computing

— Price-performance, Graphics performance
— Intel, AMD, Apple, Microsoft, Linux

— System integrators & Retallers

Servers

— Availability, Scalability, Throughput

— IBM, HP-Compaq, Sun, Intel, Microsoft, Linux
Embedded Systems

— Application-specific performance

— Power, Integration

Forces on Computer Architecture

Programming
Languages

Applications /
\

Architecture

Operating / \

Systems _
History

Computer J

Course Focus

Understanding the design technigues, machine
structures, technology factors, evaluation
methods that will determine the form of
computers in 21st Century

Parallelism
Technology Programming

\ / /Languages
Applications——___ ~—Interface Design

Computer Architecture: (ISA)
* Instruction Set Design
* Organization

- Hardware/Software Boundary | “———Compilers

Operating / Measurement & Histor
Systems Evaluation yzg

Outline

Technology Trend

Dramatic Technology Advance

Prehistory: Generations
— 1% Tubes

— 2 Transistors

— 39 |ntegrated Circuits

— 40 VLS....

Discrete advances in each generation
— Faster, smaller, morereliable, easier to utilize

Modern computing: Moore’s Law
— Continuous advance, fairly homogeneous technology

Moore's Law

Transistors
Per Die

10'%,
1965 Actual Data

10° = MOS Arrays &4 MOS Logic 1875 Actual Data
1084 1975 Projection
Memory

A Microprocessor

057/ COMPONENT

TURING C

Pentium®l|
Penﬂum‘F"

RELATIVE MANUFAC

L]
o o i
NENTS P!
MBER OF COMPRRENT

IIIIIIIIIIIIIIIIIIIIIIIIllIIIIIIIIIII!lIIIIIIIIIIII
1960 1865 1970 1975 1880 1885 1890 1885 2000 2005 2010

=
e
=k
L L
g2
1wl &3
EEE
w83
R
(2]
uog
Seo
had
mZ
2=
= w
o

4
3
2
i
)
a
8
7
6
5
4
3
2
|
0]

b=
—
b
.
b
-

“Cramming More Components onto Integrated Circuits”
— Gordon Moore, Electronics, 1965

on tra_nsistors on cost-effective integrated circuit double ever

T o A > nigeelie , Dl ry 18”mqr‘1ths
C LT AP RS BSOS [

/

100000000

10000000

1000000

100000

10000

1000

Technology Trends:
Microprocessor Capacity

7 . . T
\Imnlum IT: 241 million

Pentium 4: 55 million

Alpha 21264: 15 million

Pentium Pro: 5.5 million

PowerPC 620: 6.9 million

Alpha 21164: 9.3 million

Sparc Ultra: 5.2 million

CMOS improvements:

- Die size: 2X every 3 yrs

* Line width: halve / 7 yrs

LII:ILIZZLIZZZLIZiﬁlIZZLIZZZLIZ:ILIZZ@IIZZLIZZMZOLOnefﬁSLIﬁ:LILWQW 7 i
e
'/‘/:i80486
7 []
]
18
0286
L} 7
//
/.
/4 i8086
y 4 ', u
=-{8080
14004
1970 1975 1980 1985 1990 1995 2000
Year

.

Memory Capacity
(Single Chip DRAM)

size

1000000000

X year size(Mb) cyc time

100000000 et 1980 0.0625 250 ns
10900000 A 1983 0.25 220 ns
—= 1986 1 190 ns
000000 = 1989 4 165 ns
100000 p 1992 16 145 ns
- 1996 64 120 ns

10000 yd
— 2000 256 100 ns
1000 ~ : : : : : 2003 1024 60 ns

1970 1975 1980 1985 1990 1995 2000

Year

34

Optimizing the Design

Functional requirements set by:
— market sector
— particular company’s product plan
— what the competition is expected to do

Usual pressure to do everything
— minimize time to market

— maximize performance

— minimize cost & power

And you only get 1 shot
— no time to try multiple prototypes and evolve to a polished product
— reguires heaps of simulations to quantify everything
o quantify model isfocus of this course
— requires deep infrastructure and support

Technology Trends

Integrated Circuits
— density increases at 35%l/yr.
— die sizeincreases 10%-20%/yr
— combination is achip complexity growth rate of 55%/yr

— transistor speed increase is similar but signal propagation doesn’t track
this curve - so clock rates don’t go up as fast

DRAM
— density quadruples every 3-4 years (40 - 60%/yr) [4x steps]|
— cycletime decreases slowly - 33% in 10 years
— Interface changes have improved bandwidth however

Network

— rapid escalation - US bandwidth doubles every year at the machine the
expectation bumps periodically - gigabit ether is here now

3 Categories Emerge

Desktop
— optimized for price-performance (frequency is ared herring)

Server
— optimized for: availability, scalability, and throughput
— plus anew one: power ==> cost and physical plant site

Embedded

— fastest growing and the most diverse space
o Washing machine controller to a network core router

— optimizations: cost, real-time, specialized performance, power
e minimize memory and logic for the task at hand

Outline

Cost and Price

Cost

Clearly a market place issue
— time, volume, commaoditization play a big role
— WCT (whole cost transfer) also afunction of volume
o CSisall about the cheap copy
However it's not that simple — what kind of cost
— cost to buy — thisisreally price
cost to maintain
cost to upgrade — never known at purchase time
cost to learn to use — Apple won this one for awhile
cost of ISV (indep. SW vendor) software
cost to change platforms — the vendor lock
— cost of afailure — pandora's box opens...

Let’'s focus on hardware costs
— It'ssimpler

Cost Impact

Fast paced industry
— early use of technology Is promoted

Learning curve & process stabilization
— reduces costs over time

Yield - metric of technology maturity

— yield is % of manufactured chips that actually work

— ==>things get cheaper with time till they hit 10-20% of initial
Increasing cost of fab capital

— price per unit has increased

— BUT - cost/function/second going down very rapidly
o What’s missing from this metric??

Costof an IC

More integration =» |C cost is bigger piece of total

Die-cost + Die-test-cost + Die-package-cost

[C-cost = , —
Final-Test-Yield

DRAM costs

e
4:3'.3 @#é’f@‘u@@é‘?ﬁ@@‘é’@#@? df’.\@,ﬁ,p‘

Yoar

© 2003 Elssviar Sclanca (USA). All rights resanved.

Cost of Die

Compute

— #dieslwafer & yieldasa
function of die area

Cost-of-wafer
Dies-per-wafer x Die-yield

Cost-of-die =

1t x (Wafer-diameter/2 12 T x Wafer-diameter
Die-area A2 x Die-area

Dies-per-wafer = — Test-dies-per-wafer

. : : Deftects-per-unit-area x Die-area)} &
Die-yield = Wafer-yield x{l +[I .]
o

Where alpha depends on the process - the more complex the higher the alpha
value - for today’s multilevel metal CMOS o ~= 4 and defects per unit area are
typically between .4 and .8 per cm?

Modern Processor Die Sizes

Pentium Clones

— AMD
o .35uU K6 =162 mm?
o .25uU K6-2 = 68 mm?
o .25uK6-3 (256K L1) =135 mm?
o .18u Athlon, 37M T’s, 6-layer copper, = 120mm?
— Cyrix (they died)
o 6U 6X86 = 394/225 mm?
o .35uU 6Xx86 = 169 mm?
o .25U 6x86 (64K L1) = 65 mm?
_ IDT (they died)
o .35u Centaur C6 = 88 mm?
e .25u C6 = 60 mm?

More Die Sizes

Intel

— Pentium
e .8u Pentium 60 = 288 mm?
e .6U Pentium 90 = 156 mm?
e .35U=91 mMm?
e .35u MMX = 140/128 mm?

— Pentium Pro
e .6U =306 mMm?
e .35U =195 mm?
e .6UW/ 256K L2 =202 mm?
e .35UW/512K L2 = 242 mm?

Pentium Il
e .35u =205 mm?
e .25u =105 mm?

RISC Die Sizes

HP
— .5u PA-8200 = ~400 mm?
— .25u PA-8600, 116M T’s, 5-metal = 468mm?
— .18u SOlI, 186M T’s, 7-copper = 305mm?

DEC
— .5u 21164 = 298 mm?
— .35u 21264 = 310 mm?

\Y,[e](e] o] F!
— .5u PPC 604 = 196 mm?
— .35u PPC 604e = 148/96mm?
— .25u PPC 604e = 47.3 mm?
— .81u, G4 7410, 10.5M T’s, 6-metal = 62mm?

* Transmeta
— Crusoe TM5600
— .18u, 5-copper, 36.8M T’s = 88 mm?

Final Chip Cost vs. Size

Final Cost
$000
SR
£ 7040

$600 B Testing Cost
Die Cost

Final Test Yield

3401 |
$400
$ 300
$200
$100

0.25 050 075 100 125 150 1.75 2.00
Length of side of square die in cm

Turning Cost into Price

Implication:

2% added to price with an increase

of ¥ in component cost. (this has
come down from 8x in 1990)

Y

Gross Margin: company overhead -
R&D, Sales + -
Profit = what market will bear

GIoss ¥ Grass
Margin Margin

Direct Cosls L Dlrect Casis ! Direct Costs

17%

Cam panent 3% Component o Lemponenl 7 Lompenenl

b 20 Tor d +33% for 4 b +33% for 4
*._Direct Costs e \. Gross Margin ~ H“--—A'.rg. Discount /

Direct Costs: labor costs, purchasing components

Outline

Performance

Measuring Performance

Several kinds of time”

— stopwatch - it’s what you see but is dependent on
o load
o |/O delays
o OS overhead

— CPU time - time spent computing your program
o factors out time spent waiting for 1/0O delays
e but includes the OS + your program

— Hence system CPU time, and user CPU time

OS Time

Unix time command reports

27.2U 11.1s 56.6 68%

— 27.2 seconds of user CPU time
— 11.1 seconts of system CPU time
— 56.6 seconds total elapsed time

— % of elapsed time that is user + system CPU time
o tells you how much time you spent waiting as a %

Benchmarks

Toy benchmarks
— quicksort, 8-queens
o best saved for intro. to programming homeworks

Synthetic benchmarks
most commonly used since they try to mimic real programs
problem is that they don’t - each suite hasit’s own bias
no user realy runs them
they aren’t even pieces of real programs

— they may reside in cache & don’t test memory performance

At the very least you must understand what the
benchmark code is in order to understand what it
might be measuring

Benchmarks

Lots of suites - examples
— Dhrystone - tells you how well integers work
— Loops and Linpack - mostly floating point matrix frobbing
— PC specific
e Business Winstone - composite of browser and office apps

o CC Winstone - content creation version - Photoshop, audio editing etc.

e Winbench - collection of subsystem tests that target CPU, disk, and video
subsystems

SPEC2000 (text bias lies here - see table 1.12 for detalls)
— 4th generation - primarily designed to test CPU performance

CINT2000 - 11 integer benchmarks
CFP2000 - 14 floating point benchmarks
SPECviewperf - graphics performance of systems using OpenGL
SPECapc - several large graphics apps
SPECSFS - file system test
SPECWeb - web server test

More Benchmarks

TPC

— transaction processing council

— many variants depending on transaction complexity
o TPC-A: simple bank teller transaction style
o TPC -C: complex database query
e TPC-H: decision support
o TPC-R: decision support but with stylized queries (faster than -H)
o TPC-W: web server

For embedded systems EEMBC “embassy”
— 35kernélsin 5 classes

16 automotive/industrial - arithmetic, pointer chasing, table lookup, bit
manip, ...

5 consumer - JPEG codec, RGB conversion, filtering

3 networking - shortest path, IP routing, packet classification

4 office automation - graphics and text processing

6 telecommunications - DSP style autocorrelation, FFT, decode, FIR filter, ...

Other Problems

Machine A Machine B Machine C
Program 1 (secs)
Program 2 (secs)
Total Time (secs)

Which is better?
By how much?
Are the programs equally important?

Some Aggregate Job Mix Options

O Arithmetic Mean - provides a simple average

s M -
— Imei
Jlr_‘=£'
* doesn't account for weight - all programs treated equal
O Or if rate (as opposed to time) is given - use the
Harmonic Mean

n

T
Z Eateq
i=1

* still independent of weight

Weighted Variants

O Weighted arithmetic mean

n
% Weighti x Timei
i=1

* better but beware the dominant program time

O Weighted harmonic mean

Foven - v

Welzhti
Y =
= _ Patei

* same J:Il":ll'.':-]'c."l'l.] - 1o SUrprise

Normalized Time Metrics

O Geometric Mean

| M
0l]_[Execution Time Eatoi

Ni=1

O Has the nice property that:
* ratio of the means = Mean of the ratios

* independent of running times of individual programs
O Better than arithmetic means but

* still do not form accurate prediction models
O 5till have to remain cautious

* e.g. vou can get conflicting answers depending on which
reference machine you choose

Amdahl’s Law

defines speedup gained from a particular feature

Execution fime without using the enhancement
Execution time uiing the enhancement

Speedup =

note XE()-time = 1/Performance so another variant is possible

depends on 2 factors

+ fraction of original computation time that can take advantage of the
enhancement - e.g. the commonality of the feature

+ level of improvement gained by the feature

Amdahl's law

i i =
Speedup o o -
Vera chtmnenhnnced

(1 -Fraction enhanced = Speedup enhanced

Simple Example

Important Application:
FP instructions account for 50%
FPSORT 20%
Other 30%

Designers say same cost to speedup:
FPSORT by 40x FP by 2x Other by 8x

Where should you invest?

« Mote: it will be useful to have a calculator for exams

O Straightforward plug in the numbers &
compare BEUT what's yvour guess??

And the Answer Is?
0O FPSOQRT

1
Fraction

=g i _ =
Speedup
enhanced FFSQRT

(1-Fraction

o LrP

|a|1I1ru1-:n.'e--:l-J N Speedup

enhanced

SpeedupFP SR N 1.333

L'l—I].E'J—I:l'

O OTHER

Speedupﬂmﬂ_ = 1 1.354

l'l—I].S'J—I:l"!'

)

O Close but other wins

Performance Trends

_—/

100
Supercomputers

10 |~
3
= Mainframes
% Microprocessors
S Minicomputers
o 1 S

/
0.1 | \ | | \ |

1965 1970 1975 1980 1985 1990 1995

What do we have Today?

Processor Performance
(1.35X before, 1.55X now)

1.54X/yr

1200

1000

800

87 88 89 90 91 92 93 94 95 96 97

63

Will Moore’s Law Continue?

Search “Moore’s Law” on the Internet, and you
will see a lot of predictions and arguments.

Don’t bet your house on it (or any technology

stock)...

Definition: Performance

Performance is in units of things per sec
—bigger is better

If we are primarily concerned with response time

performance(x) = 1
execution_time(x)

"Xisntimesfaster than Y" means

Performance(X) Execution_time(Y)

Performance(Y) Execution_time(X)

65

Metrics of Performance

Application Answers per day/month

Programming
Language

Compiler

(millions) of Instructions per second: MIPS
[IsAl (millions) of (FP) operations per second: MFLOP/s

Data gx\ml Megabytes per second

Function Units
Transistors Wires Pins Cycles per second (clock rate)

A,

Components of Performanc \

CPU time

= Seconds = Instructions x Cycles x Seconds

Program Program

Instruction Cycle

Inst Count

CPI

Clock Rate

Program

X

Compiler

X

(X)

Inst. Set.

X

X

Organization

Technology

What's a Clock Cycle?

_ | 4)
Latch combinational

o logic
register

— 1§ Y

State changes as Clock “ticks”
Old days: 10 levels of gates

Today: determined by numerous time-of-flight issues +
gate delays
— clock propagation, wire lengths, drivers

Integrated Approach

What really matters is the functioning of the
complete system, l.e. hardware, runtime system,
compiler, and operating system

In networking, this is called the “End to End
argument’

Computer architecture Is not just about transistors,
Individual instructions, or particular
Implementations

Original RISC projects replaced complex
Instructions with a compiler + simple instructions

How do you turn more stuff into more
performance?

Do more things at once
Do the things that you do faster

Beneath the ISA illusion....

Pipelined Instruction Execution

Time (clock cycles)

ECYcIe IECYcIe 2 ECycIe 3 Cycle 4§CY°|3 5 ECycIe 6§CYC|2 7

Ifetch :[_ EI:[DMem |-
Ifetch :[B
-3

Limits to pipelining

Maintain the von Neumann “illusion” of one
Instruction at a time execution

prevent next instruction from executing
during Iits designated clock cycle

— . attempt to use the same hardware to do two
different things at once

— . Instruction depends on result of prior instruction
still in the pipeline
— . Caused by delay between the fetching of

Instructions and decisions about changes in control flow
(branches and jumps).

Transistors

A take on Moore’s Law

Bit-level parallelism Instruction-level Thread-level (?)
100,000,000
10,000,000 =
1,000,000 =
- # is0386
180286
100,000) . * R3000
- 4 R2000
10,000
1.000 | | | | | |
1970 1975 1980 1985 1990 1995 2000 2005

73

Progression of ILP

1st generation RISC - pipelined
— Full 32-bit processor fit on achip => issue amost 1 IPC
o Need to access memory 1+x times per cycle
— Floating-Point unit on another chip
— Cache controller athird, off-chip cache
— 1 board per processor =» multiprocessor systems

2"d generation: superscalar
— Processor and floating point unit on chip (and some cache)
|ssuing only one instruction per cycle uses at most half
Fetch multiple instructions, issue couple
e Growsfrom2to4to8...
How to manage dependencies among all these instructions?
Where does the parallelism come from?

VLIW

— Expose some of the ILP to compiler, allow it to schedule
Instructions to reduce dependences

Modern ILP

Dynamically scheduled, out-of-order execution

Current microprocessor fetch 10s of instructions per
cycle

Pipelines are 10s of cycles deep
=> many 10s of instructions in execution at once

Grab a bunch of instructionsdetermine all their
dependences, eliminate dep’s wherever possible,
throw them all into the execution unit, let each one
move forward as its dependences are resolved

Appears as if executed sequentially

On a trap or interrupt, capture the state of the
machine between instructions perfectly

Huge complexity

Multiple processor easily fit on a chip
Every major microprocessor vendor has gone
to multithreading

Thread: loci of control, execution context

Fetch instructions from multiple threads at once,
throw them all into the execution unit

Intel: hyperthreading, Sun:

Concept has existed in high performance computing
for 20 years (or isit 40?7 CDC6600)

Vector processing
— Each instruction processes many distinct data
- Ex: MMX

Raise the level of architecture — many
processors per chip

Memory Channel

Chip—Multiprocessor

Figure 1. Chip-multiprocessor model.

Programs make decisions as they go
— Conditionals, loops, calls
— Trandate into branches and jumps (1 of 5 instructions)

How do you determine what instructions for fetch when the
ones before it haven’t executed?

— Branch prediction

— Lot'sof clever machine structures to predict future based on history

— Machinery to back out of mis-predictions

Execute all the possible branches
— Likely to hit additional branches, perform stores

—gpecul ative threads

—What can hardware do to make programming (with
performance) easier?

Numbers and Pictures

Numbers talk!

— What is a quantitative approach?

— How to collect VALID data?

— How to analyze data and extract useful information?

— How to derive convincing arguments based on numbers?

Pictures

— A good picture = athousand words

— Good for showing trends and comparisons

— High-level managers have no time to read numbers
— Business people want pictures and charts

The Memory Abstraction

Association of <name, value> pairs
— typically named as byte addresses
— often values aligned on multiples of size

Sequence of Reads and Writes
Write binds a value to an address

Read of addr returns most recently written value
bound to that address

command (R/W) >

address (hame) >

<€

done

Processor-DRAM Memory Gap (latency)

- »— Proc
- 607%/yr.
(2X/1.5yr
Processor)}Memory
Performance Gap:
(grows 50% / year)

d

100

=
o

Q
O
-
)
S
S
o
Y-
Y
(a

(2X/10
yrs)

Levels of the Memory Hierarchy

Capacity
Access Time Stagin
Cost Xfer Unit

CPU Registers .
100s Bytes ReglsTer's

¢« Isns Instr. Operands Prog./compiler
. 1-8 bytes

Cache
10s-100s K Bytes Cache
~1 ns

$1s/ MByte cache cntl

. Blocks 8-128 bytes
Main Memory

M Bytes

100ns- 300ns Memory

$< 1/ MByte 0S

Pages 512-4K bytes

Disk
10s G Bytes, 10 ms .
(10,000,000 ns) Disk
$0.001/ MByte

: user/operator
I Files Mbytes

Tape
infinite Tape
sec-min
$0.0014/ MByte

The Principle of Locality

The Principle of Locality:

— Program access arelatively small portion of the address space at any instant of
time.

Two Different Types of Locality:

- (Locality in Time): If an item is referenced, it will tend to be
referenced again soon (e.g., loops, reuse)

(Locality in Space): If an item is referenced, items whose
addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

Last 30 years, HW relied on locality for speed

The Cache Design Space

Several interacting dimensions
_ cache size Cacre Size
block size
associativity
replacement policy
write-through vs write-back

Associativity

The optimal choice is a compromise Block Size

— depends on access characteristics
o workload
o Use (I-cache, D-cache, TLB)

— depends on technology / cost

Simplicity often wins

Factor Factor B

Less More

83

Modern microprocessors are almost all cache
McKinley Floorplan

== &

0.18 um, Al process 0 ﬂfﬁi&:liﬁﬁhﬁ F]aa‘t_r_lg Pu[inj:]JJn‘;,rt i
200MHz system clock A I
1GHz core clock g |
Core clocking:
« 260 mm?
1 primary driver
5 repeaters
33 delay SLCBs
18k gated buffers

157k clocked |
latches L3 Ca,che

3 LA It 5" | T p——
| e g [T

21.0 mm

[9.5mm

Maintaining the illusion of sequential access to
memory

KN

$
_ Mem Mem -
Interconnection network
Interconnection network
Mem Mem

System Organization:
It's all about communication

Busses

Em——

adapters

T T

Controllers

Disks

Displays { Networks
Keyboards

I/O Devices:

Moore’s law (more and more trans) is all about volume and
regularity

What if you could pour nano-acres of unspecific digital logic
“stuff” onto silicon

— Do anything with it. Very regular, large volume
Field Programmable Gate Arrays

— Chipis covered with logic blocks w/ FFs, RAM blocks, and interconnect
— All three are “programmabl e’ by setting configuration bits
— These are huge?

Can each program have its own instruction set?
Do we compile the program entirely into hardware?

“Bell’'s Law” — new class per decade

* Enabled by technological opportunities
« Smaller, more numerous and more intimately connected
* Brings in a new kind of application

* Used in many ways not previously imagined

Complete computing systems can be tiny and cheap
System on a chip

Resource efficiency
— Real-estate, power, pins, ...

The Process of Design

Architecture is an iterative process:
- Searching the space of possible designs
- At all levels of computer systems

/I\
/\

Creativity ___

v Y Good Ideas
¥ Mediocre Ideas

Bad Ideas

Amdahl’s Law

ExTime,,, = ExTime, g4 x{(l— Fracﬁonenhamed)+

Fraction_ ;nced }
speedu':"enhanced

ExTime 1
Speedupover‘all = od —

ExTime,.,

Fraction_ jnced

speedupenhanced

(1- Fraction, nanced) +

1
1 - Fraction panced)

Speedupaximum = (

Computer Architecture Topics

Disks, WORM, Tape RAID

Emerging Technologies
DRAM Interleaving
Bus protocols

Coherence,
Bandwidth,
Latency

Network
Communication

L1 Cache Addressing,
Protection,
Instruction Set Architectur Exception Handling

Pipelining, Hazard Resolution,
Superscalar, Reordering,
Prediction, Speculation,
Vector, Dynamic Compilation

Other Processors

Computer Architecture Topics

Shared Memory,
Message Passing,
Data Parallelism

Network Interfaces

Processor-Memory-Switch Topologies .
Routing,
Bandwidth,

Latency,
Reliability

Course Focus

Understanding the design techniques, machine structures,
technology factors, evaluation methods that will determine
the form of computers in 21st Century

Parallelism

Technology Programming

\ / /Languages
Applications——___ ~Interface Design

Computer Architecture: (ISA)
* Instruction Set Design
* Organization

- Hardware/Software Boundary | ~——Compilers

Operating / Measurement & Histor
Systems Evaluation 4

