
2

Instruction set architecture
(taking MIPS ISA as an example)
Operands
– Register operands and their organization
– Memory operands, data transfer
– Immediate operands

Instruction format
Operations
– Arithmetic and logical
– Decision making and branches
– Jumps for procedures

3

Computer Architecture =
Instruction Set Architecture

+ Machine Organization

“... the attributes of a [computing] system as
seen by the [____________ language]
programmer, i.e. the conceptual structure
and functional behavior …”

assembly

What are specified?

4

Operators: +, -, *, /, % (mod), ...
– 7/4==1, 7%4==3

Operands:
– Variables: lower, upper, fahr, celsius
– Constants: 0, 1000, -17, 15.4

Assignment statement:
variable = expression

– Expressions consist of operators operating on operands,
e.g.,
celsius = 5*(fahr-32)/9;
a = b+c+d-e;

5

a = b + 5;

load $r1, M[b]
load $r2, 5
add $r3, $r1, $r2
store $r3, M[a]

Register
Memory

Constant
Operands

Operator (op code)

Statement

6

Organization of programmable storage
– registers
– memory: flat, segmented
– Modes of addressing and accessing data items and

instructions
Data types and data structures
– encoding and representation (next chapter)

Instruction formats
Instruction set (or operation code)
– ALU, control transfer, exceptional handling

7

Instruction categories:
– Load/Store
– Computational
– Jump and Branch
– Floating Point
– Memory Management
– Special

$r0 - $r31

PC
HI
LO

OP

OP

OP

$rs $rt $rd sa funct

$rs $rt immediate

jump target

3 Instruction Formats: all 32 bits wide

Registers

8

Instruction set architecture
(using MIPS ISA as an example)
Operands
– Register operands and their organization
– Memory operands, data transfer
– Immediate operands

Instruction format
Operations
– Arithmetic and logical
– Decision making and branches
– Jumps for procedures

9

Unlike high-level language, assembly don’t use variables
=> assembly operands are registers
– Limited number of special locations built directly into the

hardware
– Operations are performed on these

Benefits:
– Registers in hardware => faster than memory
– Registers are easier for a compiler to use

e.g., as a place for temporary storage

– Registers can hold variables to reduce memory traffic and
improve code density (since register named with fewer bits than
memory location)

32 registers, each is 32 bits wide
– Why 32? smaller is faster
– Groups of 32 bits called a word in MIPS
– Registers are numbered from 0 to 31
– Each can be referred to by number or name
– Number references:

$0, $1, $2, … $30, $31

– By convention, each register also has a name to make it easier to
code, e.g.,
$16 - $22 $s0 - $s7 (C variables)
$8 - $15 $t0 - $t7 (temporary)

32 x 32-bit FP registers (paired DP)
Others: HI, LO, PC

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address (HW)

Fig. 2.18

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

12

CPU

Registers

$0

$31

Arithmetic
unit

Multiply
divide

Lo Hi

Coprocessor 1 (FPU)

Registers

$0

$31

Arithmetic
unit

Registers

BadVAddr

Coprocessor 0 (traps and memory)

Status

Cause

EPC

Memory

Fig. A.10.1

13

Syntax of basic MIPS arithmetic/logic
instructions:

1 2 3 4

add $s0,$s1,$s2 # f = g + h

1) operation by name
2) operand getting result (“destination”)
3) 1st operand for operation (“source1”)
4) 2nd operand for operation (“source2”)

Each instruction is 32 bits
Syntax is rigid: 1 operator, 3 operands
– Why? Keep hardware simple via regularity

14

How to do the following C statement?

f = (g + h) - (i + j);

use intermediate temporary register t0

add $s0,$s1,$s2# f = g + h
add $t0,$s3,$s4# t0 = i + j
sub $s0,$s0,$t0# f=(g+h)-(i+j)

Accumulator (1 register):
1 address: add A //acc ← acc + mem[A]
1+x address: addx A //acc ← acc + mem[A+x]

Stack:
0 address: add //tos ← tos + next

General Purpose Register:
2 address: add A,B //EA(A) ← EA(A) + EA(B)
3 address: add A,B,C //EA(A) ← EA(B) + EA(C)

Load/Store: (a special case of GPR)
3 address: add $ra,$rb,$rc //$ra ← $rb + $rc

load $ra,$rb //$ra ← mem[$rb]
store $ra,$rb //mem[$rb] ← $ra

Code for C = A + B for four register organizations:
Stack Accumulator Register Register

(reg-mem) (load-store)
Push A Load A Load $r1,A Load $r1,A
Push B Add B Add $r1,B Load $r2,B
Add Store C Store C,$r1 Add $r3,$r1,$r2
Pop C Store C,$r3

=> Register organization is an attribute of ISA!

Comparison: Byte per instruction? Number of instructions? Cycles per instruction?

Since 1975 all machines use GPRs

Register Organization Affects Programming

17

Instruction set architecture
(using MIPS ISA as an example)
Operands
– Register operands and their organization
– Memory operands, data transfer
– Immediate operands

Instruction format
Operations
– Arithmetic and logical
– Decision making and branches
– Jumps for procedures

18

C variables map onto registers; what about large
data structures like arrays?
– Memory contains such data structures

But MIPS arithmetic instructions operate on
registers, not directly on memory
– Data transfer instructions (lw, sw, ...) to transfer

between memory and register
– A way to address memory operands

19

To transfer a word of data, need to specify two
things:
– Register: specify this by number (0 - 31)
– Memory address: more difficult

Think of memory as a 1D array
Address it by supplying a pointer to a memory address
Offset (in bytes) from this pointer
The desired memory address is the sum of these two
values, e.g., 8($t0)
Specifies the memory address pointed to by the value in
$t0, plus 8 bytes (why “bytes”, not “words”?)
Each address is 32 bits

20

Load Instruction Syntax:
1 2 3 4

lw $t0,12($s0)
1) operation name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory

Example: lw $t0,12($s0)
– lw (Load Word, so a word (32 bits) is loaded at a time)
– Take the pointer in $s0, add 12 bytes to it, and then load the value from the

memory pointed to by this calculated sum into register $t0
Notes:
– $s0 is called the base register, 12 is called the offset
– Offset is generally used in accessing elements of array: base register points to the

beginning of the array

21

Also want to store value from a register into
memory
Store instruction syntax is identical to Load
instruction syntax
Example: sw $t0,12($s0)
– sw (meaning Store Word, so 32 bits or one word are

loaded at a time)
– This instruction will take the pointer in $s0, add 12

bytes to it, and then store the value from register $t0
into the memory address pointed to by the calculated
sum

22

Compile by hand using registers:
$s1:g, $s2:h, $s3:base address of A

g = h + A[8];

What offset in lw to select an array element A[8] in a C program?
– 4x8=32 bytes to select A[8]
– 1st transfer from memory to register:

lw $t0,32($s3) # $t0 gets A[8]
– Add 32 to $s3 to select A[8], put into $t0

Next add it to h and place in g
add $s1,$s2,$t0 # $s1 = h+A[8]

23

Called the “address” of a word
Computers need to access 8-bit bytes as well as words (4
bytes/word)
Today, machines address memory as bytes, hence word addresses
differ by 4
– Memory[0], Memory[4], Memory[8], …
– This is also why lw and sw use bytes in offset

Every word in memory has an address, similar to an index in an
array
Early computers numbered words like C numbers elements of an
array:

– Memory[0], Memory[1], Memory[2], …

24

MIPS requires that all words start at addresses that
are multiples of 4 bytes

0 1 2 3
Aligned

Not
Aligned

msb lsb
3 2 1 0

little endian byte
0

0 1 2 3
big endian byte 0

Byte order: numbering of bytes within a word
Big Endian: address of most significant byte =
word address (xx00 = Big End of word)
– IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Little Endian: address of least significant byte =
word address (00xx = Little End of word)
– Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

Instruction Comment
sw $t3,500($t4) Store word
sh $t3,502($t2) Store half
sb $t2,41($t3) Store byte
lw $t1, 30($t2) Load word
lh $t1, 40($t3) Load halfword
lhu $t1, 40($t3) Load halfword unsigned
lb $t1, 40($t3) Load byte
lbu $t1, 40($t3) Load byte unsigned
lui $t1, 40 Load Upper Immediate

(16 bits shifted left by 16)

What does it mean?

27

lb $t1, 0($t0) F7 Sign-extended

lbu $t2, 0($t0) F7

$t0

$t1

$t2

F7 F012 …… F7F7

FFFFFF

000000 Zero-extended

28

What if more variables than registers?
– Compiler tries to keep most frequently used variables in

registers
– Writes less common variables to memory: spilling

Why not keep all variables in memory?
– Smaller is faster:

registers are faster than memory
– Registers more versatile:

MIPS arithmetic instructions can read 2 registers, operate on
them, and write 1 per instruction
MIPS data transfers only read or write 1 operand per
instruction, and no operation

29

Instruction set architecture
(using MIPS ISA as an example)
Operands
– Register operands and their organization
– Memory operands, data transfer, and addressing
– Immediate operands (Sec 2.3)

Instruction format
Operations
– Arithmetic and logical
– Decision making and branches
– Jumps for procedures

Small constants used frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

Solutions? Why not?
– put 'typical constants' in memory and load them
– create hard-wired registers (like $zero) for constants

MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

Design Principle: Make the common case fast Which format?

31

Immediate: numerical constants
– Often appear in code, so there are special instructions for them
– Add Immediate:

f = g + 10 (in C)
addi $s0,$s1,10 (in MIPS)

where $s0,$s1 are associated with f,g
– Syntax similar to add instruction, except that last argument is a

number instead of a register
– One particular immediate, the number zero (0), appears very

often in code; so we define register zero ($0 or $zero) to
always 0

– This is defined in hardware, so an instruction like
addi $0,$0,5 will not do anything

32

Instruction set architecture
(using MIPS ISA as an example)
Operands
– Register operands and their organization
– Memory operands, data transfer
– Immediate operands

Instruction format (Sec. 2.4.~2.9)
Operations
– Arithmetic and logical
– Decision making and branches
– Jumps for procedures

33

Currently we only work with words (32-bit blocks):
– Each register is a word
– lw and sw both access memory one word at a time

So how do we represent instructions?
– Remember: Computer only understands 1s and 0s, so

“add $t0,$0,$0” is meaningless to hardware
– MIPS wants simplicity: since data is in words, make

instructions be words…

34

One instruction is 32 bits
=> divide instruction word into “fields”
– Each field tells computer something about instruction

We could define different fields for each
instruction, but MIPS is based on simplicity, so
define 3 basic types of instruction formats:
– R-format: for register
– I-format: for immediate, and lw and sw (since the

offset counts as an immediate)
– J-format: for jump

35

6 5 5 5 65
opcode rs rt rd functshamt

Define the following “fields”:

– opcode: partially specifies what instruction it is (Note: 0 for all R-Format
instructions)

– funct: combined with opcode to specify the instruction
Question: Why aren’t opcode and funct a single 12-bit field?

– rs (Source Register): generally used to specify register containing first
operand

– rt (Target Register): generally used to specify register containing second
operand

– rd (Destination Register): generally used to specify register which will
receive result of computation

36

Notes about register fields:
– Each register field is exactly 5 bits, which means that it

can specify any unsigned integer in the range 0-31.
Each of these fields specifies one of the 32 registers by
number.

Final field:
– shamt: contains the amount a shift instruction will

shift by. Shifting a 32-bit word by more than 31 is
useless, so this field is only 5 bits

– This field is set to 0 in all but the shift instructions

37

MIPS Instruction:
add $8,$9,$10

– opcode = 0 (look up in table)
– funct = 32 (look up in table)
– rs = 9 (first operand)
– rt = 10 (second operand)
– rd = 8 (destination)
– shamt = 0 (not a shift)

000000 01001 01010 01000 10000000000
binary representation:

called a Machine Language Instruction

38

6 5 5 16
opcode rs rt immediate

Define the following “fields”:

– opcode: uniquely specifies an I-format instruction
– rs: specifies the only register operand
– rt: specifies register which will receive result of computation

(target register)
– addi, slti, immediate is sign-extended to 32 bits, and treated

as a signed integer
– 16 bits can be used to represent immediate up to 216 different

values
Key concept: Only one field is inconsistent with R-format.
Most importantly, opcode is still in same location

39

MIPS Instruction:
addi $21,$22,-50

– opcode = 8 (look up in table)
– rs = 22 (register containing operand)
– rt = 21 (target register)
– immediate = -50 (by default, this is decimal)

8 22 21 -50

001000 10110 10101 1111111111001110

decimal representation:

binary representation:

40

MIPS Instruction:
lw $t0,1200($t1)

– opcode = 35 (look up in table)
– rs = 9 (base register)
– rt = 8 (destination register)
– immediate = 1200 (offset)

35 9 8 1200

100011 01001 01000 0000010010110000

decimal representation:

binary representation:

41

What if immediate is too big to fit in immediate field?
Load Upper Immediate:

lui register, immediate

– puts 16-bit immediate in upper half (high order half) of
the specified register, and sets lower half to 0s

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

0000 … 0000

LUI R1

R1

42

Computers built on 2 key principles:
1) Instructions are represented as numbers
2) Thus, entire programs can be stored in memory to be read or

written just like numbers (data)
One consequence: everything addressed
– Everything has a memory address: instructions, data

both branches and jumps use these

– One register keeps address of the instruction being executed:
“Program Counter” (PC)

Basically a pointer to memory: Intel calls it Instruction Address Pointer,
which is better

– A register can hold any 32-bit value. That value can be a (signed)
int, an unsigned int, a pointer (memory address), etc.

43

Instruction set architecture
(using MIPS ISA as an example)
Operands
– Register operands and their organization
– Memory operands, data transfer, and addressing
– Immediate operands

Instruction format
Operations
– Arithmetic and logical (Sec 2.5)
– Decision making and branches
– Jumps for procedures

Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands;
subtract sub $1,$2,$3 $1 = $2 - $3 3 operands;
add immediate addi $1,$2,100 $1 = $2 + 100 + constant;

45

Up until now, we’ve done arithmetic (add, sub, addi)
and memory access (lw and sw)
All of these instructions view contents of register as a
single quantity (such as a signed or unsigned integer)
New perspective: View contents of register as 32 bits
rather than as a single 32-bit number
Since registers are composed of 32 bits, we may want to
access individual bits rather than the whole.
Introduce two new classes of instructions:
– Logical Operators
– Shift Instructions

46

Logical instruction syntax:
1 2 3 4
or $t0, $t1, $t2

1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or immediate (numerical constant)

Instruction names:
– and, or: expect the third argument to be a register
– andi, ori: expect the third argument to be immediate

MIPS Logical Operators are all bitwise, meaning that bit 0 of the
output is produced by the respective bit 0’s of the inputs, bit 1 by the
bit 1’s, etc.

47

and operator can be used to set certain portions of a bit-string to 0s,
while leaving the rest alone => mask

Example:
1011 0110 1010 0100 0011 1101 1001 1010
0000 0000 0000 0000 0000 1111 1111 1111

The result of anding these two is:
0000 0000 0000 0000 0000 1101 1001 1010

In MIPS assembly: andi $t0,$t0,0xFFF

Mask:

48

or operator can be used to force certain bits of a
string to 1s

For example,
$t0 = 0x12345678, then after

ori $t0, $t0, 0xFFFF
$t0 = 0x1234FFFF

(e.g. the high-order 16 bits are untouched, while
the low-order 16 bits are set to 1s)

49

Shift Instruction Syntax:
1 2 3 4
sll $t2,$s0,4

1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant)

MIPS has three shift instructions:
– sll (shift left logical): shifts left, fills empties with 0s
– srl (shift right logical): shifts right, fills empties with 0s
– sra (shift right arithmetic): shifts right, fills empties by sign extending

50

Move (shift) all the bits in a word to the left or right by a number of
bits, filling the emptied bits with 0s.
Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

Example: shift left by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000

51

Example: shift right arithmetic by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

Example: shift right arithmetic by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

52

Suppose we want to get byte 1 (bit 15 to bit 8) of a word in
$t0. We can use:

sll $t0,$t0,16
srl $t0,$t0,24

0001 0010 0011 0100 0101 0110 0111 1000

0101 0110 0111 1000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0101 0110

53

Shift for multiplication: in binary
– Multiplying by 4 is same as shifting left by 2:

112 x 1002 = 11002

10102 x 1002 = 1010002

– Multiplying by 2n is same as shifting left by n

Since shifting is so much faster than multiplication (you
can imagine how complicated multiplication is), a good
compiler usually notices when C code multiplies by a
power of 2 and compiles it to a shift instruction:

a *= 8; (in C)
would compile to:
sll $s0,$s0,3 (in MIPS)

Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, zero exten.
or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, zero exten.
shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)

55

All instructions have allowed us to manipulate data.
So we’ve built a calculator.
In order to build a computer, we need ability to
make decisions…

56

Instruction set architecture
(using MIPS ISA as an example)
Operands
– Register operands and their organization
– Memory operands, data transfer, and addressing
– Immediate operands

Instruction format
Operations
– Arithmetic and logical
– Decision making and branches (Sec. 2.6, 2.9)
– Jumps for procedures

57

Decision Making: Branches

Decision making: if statement, sometimes combined with goto and labels

beq register1, register2, L1(beq: Branch if equal)

Go to the statement labeled L1 if the value in register1 equals the value
in register2

bne register1, register2, L1(bne: Branch if not equal)

Go to the statement labeled L1 if the value in register1 does not equal
the value in register2

beq and bne are termed Conditional branches

What instruction format is beq and bne?

58

beq register1, register2, L1

Decision instruction in MIPS:
beq register1, register2, L1
“Branch if (registers are) equal”
meaning :
if (register1==register2) goto L1

Complementary MIPS decision instruction
bne register1, register2, L1
“Branch if (registers are) not equal”
meaning :
if (register1!=register2) goto L1

These are called conditional branches

59

j label

MIPS has an unconditional branch:
j label

– Called a Jump Instruction: jump directly to the given label without testing any
condition

– meaning :
goto label

Technically, it’s the same as:
beq $0,$0,label

since it always satisfies the condition
It has the j-type instruction format

60

Compiling an If statement

If (i == j) go to L1;

f = g + h;

L1: f = f-i;

f, g, h, i, and j correspond to five registers $s0 through $s4.

beq $s3, $s4, L1 #go to L1 if i equals j

add $s0, $s1, $s2 # f = g+h (skipped if i equals j)

L1: sub $s0, $s0, $s3 # f = f –i (always executed)

Instructions must have memory addresses

Label L1 corresponds to address of sub instruction

61

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

Compile by hand
if (i == j) f=g+h;
else f=g-h;

Use this mapping:
f: $s0, g: $s1, h: $s2,
i: $s3, j: $s4

Final compiled MIPS code:
beq $s3,$s4,True # branch i==j
sub $s0,$s1,$s2 # f=g-h(false)
j Fin # go to Fin

True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Note: Compiler automatically creates labels to handle decisions
(branches) appropriately

62

Until now, we’ve only tested equalities (== and != in C), but
general programs need to test < and >
Set on Less Than:

slt reg1,reg2,reg3
meaning :

if (reg2 < reg3)
reg1 = 1; # set

else reg1 = 0; # reset
Compile by hand: if (g < h) goto Less;
Let g: $s0, h: $s1

slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # goto Less if $t0!=0

MIPS has no “branch on less than” => too complex

63

C
M
I
P
S

There is also an immediate version of slt to test against constants:
slti

if (g >= 1) goto Loop
Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if $s0<1 (g<1)
beq $t0,$0,Loop # goto Loop if $t0==0

Unsigned inequality: sltu, sltiu
$s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex
slt $t0, $s0, $s1 => $t0 = ?
sltu $t1, $s0, $s1 => $t1 = ?

64

opcode rs rt immediate

Use I-format:

– opcode specifies beq or bne
– rs and rt specify registers to compare

What can immediate specify? PC-relative addressing
– Immediate is only 16 bits, but PC is 32-bit

=> immediate cannot specify entire address
– Loops are generally small: < 50 instructions

Though we want to branch to anywhere in memory, a single branch only need to
change PC by a small amount

– How to use PC-relative addressing
16-bit immediate as a signed two’s complement integer to be added to the PC if
branch taken
Now we can branch +/- 215 bytes from the PC ?

65

Immediate specifies word address
– Instructions are word aligned (byte address is always a multiple of

4, i.e., it ends with 00 in binary)
The number of bytes to add to the PC will always be a multiple of 4

– Specify the immediate in words (confusing?)
– Now, we can branch +/- 215 words from the PC (or +/- 217 bytes),

handle loops 4 times as large

Immediate specifies PC + 4
– Due to hardware, add immediate to (PC+4), not to PC
– If branch not taken: PC = PC + 4
– If branch taken: PC = (PC+4) + (immediate*4)

66

MIPS Code:
Loop: beq $9,$0,End

add $8,$8,$10
addi $9,$9,-1
j Loop

End:

Branch is I-Format:

opcode = 4 (look up in table)
rs = 9 (first operand)
rt = 0 (second operand)
immediate = ???
– Number of instructions to add to (or subtract from) the PC, starting at the

instruction following the branch
=> immediate = 3

opcode rs rt immediate

67

MIPS Code:
Loop: beq $9,$0,End

add $8,$8,$10
addi $9,$9,-1
j Loop

End:

decimal representation:

binary representation:

4 9 0 3

000100 01001 00000 0000000000000011

68

For branches, we assumed that we won’t want to
branch too far, so we can specify change in PC.
For general jumps (j and jal), we may jump to
anywhere in memory.
Ideally, we could specify a 32-bit memory address
to jump to.
Unfortunately, we can’t fit both a 6-bit opcode and
a 32-bit address into a single 32-bit word, so we
compromise.

69

Define “fields” of the following number of bits each:

As usual, each field has a name:

Key concepts:
– Keep opcode field identical to R-format and I-format for

consistency
– Combine other fields to make room for target address

Optimization:
– Jumps only jump to word aligned addresses

last two bits are always 00 (in binary)
specify 28 bits of the 32-bit bit address

6 bits 26 bits

opcode target address

70

Where do we get the other 4 bits?
– Take the 4 highest order bits from the PC
– Technically, this means that we cannot jump to anywhere in

memory, but it’s adequate 99.9999…% of the time, since
programs aren’t that long

– Linker and loader avoid placing a program across an address
boundary of 256 MB

Summary:
– New PC = PC[31..28] || target address (26 bits) || 00
– Note: II means concatenation

4 bits || 26 bits || 2 bits = 32-bit address
If we absolutely need to specify a 32-bit address:
– Use jr $ra # jump to the address specified by $ra

Instruction Example Meaning
branch on equal beq $1,$2,25 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
branch on not eq. bne $1,$2,25 if ($1!= $2) go to PC+4+100

Not equal test; PC relative
set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.
set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp..
jump j 10000 go to 10000 26-bit+4-bit of PC

72

Instruction set architecture
(using MIPS ISA as an example)
Operands
– Register operands and their organization
– Immediate operands
– Memory operands, data transfer, and addressing

Instruction format
Operations
– Arithmetic and logical
– Decision making and branches
– Jumps for procedures (Sec. 2.7)

73

Procedures

•Procedure/Subroutine
A set of instructions stored in memory which perform a set of operations
based on the values of parameters passed to it and returns one or more
values

•Steps for execution of a procedure or subroutine
The program (caller) places parameters in places where the procedure

(callee) can access them

The program transfers control to the procedure

The procedure gets storage needed to carry out the task

The procedure carries out the task, generating values

The procedure (callee) places values in places where the program (caller)
can access them

The procedure transfers control to the program (caller)

74

int f1 (inti, intj, intk, intg)
{ ::::

return 1; callee
}

int f2 (ints1, ints2)
{
::::::
add $3,$4, $3
i = f1 (3,4,5, 6); caller
add $2, $3, $3
::::
}

How to pass parameters & results?
How to preserve caller register values?
How to alter control? (i.e., go to callee, return from callee)

75

How to pass parameters & results
– $a0-$a3: four argument registers. What if # of parameters is larger than 4? –

push to the stack
– $v0-$v1: two value registers in which to return values

How to preserve caller register values?
– Caller saved register
– Callee saved register
– Use stack

How to switch control?
– How to go to the callee

jal procedure_address(jump and link)
– Store the the return address (PC +4) at $ra
– set PC = procedure_addres

How to return from the callee
– Callee exectues jr $ra

76

Procedure calling/return
•Studies of programs show that a large portions of procedures have a few
parameters passed to them and return a very few, often one value to the
caller

•Parameter values can be passed in registers

•MIPS allocates various registers to facilitate use of procedures

•$a0-$a3 four argument registers in which to pass parameters

•$v0-$v1 two value registers in which to return values

•$ra one return address register to return to point of origin

•jump-and-link instruction jal ProcedureAddress

Jump to an address and simultaneously save the address of the following
instruction in register $ra (What is the address of the following instruction?)

jal is a J-format instruction, with 26 bits relative word address. Pseudodirect
addressing applies in this case.

77

Frame pointer points to the first word of the procedure frame

78

79

Calling Procedure
– Step-1: pass the argument
– Step-2: save caller-saved registers
– Step-3: Execute a jal instruction

80

Called Procedure
– Step-1: establish stack frame

subi $sp, $sp <frame-size>
– Step-2: saved callee saved registers

$ra, $fp,$s0-$s7
– Step-3: establish frame pointer

add $fp, $sp, <frame-size>-4

On return from a call
– Step-1: put returned values in

register $v0, [$v1].
– Step-2: restore callee-saved registers
– Step-3: pop the stack
– Step-4: return: jr $ra

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address (HW)

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

82

83

84

85

86

87

Procedure calling/return

• How to do the return jump?

•Use a jr instruction jr $ra

•Refined MIPS steps for execution of a procedure

Caller puts parameter values in $a0-$a3

Caller uses a jal X to jump to procedure X (callee)

Callee performs calculations

Callee place results in $v0-$v1

Callee returns control to the caller using jr $ra

88

More Registers??
•What happens when the compiler needs more registers than 4 argument and 2 return
value registers?

Can we use $t0-$t7, $s0-$s7 in callee or does caller need values in these registers??

$t0-$t9: 10 temporary registers that are not preserved by the callee on a procedure call

$s0-$s7: 8 saved registers that must be preserved on a procedure call if used

•Any registers needed by the caller must be restored to the values they contained before
the procedure was invoked

•How?
Spill registers to memory

use the registers in callee

restore contents from memory

•We need a stack (LIFO data structure) (Why?)
Placing data onto stack push

Removing data from stack pop

89

Stack and Stack Pointer

•A pointer is needed to the stack top , to know where the next procedure should place the
registers to be spilled or where old register values can be found (stack pointer)

•$sp is the stack pointer

•Stacks grow from higher addresses to lower addresses

•What does a push/pop means in terms of operations on the stack pointer (+/-)?

Higher address

Lower address

$sp
Higher address

Lower address

Contents of register X
$sp

After push of contents of register X

90

Simple Example1/2

int leaf_example (int g, int h, int i, int j)
{

int f;
f = (g+h) – (i+j);
return f;

}

What is the generated MIPS assembly code?

•g,h, i, and j correspond to $a0
through $a3

•Local variable f corresponds to $s0.
Hence, we need to save $s0 before
actually using it for local variable f
(maybe caller needs it)

•Return value will be in $v0

•Textbook assumes that $t0, $t1 need
to be saved for caller (page 135)

Leaf_example: #procedure label

subi $sp,$sp,4 #make room for 1 item

sw $s0, 0 ($sp) #store register $s0 for use later

add $t0, $a2, $a1 # $t0 g+h

add $t1,$a2,$a3 # $t1 i+j

sub $s0,$t0,$t1 #f $t0-$t1

add $v0,$s0,$zero # set up return value in $v0

lw $s0, 0($sp) # restore register $s0 for caller

addi $sp,$sp,4 #adjust stack to delete 1 item

jr $ra #jump back to caller

91

2/2

subi $sp,$sp,12 # adjust stack to make room for 3 items

sw $t1, 8($sp) # save register $t1 for later use

sw $t0 ,4($sp) # save register $t0 for later use

sw $s0,0($sp) # save register $s0 for later use

92

Real Picture: It is not that Simple1/2

How about if a procedure invokes another procedure?
•main calls procedure A with one argument

•A calls procedure B with one argument

•If precautions not taken

$a0 would be overwritten when B is called and value of parameter passed to A
would be lost

When B is called using a jal instruction, $ra is overwritten

•How about if caller needs the values in temporary registers $t0-$t9?

•More than 4 arguments?

•Local variables that do not fit in registers defined in procedures? (such as?)

•We need to store the register contents and allocate the local variables somewhere?

•We already saw a solution when we saved $s0 before using it in the previous
example

93

Real Picture: It is not that Simple2/2

Solution

Use segment of stack to save register contents and hold local variables (procedure
frame or activation record)

If $sp changes during procedure execution, that means that accessing a local
variable in memory might use different offsets depending on their position in the
procedure

Some MIPS software uses a frame pointer $fp to point to first word procedure
frame

$fp provides a stable base register within a procedure for local memory references

$sp points to the top of the stack, or the last word in the current procedure frame

An activation record appears on the stack even if $fp is not used.

94

Procedure Call details1/3

Caller
•Passes arguments

The first 4 in registers $a0-$a3

The remainder of arguments in the stack (push onto stack)
Load other arguments into memory in the frame

$sp points to last argument

•Save the caller-saved registers ($a0-$a3 and $t0-$t9) if and only if the caller needs the
contents intact after call return

•Execute a jal instruction which saves the return address in $ra and jumps to the
procedure

95

Procedure Call details2/3

Callee
•Allocates memory on the stack for its frame by subtracting the frame’s size from the
stack pointer ($sp $sp – frame size)

•Save callee-saved registers in the frame ($s0-$s7, $fp, and $ra) before altering them
since the caller expects to find these registers unchanged after the call

$fp is saved by every procedure that allocates a new stack frame (we will not
worry about this issue in our examples)

$ra only needs to be saved if the callee itself makes a call

•Establish its frame pointer (we will not worry about this issue in our examples)

•The callee ends by
•Return the value if a function in $v0

•Restore all callee-saved registers that were saved upon procedure entry

•Pop the stack frame by adding the frame size to $sp

•Return by jumping to the address in register $ra (jr $ra)

96

Procedure Call details3/3

Figure 3.12 page 139

97

Example: Swap array Elements
void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

What is the generated MIPS assembly code?

•v and k correspond to $a0 and $a1
•What is actually passed as v?

The base address of the array
•Local variable temp corresponds to $t0. (Why
we can use $t0 and not use $s0 as explained
before?)

This is a leaf procedure
$t0 does not have to be saved by callee

•No registers need to be saved
•No return value

swap: #procedure label

add $t1, $a1, $a1 # $t1 k *2

add $t1,$t1,$t1 # $t1 k *4

add $t1,$a0,$t1 #$t1 base + (k*4)

lw $t0, 0($t1) # temp v[k]

lw $t2, 4($t1) # $t2 v[k+1]

sw $t2,0($t1) #v[k] $t2 (which is v[k+1])

sw $t0,4($t1) # v[k+1] v[k] (temp)

jr $ra #jump back to caller

98

Example: A Recursive Procedure
int fact (int n)
{

if (n < 1)
return 1;

else
return (n * fact(n-1));

}

What is the generated MIPS assembly code?

•Parameter n corresponds to $a0

•This procedure makes recursive calls
which means $a0 will be overwritten,
and so does $ra when executing jal
instruction (Why?). Implications?

•Return value will be in $v0

fact: #procedure label
addi $sp,$sp,-8 #make room for 2 items
sw $ra, 04($sp) #store register $ra
sw $a0,0($sp) # store register $a0
slti $t0,$a0, 1 # test if n < 1
beq $t0, $zero,L1 # if n >= 1, go to L1
addi $v0, $zero, 1 # return 1
addi $sp,$sp,8 # pop 2 items off the stack
jr $ra # return to caller

L1: addi $a0,$a0,-1 # next argument is n-1
jal fact # call fact with argument n-1
lw $a0,0($sp) # restore argument n
lw $ra,4($sp) # restore $ra
addi $sp,$sp,8 # adjust stack pointer
mul $v0,$a0,$v0 # return n *fact (n-1)
jr $ra #return to caller

99

Stack Frames: A call to fact(3)

Old $a0

Old $ra

fact(3)

Old $a0

Old $ra

fact(2)

Old $a0

Old $ra

fact(1)

main

Stack

Old $a0

Old $ra

Old $a0

Old $ra

main

Stack

Call to fact(1) returns

fact(3)

fact(2)

Old $a0

Old $ra

fact(3)

main

Stack

Call to fact(2) returns

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp stack pointer

30 fp frame pointer

31 ra return address (HW)

Fig. 2.18

101

Single instruction to jump and save return address: jump
and link (jal)
– Replace:

1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #go to sum

with:
1012 jal sum # $ra=1016,go to sum

– Step 1 (link): Save address of next instruction into $ra
– Step 2 (jump): Jump to the given label
– Why have a jal? Make the common case fast: functions are

very common
jump register: jr register
– jr provides a register that contains an address to jump to;

usually used for procedure return

Instruction Example Meaning
branch on equal beq $1,$2,25 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
branch on not eq. bne $1,$2,25 if ($1!= $2) go to PC+4+100

Not equal test; PC relative
set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.
set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp..
jump j 10000 go to 10000 26-bit+4-bit of PC
jump register jr $31 go to $31

For switch, procedure return
jump and link jal 10000 $31 = PC + 4; go to 10000

For procedure call

103

Definitions
– Caller: function making the call, using jal
– Callee: function being called

Procedure conventions as a contract between the
Caller and the Callee
If both the Caller and Callee obey the procedure
conventions, there are significant benefits
– People who have never seen or even communicated

with each other can write functions that work together
– Recursion functions work correctly

104

’ ’

Callees’ rights:
– Right to use VAT registers freely
– Right to assume arguments are passed correctly

To ensure callees’s right, caller saves registers:
– Return address $ra
– Arguments $a0, $a1, $a2, $a3
– Return value $v0, $v1
– $t Registers $t0 - $t9

Callers’ rights:
– Right to use S registers without fear of being overwritten by callee
– Right to assume return value will be returned correctly

To ensure caller’s right, callee saves registers:
– $s Registers $s0 - $s7

105

Memory Allocation for Program and Data

106

ASCII (American Standard Code for Information
Interchange)
– Uses 8 bits to represent a character
– MIPS provides instructions to move bytes:

lb $t0, 0($sp)#Read byte from source
sb $t0, 0($gp)#Write byte to destination

Unicode
– Uses 16 bits to represent a character
– MIPS provides instructions to move 16 bits:

lh $t0, 0($sp) #Read halfwordfrom source
sh $t0, 0($gp) #Write halfwordto destination

107

2.9 MIPS Addressing
for 32-Bit Immediates and Addresses

108

If constants are bigger than 16-bit, e.g.,
0xABABCDCD

lui $S0, 0xABAB
ori $S0, $S0, 0xCDCD

109

J-type

I-type

– Program counter = Register + Branch address
PC-relative addressing

– We can branch within ±215 words of the current instruction.

– Conditional branches are found in loops and in if
statements, so they tend to branch to a nearby
instruction.

6 bits 26 bits

6 bits 5 bits 5 bits 16 bits

110

26-bit field is sufficient to represent 32-bit address?
– PC is 32 bits

The lower 28 bits of the PC come from the 26-bit field
– The field is a word address
– It represents a 28-bit byte address

The higher 4 bits
– Come from the original PC content

An address boundary of 256 MB (64 million
instructions)

111

If we need branch farther than can be represented
in the 16 bits of the conditional branch instruction
– Ex: beq $s0, $s1, L1

L1 with 16 bits is not sufficient
The new instructions replace the short-address conditional
branch:

bne $S0, $S1, L2
j L1

L2:

112

Addressing mode Example Meaning
Register Add R4,R3 R4 ← R4+R3
Immediate Add R4,#3 R4 ← R4+3
Displacement Add R4,100(R1) R4 ← R4+Mem[100+R1]
Register indirect Add R4,(R1) R4 ← R4+Mem[R1]
Indexed / Base Add R3,(R1+R2) R3 ← R3+Mem[R1+R2]
Direct / Absolute Add R1,(1001) R1 ← R1+Mem[1001]
Memory indirect Add R1,@(R3) R1 ← R1+Mem[Mem[R3]]
Auto-increment Add R1,(R2)+ R1 ← R1+Mem[R2]

R2 ← R2+d
Auto-decrement Add R1,-(R2) R2 ← R2-d

R1 ← R1+Mem[R2]
Scaled Add R1,100(R2)[R3] R1 ← R1+

Mem[100+R2+R3*d]

113

114

rd

115

116

How to Get the Base Address in the Base
Register

119

2.10 Translating and Starting a Program

120

121

Assembler
– The assembler turns the assembly language program

(pseudoinstructions) into an object file.
An object file contains

– machine language instructions
– Data
– ..

– Symbol table: A table that matches names of labels to
the addresses of the memory words that instruction
occupy.

– In MIPS
Register $at is reserved for use by the assembler.

122

static data
segment

external
references

123

Linker takes all the independently assembled
machine language programs and “stitches” them
together to produce an executable file that can be
run on a computer.
There are three steps for the linker:
– 1.Place code and data modules symbolically in memory.
– 2.Determine the addresses of data and instruction labels.
– 3.Patch both the internal and external references.

124

The linker use the relocation information and
symbol table in each object module to resolve all
undefined labels.
If all external references are resolved, the linker
next determines the memory locations each
modules will occupy.

125

% gcc -c main.cc
% gcc -c a.c
% gcc -c b.c
% gcc -o hello_world main.o a.o b.o

The first 3 commands have each taken
one source file, and compiled it into
something called “object file”, with the
same names, but with a ‘.o’ suffix. The
object file contains the code for the source
file in machine language, but with some
unresolved symbols.

The 4th command links the 3 object files
into one program. The linker (which is
invoked by the compiler now) takes all the
symbols from the 3 object files, and links
them together.

126

Read the executables file header to determine the size of
the text and data segments
Creates an address space large enough for the text and data
Copies the instructions and data from the executable file
into memory
Copies the parameters (if any) to the main program onto
the stack
Initializes the machine registers and sets the stack pointer
the first free location
Jump to a start-up routine which copies the parameters
into the argument registers

127

Disadvantages with traditional statically linked
library
– Library updates
– Loading the whole library even if all of the library is

not used
The standard C library is 2.5 MB.

Dynamically linked library
– The libraries are not linked and loaded until the

program is run.
– Lazy procedure linkage

Each routine is linked only after it is called.

128

O.S. services request of dynamic linking
– Dynamic loader is one part of the OS
– Instead of executing a JSUB instruction that refers to an external

symbol, the program makes a load-and-call service request to the
OS

Example
– When call a routine, pass routine name as parameter to O.S. (a)
– If routine is not loaded, O.S. loads it from library and pass the

control to the routine (b and c)
– When the called routine completes it processing, it returns to the

caller (O.S.) (d)
– When call a routine and the routine is still in memory, O.S.

simply passes the control to the routine (e)

129

Example of Dynamic Linking

Issue a load-
and-call request Load the routine from

the specified library

130

Second call to this subroutine
may not require load operation.

Jump to the
loaded routine Jump back to the

user program

Jump back to the
dynamic loader

131

Java Virtual Machine (JVM): The program that interprets Java
bytecodes

– Low performance
Just In Time Compiler (JIT): profile the running program to find
where the hot methods are, and then compile them into the native
instruction set on which the virtual machine is running.

– The program can run faster each time it is run.

132

133

MIPS operands
Name Example Comments

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform
32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load w ord lw $s1, 100($s2) $s1 = Memory[$s2 + 100 Word from memory to register
store w ord sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100 Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper
immediate

lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For sw itch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

135

32-bit fixed format instructions (3 formats)
32 32-bit GPR (R0 = zero), 32 FP registers, (and HI LO)
– partitioned by software convention

3-address, reg-reg arithmetic instructions
Memory is byte-addressable with a single addressing
mode: base+displacement
– 16-bit immediate plus LUI

Decision making with conditional branches: beq, bne
– Often compare against zero or two registers for =
– To help decisions with inequalities, use: “Set on Less

Than”called slt, slti, sltu, sltui
Jump and link puts return address PC+4 into link register
$ra (R31)
Branches and Jumps were optimized to address to words,
for greater branch distance

Immediates are extended as follows:
– logical immediate: zero-extended to 32 bits
– arithmetic immediate: sign-extended to 32 bits
– Data loaded by lb and lh are similarly extended:

lbu, lhu are zero extended; lb, lh are sign extended

Simplifying MIPS: Define instructions to be same size as data (one
word), so they can use same memory
Stored Program Concept: Both data and actual code (instructions)
are stored in the same memory
Instructions formats are kept as similar as possible

opcode rs rt rd functshamt
opcode rs rt immediate

R
I

opcode target addressJ

Design alternative:
– to provide more powerful operations
– to reduce number of instructions executed
– danger is a slower cycle time and/or a higher CPI

Let’s look (briefly) at Intel IA-32

–“The path toward operation complexity is thus fraught with
peril.
To avoid these problems, designers have moved toward
simpler instructions”

1978: Intel 8086 is announced (16 bit architecture)
1980: 8087 floating point coprocessor is added
1982: 80286 increases address space to 24 bits, +instructions
1985: 80386 extends to 32 bits, new addressing modes
1989-1995: 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher performance)
1997: 57 new “MMX” instructions are added, Pentium II
1999: Pentium III added another 70 instructions for streaming SIMD
extension (SSE)
2001: Another 144 instructions (SSE2)
2003: AMD extends to increase address space to 64 bits,

widens all registers to 64 bits and other changes (AMD64)
2004: Intel capitulates and embraces AMD64 (calls it EM64T) and

adds more media extensions
“This history illustrates the impact of the “golden handcuffs” of compatibility
“adding new features as someone might add clothing to a packed bag”
“an architecture that is difficult to explain and impossible to love”

Complexity:
– Instructions from 1 to 17 bytes long
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
Saving grace:
– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity,
making it beautiful from the right perspective”

140

141

Registers are not “general purpose” – note the
restrictions below

Fig. 2.42

142

Four major types of integer instructions:
– Data movement including move, push, pop
– Arithmetic and logical (destination register or memory)
– Control flow (use of condition codes / flags)
– String instructions, including string move and compare

Fig. 2.431.IA-32: Two-operand operation vs. MIPS: three-operand operation
2.IA-32: Register-memory vs. MIPS: register-register

143

Instruction complexity is only one variable
– lower instruction count vs. higher CPI / lower clock

rate
Design Principles:
– simplicity favors regularity
– smaller is faster
– good design demands compromise
– make the common case fast

Instruction set architecture
– a very important abstraction indeed!

