Cellular Phone Systems

Li-Hsing Yen
National University of Kaohsiung
Why Cellular Mobile Telephone Systems?

• Operational limitations of conventional mobile telephone systems
 – limited service capability
 – poor service performance
 – inefficient frequency spectrum utilization

Mobility Management

• Mobility management enables telecommunications networks to
 – locate roaming mobile terminals (MTs) for call delivery (location management)
 – maintain connections with MTs that change their point of attachment (handoff/handover management)
Location Management

• MT periodically performs location registration (i.e., location update)
 – explicitly notify the network of its new access point and store changes to its user location profile
• when incoming calls arrive, the network performs call delivery
 – querying the user profile to deliver the calls to the current cell location of the MT

GSM Registration Procedure

1: old TMSI + old VLR id
2: TMSI⇒IMSI
3: location update
4: new TMSI
5: registration cancellation
Call Delivery for Mobile Terminated Call

Registration Area Planning

- Registration/Location Area (RA/LA)
 - consists of one or more cells
 - the basic unit of registration/paging
Hand-off (Hand-over)

Handoff Management

- Ongoing calls are modified under two conditions: signal strength deterioration and user mobility
- *intra-cell* and *inter-cell* handoffs
 - within and between cells
- *soft* handoff and *hard* handoff
 - without and with interruptions in radio links
Who Initiates the Handoff?

• **NCHO** (Network-controlled handoff) or **MAHO** (Mobile-assisted Handoff)
 – the networks generates a new connection, finding new resources for the handoff and performing any additional routing operations

• **MCHO** (Mobile-controlled handoff)
 – the MT finds the new resources and the network approves

Three Classes of Handoffs in GSM

1. different BTS, same BSC
2. different BSC, same MSC
3. different MSC, same PLMN
 (old MSC=anchor MSC
 new MSC=relay MSC)
Technical Terms

• Call drop rate
 – The probability that an ongoing call is dropped due to handoff

• Call blocking rate
 – The probability that a new call is denied due to lack of available channel

• Usually call drop rate is more important than call blocking rate

Handoff Management: Channel Reservation Scheme

• Reserve some channels for handoff calls
• Trade call blocking rate for call drop rate
Channel Assignment Problem

• Allocate channels to cells
• should consider
 – QoS (Quality of Service)
 • co-channel interference
 • adjacent channel interference
 – spectrum utilization
• Goal: maximize both QoS and spectrum utilization

Co-Channel and Adjacent-Channel Interference

• Co-channel interference
 – Radio signals assigned to the same channel will interfere with each other
• Adjacent channel interference
 – Two frequencies of wavelength close to each other will interfere with each other and should not be assigned to neighboring cells
A channel assigned to A should not be assigned to B nor C at the same time. However, it can be assigned to D without co-channel interference.

Adjacent channel interference
Classification of Channel Assignment Schemes

• **Fixed Channel Assignment**
 – Each cell is assigned a fixed subset of frequencies
 – low response time with low utilization

• **Dynamic Channel Assignment**
 – Does not give any frequency to any cell a priori
 – high response time with high utilization

A Typical Fixed Channel Assignment Scheme

• All channels are divided into 7 disjoint sets
Generations of Cellular Systems

• The first generation
 – AMPS
 – Analog system, circuit-switched service
• The second generation
 – GSM, IS-136, PDC, IS-95
 – Digital system, circuit-switched service
• 2.5 G
 – GPRS
 – Digital system, packet-switched service
• 3 G
 – IMT-2000
 – Digital system, multimedia service

Advanced Mobile Phone Service (AMPS)

• Analog cellular system (1983)
• Frequency Division Multiple Access (FDMA)
• 50 channels per cell
AMPS (1/2)

- The first cellular system
- Developed during 1970s in Bell Lab.
- 10 years to generate the AMPS specification
- 1974—1978 field trial in Chicago
- Commercial service has been available since 1983
- FDMA (Frequency Division multiple Access) / FDD (Frequency Division Duplex) technology

AMPS (2/2)

- Channel spacing: 30 KHz
- Frequency bands
 - Forward link (BS → MS): 869 MHz – 894 MHz
 - Reverse link (MS → BS): 824 MHz – 849 MHz
 - Total 832 full-duplex channels
- Roaming management standard: EIA/TIA IS-41
- Service area: North America, Taiwan
Digital Cellular Phone Systems

<table>
<thead>
<tr>
<th>Standard</th>
<th>GSM 900</th>
<th>GSM 1800</th>
<th>IS-54/-136</th>
<th>IS-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency band</td>
<td>down 935-960 up 880-915</td>
<td>down 1805-1880 up 1710-1785</td>
<td>down 869-894 up 824-849</td>
<td>down 869-894 up 824-849</td>
</tr>
<tr>
<td>Multiple access</td>
<td>TDMA/FDMA</td>
<td>TDMA/FDMA</td>
<td>TDMA/FDMA</td>
<td>CDMA/FDMA</td>
</tr>
<tr>
<td>Duplex method</td>
<td>FDD</td>
<td>FDD</td>
<td>FDD</td>
<td>FDD</td>
</tr>
<tr>
<td>No. of channels</td>
<td>124 8 users/channel</td>
<td>374 8 users/channel</td>
<td>832 3 users/channel</td>
<td>20 798 users/channel</td>
</tr>
<tr>
<td>Channel spacing</td>
<td>200 kHz</td>
<td>200 kHz</td>
<td>30 kHz</td>
<td>1250 kHz</td>
</tr>
<tr>
<td>Modulation</td>
<td>GMSK</td>
<td>GMSK</td>
<td>p/4 DQPSK</td>
<td>QPSK/DQPSK</td>
</tr>
<tr>
<td>Channel bit rate</td>
<td>270.83 kb/s</td>
<td>270.83 kb/s</td>
<td>48.6 kb/s</td>
<td>1.2288 Mb/s</td>
</tr>
</tbody>
</table>

Digital Cellular Phone Systems (Cont.)

<table>
<thead>
<tr>
<th>System</th>
<th>IS-54</th>
<th>IS-95/DS</th>
<th>GSM 900/1800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable txmit power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max/avg.</td>
<td>600 mW/200mW</td>
<td>600 mW/600 mW</td>
<td>1W/125 mW</td>
</tr>
<tr>
<td>Speech coding</td>
<td>VSELP</td>
<td>QCELP</td>
<td>RPE-LTP</td>
</tr>
<tr>
<td>Speech rate (Kbps)</td>
<td>7.95</td>
<td>8 (var.)</td>
<td>13</td>
</tr>
<tr>
<td>Ch. coding</td>
<td>1/2 rate conv.</td>
<td>1/2 rate fwd</td>
<td>1/2 rate conv.</td>
</tr>
<tr>
<td>Frame (ms)</td>
<td>40</td>
<td>20</td>
<td>4.615</td>
</tr>
</tbody>
</table>
IS-136 DAMPS (1/2)

- Also referred to as digital AMPS (DAMPS), American Digital Cellular (ADC), North American TDMA (NA-TDMA), or even TDMA.
- The successor of IS-54 (IS-54c == IS-136)
- About four months to create the IS-54 specifications.
- The same frequency spectrum as AMPS.
- Also defined for 1850 – 1990 PCS spectrum.

IS-136 DAMPS (2/2)

- FDMA – TDMA (Time Division multiple Access) / FDD (Frequency Division Duplex) technology
- Carrier spacing = 30kHz.
- 3 channels (time slots) per frequency carrier
- Speech coding rate: 7.95 kbps
- Capacity: about 3 times that of AMPS
- Roaming management standard: EIA/TIA IS-41
- Service area: North America
IS-95 cdmaOne (1/2)

- Developed by Qualcomm
- DS-CDMA (Direct Sequence Code Division multiple Access) / FDD (Frequency Division Duplex) technology
- About two years to create the IS-95 specifications.
- Frequency bands
 - AMPS (824 – 894 MHz)
 - PCS (1850 – 1990 MHz)

IS-95 cdmaOne (2/2)

- Carrier Spacing: 1.25 MHz
- Capacity: 3 – 6 times than that of TDMA, 10 times than that of AMPS. (4 – 5 times than that of GSM, 8 – 10 times than that of AMPS).
- Speech coding rate: 13 or 8 kbps
- Roaming management standard: EIA/TIA IS-41
- Service area: North America, South Korea, China
Cordless Phone Systems

<table>
<thead>
<tr>
<th>System</th>
<th>CT2</th>
<th>CT2+</th>
<th>DECT</th>
<th>PHS</th>
<th>PACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplexing</td>
<td>TDD</td>
<td>TDD</td>
<td>TDD</td>
<td>FDD</td>
<td>FDD</td>
</tr>
<tr>
<td>Frequency band (MHz)</td>
<td>864-868</td>
<td>944-948</td>
<td>1880-1900</td>
<td>1850-1910/1930-1990</td>
<td>1895-1918</td>
</tr>
<tr>
<td>Carrier spacing (kHz)</td>
<td>100</td>
<td>1728</td>
<td>300</td>
<td>300/300</td>
<td></td>
</tr>
<tr>
<td>Number of carriers</td>
<td>40</td>
<td>10</td>
<td>77</td>
<td>16 pairs/10 MHz</td>
<td></td>
</tr>
<tr>
<td>Bearer channel/carrier</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>8/pair</td>
<td></td>
</tr>
<tr>
<td>Channel bit rate (kbps)</td>
<td>72</td>
<td>1152</td>
<td>384</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>GFSK</td>
<td>GFSK</td>
<td>π/4 QPSK</td>
<td>π/4 QPSK</td>
<td></td>
</tr>
<tr>
<td>Speech coding</td>
<td>32 kbps</td>
<td>32 kbps</td>
<td>32 kbps</td>
<td>32 kbps</td>
<td></td>
</tr>
<tr>
<td>Average handset TX power (mW)</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Peak handset TX power (mW)</td>
<td>10</td>
<td>250</td>
<td>80</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Frame duration (ms)</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

CT2

- Developed in Europe
- Available since 1989
- FDMA / TDD (Time Division Duplexing) technology
- Speech coding rate: 32kbps
- Data rate: 2.4 – 4.8 kbps
- Max Tx power: 10mW.
- Do not support handoff
- Do not support call-delivery (call-termination)
- CT2+ supports call-delivery
DECT (1/2)

- DECT specifications were published in 1992
- Pico-cell design
- Digital system; TDMA/TDD technology
- 12 frequency channels/frequency carrier
- Sleep mode is employed to conserve the power of MSs.
- Time slot transfer: DECT may move a conversation from one time slot to another to avoid interference

DECT (2/2)

- Supports seamless handoff
- Speech coding rate: 32 kbps
- Supports dynamic channel allocation
- Typically implemented as a wireless-PBX connected to the PSTN
- Can interwork with GSM to allow users mobility, where the GSM handsets provide DECT connection capability.
PHS (1/2)

- Developed by the Research and Development Center for Radio System (RCR) in Japan
- Digital system
- Offer services for homes, offices (1895 – 1906.1 MHz), and outdoor (1906.1– 1918.1 MHz) environments
- TDMA / TDD technology
- Carrier spacing: 300 kHz
- 4 time slots/frequency carrier

PHS (2/2)

- Supports sleep mode
- Supports dynamic channel allocation
- PHS utilizes dedicated control channels to carry system and signaling information
- Speech coding rate: 32 kbps
- User mobility: up to 100 km/hr
- Data rate
 - Current stage: up to 64 kbps (大衆電信, Taiwan)
 - Future: 128 kbps → 512 kbps → 3G
PACS

- Developed at Telcordia (formerly Bellcore)
- Designed for Wireless Local Loop (WLL) and PCS
- TDMA/FDD or TDMA/TDD technology
- 8 voice channels/frequency carrier
- Speech coding rate: 32 kbps
- Mobile-controlled handoff (MCHO)
- Roaming management: IS-41-like protocol
- Supports both circuit-based and packet-based access protocol
- User mobility: up to 38 miles/hr

Data Services in DECT

- DECT data link layer is designed for circuit and packet mode services
 - in the packet mode, it is possible to allocate multiple time slots to SUs
Mobile Data Systems

- DataTAC/Ardis: IBM, Motorola - 1983
- MobiTex/RAM: Ericsson, Bellsouth - 1989
- CDPD: Open System (IBM, AT&T) - 1993
- GPRS: ETSI

Mobile Data Systems (cont.)

<table>
<thead>
<tr>
<th>System</th>
<th>DataTAC</th>
<th>MobiTex</th>
<th>CDPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq. Band (MHz)</td>
<td>800</td>
<td>900, 400</td>
<td>800</td>
</tr>
<tr>
<td>Channel spacing (KHz)</td>
<td>12.5/25</td>
<td>12.5/25</td>
<td>30</td>
</tr>
<tr>
<td>Protocol</td>
<td>RD-LAP</td>
<td>MPAKS</td>
<td>TCP/IP</td>
</tr>
<tr>
<td>Data rate (Kbps)</td>
<td>4.8/19.2</td>
<td>8/16</td>
<td>19.2</td>
</tr>
<tr>
<td>Throughput (Kbps)</td>
<td>2.2/12.0</td>
<td>4-5</td>
<td>9.6-14.4</td>
</tr>
<tr>
<td>Specification</td>
<td>Closed</td>
<td>Closed</td>
<td>Open</td>
</tr>
</tbody>
</table>
GPRS (1/2)

- GSM data services
 - Short Message Services (SMS)
 - Bearer Services: 9.6 kbps (14.4 kbps for Phase 2+, 1996) circuit-switched data
 - High Speed Circuit-Switched Data (HSCSD): 9.6 - 115.2 kbps (Phase 2+, 1997)
 - GPRS
- GSM Phase 2+ for GPRS was completed in 1998.
- Provides best-effort packet-switched service
- External Network: X.25, Internet (TCP/IP)

GPRS (2/2)

- Up to 8 time slots can be assigned to a single user
- Coding schemes:
 - CS-1: 9.06 kbps
 - CS-2: 13.4 kbps
 - CS-3: 13.6 kbps
 - CS-4: 21.4 kbps (no channel coding)
- Data rate: (9.06, 13.4, 15.6, 21.4, depends on channel coding) x (1 to 8) => 171.2 kbps (max)
- Additional equipments are introduced in GPRS
 - Gateway GPRS Support Node (GGSN)
 - Serving GPRS Support Node (SGSN)
 - Packet Control Unit (PCU)
GPRS Architecture

<table>
<thead>
<tr>
<th>MH</th>
<th>Mobile Host</th>
<th>MSC</th>
<th>Mobile Switching Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTS</td>
<td>Base Transceiver Station</td>
<td>VLR</td>
<td>Visitor Location Register</td>
</tr>
<tr>
<td>BSC</td>
<td>Base Station Controller</td>
<td>HLR</td>
<td>Home Location Register/GPRS Registry</td>
</tr>
<tr>
<td>SGSN</td>
<td>Serving GPRS Support Node</td>
<td>PSTN</td>
<td>Public Switched Telephone Network</td>
</tr>
<tr>
<td>GGSN</td>
<td>Gateway GPRS Support Node</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>