
17-1

17
Advanced Topics

 17.1 Hardware Control Using I/O Ports
17.1.1 Input-Output Ports

 17.2 Intel Instruction Encoding
17.2.1 Single-Byte Instructions
17.2.2 Immediate Operands
17.2.3 Register-Mode Instructions
17.2.4 Memory-Mode Instructions
17.2.5 Section Review

 17.3 Floating-Point Arithmetic
17.3.1 IEEE Binary Floating-Point Representation
17.3.2 The Exponent
17.3.3 Normalizing the Mantissa
17.3.4 Creating the IEEE Bit Representation
17.3.5 Converting Decimal Fractions to Binary Reals
17.3.6 IA-32 Floating Point Architecture
17.3.7 Instruction Formats
17.3.8 Floating-Point Code Examples

17.1 Hardware Control Using I/O Ports

IA-32 systems offer two types of hardware input-output: memory-mapped, and port-based.
When memory-mapped output is used, a program can write data to a particular memory address,
and the data will be transferred to the output device. A good example is the memory-mapped
video display. When you place characters in the video segment, they immediately appear on the
display. Port-based I/O requires the IN and OUT instructions to read and write data to specific
numbered locations called ports. Ports are connections, or gateways, between the CPU and other
devices, such as the keyboard, speaker, modem, and sound card.

17.1.1 Input-Output Ports

Each input-output port has a specific number between 0 and FFFFh. A port is used when con-
trolling the speaker, for example, by turning the sound on and off. You can communicate directly
with the asynchronous adapter through a serial port by setting the port parameters (baud rate,
parity, and so on) and by sending data through the port.

The keyboard port is a good example of an input-output port. When a key is pressed, the
keyboard controller chip sends an 8-bit scan code to port 60h. The keystroke triggers a hardware

IrviCh17v1.fm Page 1 Wednesday, May 22, 2002 6:03 PM

17-2 Chapter 17 • Advanced Topics

interrupt, which prompts the CPU to call INT 9 in the ROM BIOS. INT 9 inputs the scan code
from the port, looks up the key’s ASCII code, and stores both values in the keyboard input
buffer. In fact, it would be possible to bypass the operating system completely and read charac-
ters directly from port 60h.

Most devices have one or more status ports. In the case of the keyboard, you might use this
port check to see if a character is ready. There is also usually a data port, through which input-
output data are transferred.

IN and OUT Instructions The IN instruction inputs a byte or word from a port. Conversely,
the OUT instruction outputs a byte or word to a port. The syntax for both instructions are:

IN accumulator,port
OUT port,accumulator

Port may be a constant in the range 0-FFh, or it may be a value in DX between 0 and FFFFh.
Accumulator must be AL for 8-bit transfers, AX for 16-bit transfers, and EAX for 32-bit trans-
fers. Examples are:

in al,3Ch ; input byte from port 3Ch
out 3ch,al ; output byte to port 3Ch
mov dx, portNumber ; DX can contain a port number
in ax,dx ; input word from port named in DX
out dx,ax ; output word to the same port
in eax,dx ; input doubleword from port
out dx,eax ; output doubleword to same port

17.1.1.1 PC Sound Program
We can write a program that uses the IN and OUT instructions to generate sound through the
PC’s built-in speaker. The speaker control port (number 61h) turns the speaker on and off by
manipulating the Intel 8255 Programmable Peripheral Interface chip. To turn the speaker on,
input the current value in port 61h, set the lowest 2 bits, and output the byte back through the
port. To turn off the speaker, clear bits 0 and 1 and output the status again.

The Intel 8253 Timer chip controls the frequency (pitch) of the sound being generated. To
use it, we send a value between 0 and 255 to port 42h. The Speaker Demo program shows how
to generate sound by playing a series of ascending notes:

TITLE Speaker Demo Program (Spkr.asm)

; This program plays a series of ascending notes on
; an IBM-PC or compatible computer.

INCLUDE Irvine16.inc
speaker equ 61h ; address of speaker port
timer equ 42h ; address of timer port
delay1 EQU 500
delay2 EQU 0D000h ; delay between notes

IrviCh17v1.fm Page 2 Wednesday, May 22, 2002 6:03 PM

17.1 Hardware Control Using I/O Ports 17-3

.code
main PROC

in al,speaker ; get speaker status
push ax ; save status
or al,00000011b ; set lowest 2 bits
out speaker,al ; turn speaker on

mov al,60 ; starting pitch
L2: out timer,al ; timer port: pulses speaker

; Create a delay loop between pitches:
mov cx,delay1

L3: push cx ; outer loop
mov cx,delay2

L3a:; inner loop
loop L3a
pop cx
loop L3

sub al,1 ; raise pitch
jnz L2 ; play another note

pop ax ; get original status
and al,11111100b ; clear lowest 2 bits
out speaker,al ; turn speaker off
exit

main ENDP
END main

First, the program turns the speaker on using port 61h, by setting the lowest 2 bits in the speaker
status byte:

or al,00000011b ; set lowest 2 bits
out speaker,al ; turn speaker on

Then it sets the pitch by sending 60 to the timer chip:

mov al,60 ; starting pitch
L2: out timer,al ; timer port: pulses speaker

A delay loop makes the program pause before changing the pitch again:

mov cx,delay1
L3: push cx ; outer loop

mov cx,delay2
L3a: ; inner loop

loop L3a
pop cx
loop L3

After the delay, the program subtracts 1 from the period (1 / frequency), which raises the pitch.
The new frequency is output to the timer when the loop repeats. This process continues until the

IrviCh17v1.fm Page 3 Wednesday, May 22, 2002 6:03 PM

17-4 Chapter 17 • Advanced Topics

frequency counter in AL equals 0. Finally, the program pops the original status byte from the
speaker port and turns the speaker off by clearing the lowest two bits:

pop ax ; get original status

and al,11111100b ; clear lowest 2 bits

out speaker,al ; turn speaker off

17.2 Intel Instruction Encoding

One of the interesting aspects of assembly language is the way assembly instructions are trans-
lated into machine language. The topic is quite complex because of the rich variety of instruc-
tions and addressing modes available in the Intel instruction set. We will use the 8086/8088
processor as an illustrative example.

Figure 2 shows the general machine instruction format, and Table 17-1 and Table 17-2
describe the instruction fields. The opcode (operation code) field is stored in the lowest byte (at
the lowest address). All remaining bytes are optional: the ModR/M field identifies the address-
ing mode and operands; the immed-low and immed-high fields are for immediate operands
(constants); the disp-low and disp-high fields are for displacements added to base and index reg-
isters in the more complex addressing modes (e.g. [BX+SI+2]). Few instructions contain all of
these fields; on average, most instructions are only 2-3 bytes long. (Throughout our discussions
of instruction encoding, all numbers are assumed to be in hexadecimal.)

Figure 17-1 Intel 8086/8088 Instruction Format.

Table 17-1 Mod Field Values.

Mod Displacement

00 DISP = 0, disp-low and disp-high are absent (unless r/m = 110).

01 DISP = disp-low sign-extended to 16 bits; disp-high is absent.

10 DISP = disp-high and disp-low are used.

11 r/m field contains a register number.

opcode mod reg r/m immed-low

Mod R/M

immed-high disp-low disp-high
7 -- 07 7 6 5 3 2 0140

(The opcode indicates whether or not the immediate value field is present, as well as its size.)

7 -- 07 -- 07 -- 0

IrviCh17v1.fm Page 4 Wednesday, May 22, 2002 6:03 PM

17.2 Intel Instruction Encoding 17-5

Opcode. The opcode field identifies the general instruction type (MOV, ADD, SUB, and so on)
and contains a general description of the operands. For example, a MOV AL,BL instruction has
a different opcode from MOV AX,BX:

mov al,bl ; opcode = 88h

mov ax,bx ; opcode = 89h

Many instructions have a second byte, called the modR/M byte, which identifies the type
of addressing mode being used. Using our sample register move instructions again, the ModR/M
byte is the same for both moves because they use equivalent registers:

mov al,bl ; mod R/M = D8

mov ax,bx ; mod R/M = D8

17.2.1 Single-Byte Instructions

The simplest type of instruction is one with either no operand or an implied operand, such as
AAA, AAS, CBW, LODSB, or XLAT. These instructions require only the opcode field, the
value of which is predetermined by the processor’’s instruction set:

Table 17-2 R/M Field Values.

r/m Operand

000 [BX + SI] + DISP

001 [BX + DI] + DISP

010 [BP + SI] + DISP

011 [BP + DI] + DISP

100 [SI] + DISP

101 [DI] + DISP

110 [BP] + DISP DISP-16 (for mod = 00 only)

111 [BX] + DISP

Instruction Opcode

AAA 37

AAS 3F

CBW 98

LODSB AC

IrviCh17v1.fm Page 5 Wednesday, May 22, 2002 6:03 PM

17-6 Chapter 17 • Advanced Topics

It might appear that the INC DX instruction slipped into this table by mistake, but the designers of
the Intel instruction set decided to supply unique opcodes for certain commonly used instructions.
Because of this, incrementing a register is optimized for both code size and execution speed.

17.2.2 Immediate Operands

Many instructions contain an immediate (constant) operand. For example, the machine code for
MOV AX,1 is B8 01 00 (hexadecimal). How would the assembler build the machine language
for this? First, in the Intel documentation, the encoding of the MOV instruction that moves an
immediate word into a register is B8 +rw dw, where +rw indicates that a register code (0-7) is to
be added to B8, and dw indicates that an immediate word operand follows (low byte first). The
register code for AX is 0, so (rw = 0) is added to B8; the immediate value is 0001, so the bytes
are inserted in reversed order. This is how the assembler generates B8 01 00.

What about the instruction MOV BX,1234h? BX is register number 3, so we add 3 to B8;
we then reverse the bytes in 1234h. The machine code is generated as BB 34 12. Try hand-
assembling a few such MOV instructions to get the hang of it, and then check your results by
inspecting the listing file (.LST). The register numbers are as follows: AX/AL = 0, CX/CL = 1,
DX/DL = 2, BX/BL = 3, SP/AH = 4, BP/CH = 5, SI/DH = 6, and DI/BH = 7.

17.2.3 Register-Mode Instructions

If you write an instruction that uses only the register addressing mode, the ModR/M byte identi-
fies the register name(s). Table 17-3 identifies register numbers in the r/m field. The choice of 8-
bit or 16-bit register depends upon bit 0 of the opcode field; it equals 1 for a 16-bit register and 0
for an 8-bit register.

For example, let’s assemble the instruction PUSH CX. The Intel encoding of a 16-bit regis-
ter push is 50 +rw, where +rw indicates that a register number (0-7) is added to 50h. Because CX
is register number 1, the machine language would be 51. But other register-based instructions are

XLAT D7

INC DX 42

Table 17-3 Identifying Registers in the Mod R/M Field

R/M Register R/M Register

000 AX or AL 100 SP or AH

001 CX or CL 101 BP or CH

010 DX or DL 110 SI or DH

011 BX or BL 111 DI or BH

IrviCh17v1.fm Page 6 Wednesday, May 22, 2002 6:03 PM

17.2 Intel Instruction Encoding 17-7

more complicated, particularly those with two operands. For example, the machine language for
MOV AX,DX is 89 D8. The Intel encoding of a 16-bit MOV from a register to any other operand
is 89 /r, where /r indicates that a ModR/M byte follows the opcode. The ModR/M byte is made up
of three fields. D8, for example, contains the following bit fields:

• Bits 6-7 are the mod field, which tells us the addressing mode. The current operands are
registers, so this field equals 11.

• Bits 3-5 are the reg field, which indicates the source operand. In our example, DX is regis-
ter number 011.

• Bits 0-2 are the r/m field, which indicates the destination operand. In our example, AX is
register number 000.

17.2.4 Memory-Mode Instructions

The real purpose of having the ModR/M byte is for addressing memory. Because of the rich
variety of addressing modes, the ModR/M byte is a model of economy: Exactly 256 different
combinations of operands may be specified by this byte. The rules for generating the bit patterns
in the ModR/M byte are a trifle complex, so the Intel manuals conveniently supply a table (refer
to Table 17-4) that makes it easy to look up the values.

mod reg r/m

11 011 000

Table 17-4 Mod R/M Byte Values (16-Bit Segments).

Byte:
Word:

AL CL DL BL AH CH DH BH
AX CX DX BX SP BP SI DI
0 1 2 3 4 5 6 7

Mod R/M ModR/M Value Effective Address

 00 000 00 08 10 18 20 28 30 38 [BX + SI]

001 01 09 11 19 21 29 31 39 [BX + DI]

010 02 0A 12 1A 22 2A 32 3A [BP + SI]

011 03 0B 13 1B 23 2B 33 3B [BP + DI]

100 04 0C 14 1C 24 2C 34 3C [SI]

101 05 0D 15 1D 25 2D 35 3D [DI]

110 06 0E 16 1E 26 2E 36 3E D16

111 07 0F 17 1F 27 2F 37 3F [BX]

IrviCh17v1.fm Page 7 Wednesday, May 22, 2002 6:03 PM

17-8 Chapter 17 • Advanced Topics

 01 000 40 48 50 58 60 68 70 78 [BX + SI] + D8a

001 41 49 51 59 61 69 71 79 [BX + DI] + D8

010 42 4A 52 5A 62 6A 72 7A [BP + SI] + D8

011 43 4B 53 5B 63 6B 73 7B [BP + DI] + D8

100 44 4C 54 5C 64 6C 74 7C [SI] + D8

101 45 4D 55 5D 65 6D 75 7D [DI] + D8

110 46 4E 56 5E 66 6E 76 7E [BP] + D8

111 47 4F 57 5F 67 6F 77 7F [BX] + D8

10 000 80 88 90 98 A0 A8 B0 B8 [BX + SI] + D16

001 81 89 91 99 A1 A9 B1 B9 [BX + DI] + D16

010 82 8A 92 9A A2 AA B2 BA [BP + SI] + D16

011 83 8B 93 9B A3 AB B3 BB [BP + DI] + D16

100 84 8C 94 9C A4 AC B4 BC [SI] + D16

101 85 8D 95 9D A5 AD B5 BD [DI] + D16

110 86 8E 96 9E A6 AE B6 BE [BP] + D16

111 87 8F 97 9F A7 AF B7 BF [BX] + D16

11 000 C0 C8 D0 D8 E0 E8 F0 F8 w = AX, b = AL

001 C1 C9 D1 D9 E1 E9 F1 F9 w = CX, b = CL

010 C2 CA D2 DA E2 EA F2 FA w = DX, b = DL

011 C3 CB D3 DB E3 EB F3 FB w = BX, b = BL

100 C4 CC D4 DC E4 EC F4 FC w = SP, b = AH

101 C5 CD D5 DD E5 ED F5 FD w = BP, b = CH

110 C6 CE D6 DE E6 EE F6 FE w = SI, b = DH

111 C7 CF D7 DF E7 EF F7 FF w = DI, b = BH

a D8 is an 8-bit displacement following the Mod R/M byte that is sign-extended and added to the effective address.

Table 17-4 Mod R/M Byte Values (16-Bit Segments). (Continued)

Byte:
Word:

AL CL DL BL AH CH DH BH
AX CX DX BX SP BP SI DI
0 1 2 3 4 5 6 7

IrviCh17v1.fm Page 8 Wednesday, May 22, 2002 6:03 PM

17.2 Intel Instruction Encoding 17-9

For example, let’s encode the instruction MOV [SI],AX. Earlier, it was shown that the
encoding format for a move from a 16-bit register was 89 /r. All we have to do is look along the
top of Table 5 for the AX register, and then along the right side for the effective address [SI].
The ModR/M byte found at the intersection of these two values in the table is 04. Therefore, the
machine instruction is 89 04.

Let’s try to figure out why that ModR/M value was chosen. Looking back at the diagram
of the Intel instruction format in Figure 2, the mod field assignments are listed in a table: For
memory operands having no displacement, the mod field is 00. This is true in the instruction
MOV [SI],AX. In the same figure, the instruction format diagram shows that bits 3-5 in the
ModR/M byte are the reg field (register number). AX is register 000. Finally, the r/m field value
for either [SI] or [SI] + DISP is 100. Let’s put all of this together, creating a ModR/M byte value
of 04:

What about the instruction MOV [SI],AL? The opcode for a move from an 8-bit register is
88. The ModR/M byte, on the other hand, would be exactly the same, because AL also happens
to be register number 000. The machine instruction would be 88 04.

17.2.4.1 MOV Instruction Examples
Let’s take a look at the 8-bit and 16-bit MOV instruction opcodes, shown in Table 17-5.
Table 17-6 and Table 17-7 both provide supplemental information about abbreviations used in
Table 17-5. Use these tables as references when hand-assembling your own MOV instructions.
(If would like to see more details such as these, refer to the IA-32 Intel Architecture Software
Developer’s Manual, which can be download from www.intel.com.)

Finally, Table 17-8 contains a few additional examples of MOV instructions that you can
assemble by hand and compare to the resulting machine code shown in the table.

mod n r/m

00 000 100

Table 17-5 MOV Instruction Opcodes.

Opcode Instruction Description

88 /r MOV eb,rb Move byte register into EA byte

89 /r MOV ew,rw Move word register into EA word

8A /r MOV rb,eb Move EA byte into byte register

8B /r MOV rw,ew Move EA word into word register

8C /0 MOV ew,ES Move ES into EA word

8C /1 MOV ew,CS Move CS into EA word

8C /2 MOV ew,SS Move SS into EA word

IrviCh17v1.fm Page 9 Wednesday, May 22, 2002 6:03 PM

17-10 Chapter 17 • Advanced Topics

8C /3 MOV DS,ew Move DS into EA word

8E /0 MOV ES,mw Move memory word into ES

8E /0 MOV ES,rw Move word register into ES

8E /2 MOV SS,mw Move memory word into SS

8E /2 MOV SS,rw Move register word into SS

8E /3 MOV DS,mw Move memory word into DS

8E /3 MOV DS,rw Move word register into DS

A0 dw MOV AL,xb Move byte variable (offset dw) into AL

A1 dw MOV AX,xw Move word variable (offset dw) into AX

A2 dw MOV xb,AL Move AL into byte variable (offset dw)

A3 dw MOV xw,AX Move AX into word register (offset dw)

B0 +rb db MOV rb,db Move immediate byte into byte register

B8 +rw dw MOV rw,dw Move immediate word into word register

C6 /0 db MOV eb,db Move immediate byte into EA byte

C7 /0 dw MOV ew,dw Move immediate word into EA word

Table 17-6 Key to Instruction Opcodes.

/n: A ModR/M byte follows the opcode, possibly followed by immediate and dis-
placement fields. The digit n (0-7) is the value of the reg field of the ModR/M
byte.

/r: A ModR/M byte follows the opcode, possibly followed by immediate and dis-
placement fields.

db: An immediate byte operand follows the opcode and ModR/M bytes.

dw: An immediate word operand follows the opcode and ModR/M bytes.

+rb: A register code (0-7) for an 8-bit register, which is added to the preceding
hexadecimal byte to form an 8-bit opcode.

+rw: A register code (0-7) for a 16-bit register, which is added to the preceding
hexadecimal byte to form an 8-bit opcode.

Table 17-5 MOV Instruction Opcodes. (Continued)

Opcode Instruction Description

IrviCh17v1.fm Page 10 Wednesday, May 22, 2002 6:03 PM

17.2 Intel Instruction Encoding 17-11

17.2.5 Section Review

1. Assemble the following MOV instructions by hand, using Table 6 to obtain the opcode. We
have restricted these to immediate, register, and direct operands. Write the machine lan-
guage for each instruction. When you are finished, type these instructions into an ASM
source file, assemble it and inspect the listing file (.LST). Check your machine code values
with those generated by the assembler:

.data
val1 BYTE 5
val2 WORD 256

Table 17-7 Key to Instruction Operands.

db A signed value between ñ128 and +127. If combined with a word operand,
this value is sign-extended.

dw An immediate word value that is an operand of the instruction.

eb A byte-sized operand, either register or memory.

ew A word-sized operand, either register or memory.

rb An 8-bit register identified by the value (0-7).

rw A 16-bit register identified by the value (0-7).

xb A simple byte memory variable without a base or index register.

xw A simple word memory variable without a base or index register.

Table 17-8 Sample MOV Instructions, with Machine Code.

Instruction Machine Code Addressing Mode

mov ax,[0120] A1 20 01 direct (optimized for AX)

mov [0120],bx 89 1E 20 01 direct

mov ax,bx 89 D8 register

mov [di],bx 89 1D indexed

mov [bx+2],ax 89 47 02 base-disp

mov [bx+si],ax 89 00 base-indxed

mov word ptr [bx+di+2],1234 C7 41 02 34 12 base-indexed-disp

IrviCh17v1.fm Page 11 Wednesday, May 22, 2002 6:03 PM

17-12 Chapter 17 • Advanced Topics

.code
mov al,val1
mov cx,val2
mov dx,OFFSET val1
mov dl,2
mov bx,1000h

17.3 Floating-Point Arithmetic

Before we begin a specific discussion of floating-point binary numbers, let’s be clear on a few
important terms: In the decimal number −123.154 x 105, the sign is negative, the mantissa is
123.154, and the exponent is 5.

17.3.1 IEEE Binary Floating-Point Representation

The two most common floating-point binary storage formats used by Intel processors were cre-
ated for Intel and later standardized by the IEEE organization:

Both formats use essentially the same method for storing floating-point binary numbers,
so we will use the Short Real format as an example in this tutorial. The bits in an IEEE Short
Real are arranged as follows, with the most significant bit (MSB) on the left:

17.3.1.1 The Sign
The sign of a binary floating-point number is represented by a single bit. A 1 bit indicates a neg-
ative number, and a 0 bit indicates a positive number.

17.3.1.2 The Mantissa
In Chapter 1 we introduced the concept of weighted positional notation when explaining the
binary, decimal, and hexadecimal numbering systems. The same concept can be extended now to
include the fractional part of a number. For example, the decimal value 123.154 can be repre-
sented by the following sum:

 123.154 = (1 x 102) + (2 x 101) + (3 x 10-0) + (1 x 10-1) + (5 x 10-2) + (4 x 10-3)

IEEE Short Real: 32 bits 1 bit for the sign, 8 bits for the exponent, and 23 bits for
the mantissa. Also called single precision.

IEEE Long Real: 64 bits 1 bit for the sign, 11 bits for the exponent, and 52 bits
for the mantissa. Also called double precision.

exponent mantissa

1 238

sign

IrviCh17v1.fm Page 12 Wednesday, May 22, 2002 6:03 PM

17.3 Floating-Point Arithmetic 17-13

A binary floating-point number is similar, except that we use base 2 to calculate its posi-
tional values. The floating-point binary value 11.1011 can be expressed as:

 11.1011 = (1 x 21) + (1 x 20) + (1 x 2-1) + (0 x 2-2) + (1 x 2-3) + (1 x 2-4)

Another way to express the values to the right of the decimal point in this number is to list them
as a sum of fractions whose denominators are powers of 2:

.1011 = 1/2 + 0/4 + 1/8 + 1/16

Which, of course, is 11/16 (or 0.6875). A quick way to calculate this fraction is to realize that
binary 1011 is the numerator and 24 is the denominator. Returning to our original value, binary
11.1011 is equal to decimal 3.6875. Here are additional examples:

The last entry in this table is the smallest fraction that can be stored in a 23-bit mantissa.
The following table shows a few simple examples of binary floating-point numbers along-

side their equivalent decimal fractions and decimal values:

17.3.2 The Exponent

IEEE Short Real exponents are stored as 8-bit unsigned integers with a bias of 127. Let’s use the
number 1.101 x 25 as an example. The exponent (5) is added to 127 and the sum (132) is binary
10100010. Here are some examples of exponents, first shown in decimal, then adjusted, and
finally in unsigned binary:

Binary Floating-Point Base 10 Fraction Base 10 Decimal

11.11 3 3/4 3.75

101.0011 5 3/16 5.1875

1101.100101 13 37/64 13.578125

0.00000000000000000000001 1/8388608 0.00000011920928955078125

Binary
Decimal
Fraction Decimal Value

.1 1/2 .5

.01 1/4 .25

.001 1/8 .125

.0001 1/16 .0625

.00001 1/32 .03125

IrviCh17v1.fm Page 13 Wednesday, May 22, 2002 6:03 PM

17-14 Chapter 17 • Advanced Topics

The binary exponent is unsigned, and therefore cannot be negative. The largest possible expo-
nent is 128. When added to 127, their sum is 255, the largest unsigned value represented by 8
bits. The approximate range is from 1.0 x 2-127 to 1.0 x 2+128.

17.3.3 Normalizing the Mantissa

Before a floating-point binary number can be stored correctly, its mantissa must be normalized.
The process is basically the same as when normalizing a floating-point decimal number. For
example, decimal 1234.567 is normalized as 1.234567 x 103 by moving the decimal point so that
only one digit appears before the decimal. The exponent expresses the number of positions the
decimal point was moved left (positive exponent) or moved right (negative exponent).

Similarly, the floating-point binary value 1101.101 is normalized as 1.101101 x 23 by
moving the decimal point 3 positions to the left, and multiplying by 23. Here are some examples
of normalizations:

You may have noticed that in a normalized mantissa, the digit 1 always appears to the left of the
decimal point. In fact, the leading 1 is omitted from the mantissa in the IEEE storage format
because it is redundant.

Exponent (E)
Adjusted
(E + 127) Binary

+5 132 10000100

0 127 01111111

-10 117 01110101

+128 255 11111111

-127 0 00000000

-1 126 01111110

Binary Value Normalized As Exponent

1101.101 1.101101 3

.00101 1.01 -3

1.0001 1.0001 0

10000011.0 1.0000011 7

IrviCh17v1.fm Page 14 Wednesday, May 22, 2002 6:03 PM

17.3 Floating-Point Arithmetic 17-15

17.3.4 Creating the IEEE Bit Representation

We can now combine the sign, exponent, and normalized mantissa into the binary IEEE short
real representation. Using Figure 1 as a reference, the value 1.101 x 20 is stored as sign = 0 (pos-
itive), mantissa = 101, and exponent = 01111111 (the exponent value is added to 127). The "1"
to the left of the decimal point is dropped from the mantissa. Here are more examples:

17.3.5 Converting Decimal Fractions to Binary Reals

If a decimal fraction can be easily represented as a sum of fractions in the form (1/2 + 1/4 + 1/8
+ ...), it is fairly easy to discover the corresponding binary real. Here are a few simple examples

Many real numbers do not turn out to be simple. A fraction such as 1/5 (0.2), for example,
is represented by a sum of fractions whose denominators are powers of 2. This produces a rather
complex sum of fractions that is only an approximation of 1/5.

Example: Represent 0.2 in Binary Here is the output from a program that subtracts each
succesive fraction from 0.2 and shows each remainder. An exact value is not found after creating

Binary Value
Biased

Exponent Sign, Exponent, Mantissa

-1.11 127 1 01111111 11000000000000000000000

+1101.101 130 0 10000010 10110100000000000000000

-.00101 124 1 01111100 01000000000000000000000

+100111.0 132 0 10000100 00111000000000000000000

+.0000001101011 120 0 01111000 10101100000000000000000

Decimal Fraction Factored As... Binary Real

1/2 1/2 .1

1/4 1/4 .01

3/4 1/2 + 1/4 .11

1/8 1/8 .001

7/8 1/2 + 1/4 + 1/8 .111

3/8 1/4 + 1/8 .011

1/16 1/16 .0001

3/16 1/8 + 1/16 .0011

5/16 1/4 + 1/16 .0101

IrviCh17v1.fm Page 15 Wednesday, May 22, 2002 6:03 PM

17-16 Chapter 17 • Advanced Topics

the 23 mantissa bits. The result is at least accurate to 7 digits. Blank lines are shown for fractions
that were too large to be subtracted from the remaining value of the number. Bit 1, for example,
is equal to .5 (1/2), which could not be subtracted from 0.2.

starting: 0.200000000000

 1

 2
 3 subtracting 0.125000000000
 remainder = 0.075000000000
 4 subtracting 0.062500000000

 remainder = 0.012500000000
 5
 6
 7 subtracting 0.007812500000

 remainder = 0.004687500000
 8 subtracting 0.003906250000
 remainder = 0.000781250000
 9

10
11 subtracting 0.000488281250
 remainder = 0.000292968750
12 subtracting 0.000244140625

 remainder = 0.000048828125
13
14
15 subtracting 0.000030517578

 remainder = 0.000018310547

16 subtracting 0.000015258789
 remainder = 0.000003051758
17

18
19 subtracting 0.000001907349
 remainder = 0.000001144409
20 subtracting 0.000000953674

 remainder = 0.000000190735
21
22
23 subtracting 0.000000119209

 remainder = 0.000000071526
Mantissa: .00110011001100110011001

The bit pattern in the Mantissa follows, from left to right, the progress of our subtracting frac-
tions from the remaining value of the number. Even at step 23, after subtracting 1/23, there is a
remainder of .000000071526 which cannot be calculated. We ran out of mantissa bits!

IrviCh17v1.fm Page 16 Wednesday, May 22, 2002 6:03 PM

17.3 Floating-Point Arithmetic 17-17

17.3.6 IA-32 Floating Point Architecture

The original Intel 8086 processor was designed for integers only. This turned out to be a problem
for graphics and calculation-intensive software that primarily uses floating-point calculations. It
is possible to emulate floating-point arithmetic purely through software, but the performance
penalty is severe. Programs such as AutoCad (by Autodesk) demanded a more powerful way to
perform floating-point math.

Intel sold a floating-point coprocessor named the 8087, and upgraded it along with each
processor generation. Later, as it was integrated into the main CPU, it was renamed the Floating-
Point Unit (FPU) . Originally, the FPU was a separate chip; with the introduction to the Intel486,
the FPU was integrated into the main CPU.

Data Registers The FPU has eight individually addressable 80-bit registers arranged in the
form of a register stack, named R0 through R7 (see Figure 17-2). All references to the registers
are relative to the top of the stack, identified by a 3-bit field named TOP in the FPU status word.

A load operation decrements TOP by 1 and pushes a value on the stack. A store operation
pops the value from the stack location identified by TOP, and increments TOP by 1. Instructions that
access the stack use notation such as ST(0), ST(1), and ST(2). These operands are relative to the
location pointed to by TOP. Register ST(0), often referred to as ST, is located at the top of the stack.

If TOP points at R0 and another value is pushed on the stack, TOP wraps around to R7. If dec-
rementing TOP would result in overwriting unsaved data in the register stack, an exception is
generated.

Numbers are held in registers while being used in calculations, in 10-byte temporary real
format. When the FPU stores the result of an arithmetic operation in memory, it automatically
translates the number from temporary real format to one of the following formats: integer, long
integer, short real, or long real.

Figure 17-2 Floating-Point Data Register Stack

080

R0

R1

R2

R3

R4

R5

R6

ST(0)

ST(1)

ST(2)

010

R7

TOP

IrviCh17v1.fm Page 17 Wednesday, May 22, 2002 6:03 PM

17-18 Chapter 17 • Advanced Topics

Floating-point values are transferred to and from the main CPU via memory, so you must
always store an operand in memory before invoking the FPU. The FPU can load a number from
memory into its register stack, perform an arithmetic operation, and store the result in memory.
The FPU has six special-purpose registers (see Figure 17-3):

• A 10-bit opcode register
• A 16-bit control register
• A 16-bit status registers
• A 16-bit tag word register
• A 48-bit last instruction pointer register
• A 48-bit last data (operand) pointer register

(IA-32 logical addresses in Protected mode require a total of 48 bits: 16 for the segment selector,
and 32 bits for the offset.)

17.3.7 Instruction Formats

Floating-point instructions always begin with the letter F to distinguish them from CPU instruc-
tions. The second letter of an instruction (often B or I) indicates how a memory operand is to be
interpreted: B indicates a binary-coded decimal (BCD) operand, and I indicates a binary integer
operand. If neither is specified, the memory operand is assumed to be in real-number format. For
example, FBLD operates on BCD numbers, FILD operates on integers, and FMUL operates on
real numbers.

A floating-point instruction can have up to two operands, as long as one of them is a float-
ing-point register. Immediate operands are not allowed, except for the FSTSW (store status
word) instruction. CPU registers such as AX and EBX are not permitted as operands. Memory-
to-memory operations are not permitted.

Figure 17-3 FPU General-Purpose Registers.

Control Register

Status Register

Tag Register

Last Instruction Pointer

Last Data (Operand) Pointer

Opcode Register

010

15

47

IrviCh17v1.fm Page 18 Wednesday, May 22, 2002 6:03 PM

17.3 Floating-Point Arithmetic 17-19

There are six basic instruction formats, shown in Table 17-9. In the operands column, n
refers to a register number (0-7), memReal refers to a single or double precision real memory
operand, memInt refers to a 16-bit integer, and op refers to an arithmetic operation. Operands
surrounded by braces {...} are implied operands and are not explicitly coded. ST is used in place
of ST(0), though they refer to the same register.

Implied operands are not coded but are understood to be part of the operation. The opera-
tion may be one of the following:

A memReal operand can be one of the following: a 4-byte short real, an 8-byte long real, a
10-byte packed BCD, a 10-byte temporary real, A memInt operand can be a 2-byte word integer,
a 4-byte short integer, or an 8-byte long integer.

Classical Stack A classical stack instruction operates on the registers at the top of the stack. No
explicit operands are needed. By default, ST(0) is the source operand and ST(1) is the destination.
The result is temporarily stored in ST(1). ST(0) is then popped from the stack, leaving the result

Table 17-9 Basic FPU Instruction Formats.

Instruction
Format

Mnemonic
Format

Operands (Dest,
Source) Example

Classical Stack Fop {ST(1),ST} FADD

Classical Stack,
extra pop

FopP {ST(1),ST} FSUBP

Register Fop ST(n),ST

ST, ST(n)

FMUL ST(1),ST

FDIV ST,ST(3)

Register, pop FopP ST(n),ST FADDP ST(2),ST

Real Memory Fop {ST},memReal FDIVR

Integer Memory FIop {ST},memInt FSUBR hours

ADD add source to destination

SUB Subtract source from destination

SUBR Subtract destination from source

MUL Multiply source by destination

DIV Divide destination by source

DIVR Divide source by destination

IrviCh17v1.fm Page 19 Wednesday, May 22, 2002 6:03 PM

17-20 Chapter 17 • Advanced Topics

on the top of the stack. The FADD instruction, for example, adds ST(0) to ST(1) and leaves the
result at the top of the stack:

fld op1 ; op1 = 20.0
fld op2 ; op2 = 100.0
fadd

Real Memory and Integer Memory The real memory and integer memory instructions have
an implied first operand, ST(0). The second operand, which is explicit, is an integer or real
memory operand. Here are a few examples involving real memory operands:

FADD mySingle ; ST(0) = ST(0) + mySingle
FSUB mySingle ; ST(0) = ST(0) − mySingle
FSUBR mySingle ; ST(0) = mySingle − ST(0)

And here are the same instructions modified for integer operands:

FIADD myInteger ; ST(0) = ST(0) + myInteger
FISUB myInteger ; ST(0) = ST(0) − myInteger
FISUBR myInteger ; ST(0) = myInteger − ST(0)

Register A register instruction uses floating-point registers as ordinary operands. One of the
operands must be ST (or ST(0)). Here are a few examples:

FADD st,st(1) ; ST(0) = ST(0) + ST(1)
FDIVR st,st(3) ; ST(0) = ST(3) / ST(0)
FMUL st(2),st ; ST(2) = ST(2) * ST(0)

Register Pop A register pop instruction is identical to a Register instruction, except that when
it finishes, it pops ST(0) off the stack. For example, the following FADDP instruction adds
ST(0) to ST(1) and places the result in ST(1). Then when ST(0) is popped from the stack, the
contents of ST(1) slide up into ST(0). We can visualize three separate steps:

FADDP st(1),st

20.0

100.0ST(0)

ST(1)

Before

120.0ST(0)

ST(1)

After

200.0

32.0

ST(0)

ST(1)

Before

232.0ST(0)

ST(1)

After

200.0

232.0

ST(0)

ST(1)

Intermediate

IrviCh17v1.fm Page 20 Wednesday, May 22, 2002 6:03 PM

17.3 Floating-Point Arithmetic 17-21

17.3.8 Floating-Point Code Examples

17.3.8.1 Example 1: Evaluating an Expression
Register pop instructions are well-suited to evaluating postfix arithmetic expressions. For
example, to evaluate the following expression, we would multiply 6 by 2 and add 5 to the
product:

6 2 * 5 +

Many calculators use reverse-polish notation, in which operands are keyed in before their
operators. The algorithm for evaluating a postfix expressions is as follows:

• When reading an operand from input, push it on the stack.
• When reading an operator from input, pop the two operands located at the top of the

stack, perform the selected operation on the operands, and push the result back on the
stack.

The following program, for example, calculates the sum of two products:

TITLE FPU Expression Evaluation (Expr.asm)

; Implementation of the following expression:

; (6.0 * 2.0) + (4.5 * 3.2)

; FPU instructions used.

INCLUDE Irvine32.inc

.data

array REAL4 6.0, 2.0, 4.5, 3.2

dotProduct REAL4 ?

.code

main PROC

finit

fld array ; push 6.0 onto the stack

fmul array+4 ; ST(0) = 6.0 * 2.0

fld array+8 ; push 4.5 onto the stack

fmul array+12 ; ST(0) = 4.5 * 3.2

fadd ; ST(0) = ST(0) + ST(1)

fstp dotProduct ; pop stack into memory operand

exit

main ENDP

END main

The following illustration shows a picture of the register stack after each instruction executes:

IrviCh17v1.fm Page 21 Wednesday, May 22, 2002 6:03 PM

17-22 Chapter 17 • Advanced Topics

(The Summary was omitted because this chapter consists of several unrelated topics.)

6.0ST(0)

ST(1)

ST(2)

12.0ST(0)

ST(1)

ST(2)

fld array

fmul array+4

4.5

12.0

ST(0)

ST(1)

ST(2)

fld array+8

14.4

12.0

ST(0)

ST(1)

ST(2)

fmul array+12

26.4ST(0)

ST(1)

ST(2)

fadd

IrviCh17v1.fm Page 22 Wednesday, May 22, 2002 6:03 PM

