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1 Preface

This abbreviated manual contains detailed solutions to all problems marked with a star

in Digital Image Processing, 2nd Edition. These solutions can also be downloaded from

the book web site (www.imageprocessingbook.com).





2 Solutions (Students)

Problem 2.1

The diameter, x, of the retinal image corresponding to the dot is obtained from similar

triangles, as shown in Fig. P2.1. That is,
(d=2)

0:2
=

(x=2)

0:014
which gives x = 0:07d. From the discussion in Section 2.1.1, and taking some liberties

of interpretation, we can think of the fovea as a square sensor array having on the order of

337,000 elements, which translates into an array of size 580 £ 580 elements. Assuming

equal spacing between elements, this gives 580 elements and 579 spaces on a line 1.5

mm long. The size of each element and each space is then s = [(1:5mm)=1; 159] =

1:3£10¡6 m. If the size (on the fovea) of the imaged dot is less than the size of a single

resolution element, we assume that the dot will be invisible to the eye. In other words,

the eye will not detect a dot if its diameter, d, is such that 0:07(d) < 1:3 £ 10¡6 m, or

d < 18:6 £ 10¡6 m.

Figure P2.1
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Problem 2.3

¸ = c=v = 2:998 £ 108(m/s)=60(1/s) = 4:99 £ 106m = 5000 Km.

Problem 2.6

One possible solution is to equip a monochrome camera with a mechanical device that

sequentially places a red, a green, and a blue pass filter in front of the lens. The strongest

camera response determines the color. If all three responses are approximately equal,

the object is white. A faster system would utilize three different cameras, each equipped

with an individual filter. The analysis would be then based on polling the response of

each camera. This system would be a little more expensive, but it would be faster and

more reliable. Note that both solutions assume that the field of view of the camera(s) is

such that it is completely filled by a uniform color [i.e., the camera(s) is(are) focused on

a part of the vehicle where only its color is seen. Otherwise further analysis would be

required to isolate the region of uniform color, which is all that is of interest in solving

this problem].

Problem 2.9

(a) The total amount of data (including the start and stop bit) in an 8­bit, 1024 £ 1024

image, is (1024)2 £ [8 + 2] bits. The total time required to transmit this image over a

At 56K baud link is (1024)2 £ [8 + 2]=56000 = 187:25 sec or about 3.1 min. (b) At

750K this time goes down to about 14 sec.

Problem 2.11

Let p and q be as shown in Fig. P2.11. Then, (a) S1 and S2 are not 4­connected because

q is not in the set N4(p); (b) S1 and S2 are 8­connected because q is in the set N8(p);

(c) S1 and S2 are m­connected because (i) q is in ND(p), and (ii) the set N4(p) \ N4(q)

is empty.
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Figure P2.11

Problem 2.12

The solution to this problem consists of defining all possible neighborhood shapes to

go from a diagonal segment to a corresponding 4­connected segment, as shown in Fig.

P2.12. The algorithm then simply looks for the appropriate match every time a diagonal

segment is encountered in the boundary.

Figure P2.12

Problem 2.15

(a) When V = f0; 1g, 4­path does not exist between p and q because it is impossible to



6 Chapter 2 Solutions (Students)

get from p to q by traveling along points that are both 4­adjacent and also have values

from V . Figure P2.15(a) shows this condition; it is not possible to get to q. The shortest

8­path is shown in Fig. P2.15(b); its length is 4. The length of shortest m­ path (shown

dashed) is 5. Both of these shortest paths are unique in this case. (b) One possibility for

the shortest 4­path when V = f1; 2g is shown in Fig. P2.15(c); its length is 6. It is easily

verified that another 4­path of the same length exists between p and q. One possibility

for the shortest 8­path (it is not unique) is shown in Fig. P2.15(d); its length is 4. The

length of a shortest m­path (shoen dashed) is 6. This path is not unique.

Figure P2.15

Problem 2.16

(a) A shortest 4­path between a point p with coordinates (x; y) and a point q with coor­

dinates (s; t) is shown in Fig. P2.16, where the assumption is that all points along the

path are from V . The length of the segments of the path are jx ¡ sj and jy ¡ tj, respec­

tively. The total path length is jx ¡ sj + jy ¡ tj, which we recognize as the definition

of the D4 distance, as given in Eq. (2.5­16). (Recall that this distance is independent of

any paths that may exist between the points.) The D4 distance obviously is equal to the

length of the shortest 4­path when the length of the path is jx ¡ sj + jy ¡ tj. This oc­

curs whenever we can get from p to q by following a path whose elements (1) are from

V; and (2) are arranged in such a way that we can traverse the path from p to q by mak­

ing turns in at most two directions (e.g., right and up). (b) The path may of may not be

unique, depending on V and the values of the points along the way.
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Figure P2.16

Problem 2.18

With reference to Eq. (2.6­1), let H denote the neighborhood sum operator, let S1 and

S2 denote two different small subimage areas of the same size, and let S1+S2 denote the

corresponding pixel­by­pixel sum of the elements in S1 and S2, as explained in Section

2.5.4. Note that the size of the neighborhood (i.e., number of pixels) is not changed by

this pixel­by­pixel sum. The operator H computes the sum of pixel values is a given

neighborhood. Then, H(aS1 + bS2) means: (1) multiplying the pixels in each of the

subimage areas by the constants shown, (2) adding the pixel­by­pixel values from S1 and

S2 (which produces a single subimage area), and (3) computing the sum of the values

of all the pixels in that single subimage area. Let ap1 and bp2 denote two arbitrary (but

corresponding) pixels from aS1 + bS2. Then we can write

H(aS1 + bS2) =
X

p12S1 and p22S2

ap1 + bp2

=
X

p12S1

ap1 +
X

p22S2

bp2

= a
X

p12S1

p1 + b
X

p22S2

p2

= aH(S1) + bH(S2)

which, according to Eq. (2.6­1), indicates that H is a linear operator.
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Problem 3.2

(a)

s = T (r) =
1

1 + (m=r)E
:

Problem 3.4

(a) The number of pixels having different gray level values would decrease, thus causing

the number of components in the histogram to decrease. Since the number of pixels

would not change, this would cause the height some of the remaining histogram peaks

to increase in general. Typically, less variability in gray level values will reduce contrast.

Problem 3.5

All that histogram equalization does is remap histogram components on the intensity

scale. To obtain a uniform (flat) histogram would require in general that pixel intensities

be actually redistributed so that there are L groups of n=L pixels with the same intensity,

where L is the number of allowed discrete intensity levels and n is the total number of

pixels in the input image. The histogram equalization method has no provisions for this

type of (artificial) redistribution process.

Problem 3.8

We are interested in just one example in order to satisfy the statement of the problem.

Consider the probability density function shown in Fig. P3.8(a). A plot of the trans­

formation T (r) in Eq. (3.3­4) using this particular density function is shown in Fig.

P3.8(b). Because pr(r) is a probability density function we know from the discussion
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in Section 3.3.1 that the transformation T (r) satisfies conditions (a) and (b) stated in

that section. However, we see from Fig. P3.8(b) that the inverse transformation from s

back to r is not single valued, as there are an infinite number of possible mappings from

s = 1=2 back to r. It is important to note that the reason the inverse transformation

function turned out not to be single valued is the gap in pr(r) in the interval [1=4; 3=4].

Figure P3.8.

Problem 3.9

(c) If none of the gray levels rk; k = 1; 2; : : : ; L ¡ 1; are 0, then T (rk) will be strictly

monotonic. This implies that the inverse transformation will be of finite slope and this

will be single­valued.

Problem 3.11

The value of the histogram component corresponding to the kth intensity level in a neigh­

borhood is

pr(rk) =
nk

n
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for k = 1; 2; : : : ;K ¡ 1;where nk is the number of pixels having gray level value rk, n

is the total number of pixels in the neighborhood, and K is the total number of possible

gray levels. Suppose that the neighborhood is moved one pixel to the right. This deletes

the leftmost column and introduces a new column on the right. The updated histogram

then becomes

p0
r(rk) =

1

n
[nk ¡ nLk

+ nRk
]

for k = 0; 1; : : : ;K ¡ 1, where nLk is the number of occurrences of level rk on the left

column and nRk
is the similar quantity on the right column. The preceding equation can

be written also as

p0
r(rk) = pr(rk) +

1

n
[nRk

¡ nLk
]

for k = 0; 1; : : : ; K ¡ 1: The same concept applies to other modes of neighborhood

motion:

p0
r(rk) = pr(rk) +

1

n
[bk ¡ ak]

for k = 0; 1; : : : ;K ¡1, where ak is the number of pixels with value rk in the neighbor­

hood area deleted by the move, and bk is the corresponding number introduced by the

move.

¾2
g = ¾2

f +
1

K2
[¾2

´1
+ ¾2

´2
+ ¢ ¢ ¢ + ¾2

´
K

]

The first term on the right side is 0 because the elements of f are constants. The various

¾2
´i

are simply samples of the noise, which is has variance ¾2
´. Thus, ¾2

´i
= ¾2

´ and we

have

¾2
g =

K

K2
¾2

´ =
1

K
¾2

´

which proves the validity of Eq. (3.4­5).

Problem 3.14

Let g(x; y) denote the golden image, and let f(x; y) denote any input image acquired

during routine operation of the system. Change detection via subtraction is based on

computing the simple difference d(x; y) = g(x; y) ¡ f(x; y). The resulting image

d(x; y) can be used in two fundamental ways for change detection. One way is use a

pixel­by­pixel analysis. In this case we say that f(x; y) is ”close enough” to the golden

image if all the pixels in d(x; y) fall within a specified threshold band [Tmin; Tmax]

where Tmin is negative and Tmax is positive. Usually, the same value of threshold is
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used for both negative and positive differences, in which case we have a band [¡T; T ]

in which all pixels of d(x; y) must fall in order for f(x; y) to be declared acceptable.

The second major approach is simply to sum all the pixels in jd(x; y)j and compare the

sum against a threshold S. Note that the absolute value needs to be used to avoid errors

cancelling out. This is a much cruder test, so we will concentrate on the first approach.

There are three fundamental factors that need tight control for difference­based inspec­

tion to work: (1) proper registration, (2) controlled illumination, and (3) noise levels

that are low enough so that difference values are not affected appreciably by variations

due to noise. The first condition basically addresses the requirement that comparisons

be made between corresponding pixels. Two images can be identical, but if they are

displaced with respect to each other, comparing the differences between them makes

no sense. Often, special markings are manufactured into the product for mechanical or

image­based alignment

Controlled illumination (note that “illumination” is not limited to visible light) obviously

is important because changes in illumination can affect dramatically the values in a

difference image. One approach often used in conjunction with illumination control is

intensity scaling based on actual conditions. For example, the products could have one

or more small patches of a tightly controlled color, and the intensity (and perhaps even

color) of each pixels in the entire image would be modified based on the actual versus

expected intensity and/or color of the patches in the image being processed.

Finally, the noise content of a difference image needs to be low enough so that it does

not materially affect comparisons between the golden and input images. Good signal

strength goes a long way toward reducing the effects of noise. Another (sometimes

complementary) approach is to implement image processing techniques (e.g., image

averaging) to reduce noise.

Obviously there are a number if variations of the basic theme just described. For exam­

ple, additional intelligence in the form of tests that are more sophisticated than pixel­by­

pixel threshold comparisons can be implemented. A technique often used in this regard

is to subdivide the golden image into different regions and perform different (usually

more than one) tests in each of the regions, based on expected region content.

Problem 3.17

(a) Consider a 3 £ 3 mask first. Since all the coefficients are 1 (we are ignoring the 1/9
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scale factor), the net effect of the lowpass filter operation is to add all the gray levels of

pixels under the mask. Initially, it takes 8 additions to produce the response of the mask.

However, when the mask moves one pixel location to the right, it picks up only one new

column. The new response can be computed as

Rnew = Rold ¡ C1 + C3

where C1 is the sum of pixels under the first column of the mask before it was moved,

and C3 is the similar sum in the column it picked up after it moved. This is the basic

box­filter or moving­average equation. For a 3 £ 3 mask it takes 2 additions to get C3

(C1 was already computed). To this we add one subtraction and one addition to get

Rnew. Thus, a total of 4 arithmetic operations are needed to update the response after

one move. This is a recursive procedure for moving from left to right along one row of

the image. When we get to the end of a row, we move down one pixel (the nature of the

computation is the same) and continue the scan in the opposite direction.

For a mask of size n £ n, (n ¡ 1) additions are needed to obtain C3, plus the single

subtraction and addition needed to obtain Rnew, which gives a total of (n + 1) arith­

metic operations after each move. A brute­force implementation would require n2 ¡ 1

additions after each move.

Problem 3.19

(a) There are n2 points in an n £ n median filter mask. Since n is odd, the median

value, ³ , is such that there are (n2 ¡ 1)=2 points with values less than or equal to ³

and the same number with values greater than or equal to ³. However, since the area

A (number of points) in the cluster is less than one half n2, and A and n are integers,

it follows that A is always less than or equal to (n2 ¡ 1)=2. Thus, even in the extreme

case when all cluster points are encompassed by the filter mask, there are not enough

points in the cluster for any of them to be equal to the value of the median (remember,

we are assuming that all cluster points are lighter or darker than the background points).

Therefore, if the center point in the mask is a cluster point, it will be set to the median

value, which is a background shade, and thus it will be “eliminated” from the cluster.

This conclusion obviously applies to the less extreme case when the number of cluster

points encompassed by the mask is less than the maximum size of the cluster.



14 Chapter 3 Solutions (Students)

Problem 3.20

(a) Numerically sort the n2 values. The median is

³ = [(n2 + 1)=2]­th largest value.

(b) Once the values have been sorted one time, we simply delete the values in the trailing

edge of the neighborhood and insert the values in the leading edge in the appropriate

locations in the sorted array.

Problem 3.22

From Fig. 3.35, the vertical bars are 5 pixels wide, 100 pixels high, and their separation

is 20 pixels. The phenomenon in question is related to the horizontal separation between

bars, so we can simplify the problem by considering a single scan line through the bars

in the image. The key to answering this question lies in the fact that the distance (in

pixels) between the onset of one bar and the onset of the next one (say, to its right) is 25

pixels. Consider the scan line shown in Fig. P3.22. Also shown is a cross section of a

25£25 mask. The response of the mask is the average of the pixels that it encompasses.

We note that when the mask moves one pixel to the right, it loses on value of the vertical

bar on the left, but it picks up an identical one on the right, so the response doesn’t

change. In fact, the number of pixels belonging to the vertical bars and contained

within the mask does not change, regardless of where the mask is located (as long as it

is contained within the bars, and not near the edges of the set of bars). The fact that the

number of bar pixels under the mask does not change is due to the peculiar separation

between bars and the width of the lines in relation to the 25­pixel width of the mask

This constant response is the reason no white gaps is seen in the image shown in the

problem statement. Note that this constant response does not happen with the 23 £ 23

or the 45£45 masks because they are not ”synchronized” with the width of the bars and

their separation.

Figure P3.22
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Problem 3.25

The Laplacian operator is defined as

r2f =
@2f

@x2
+

@2f

@y2

for the unrotated coordinates and as

r2f =
@2f

@x02 +
@2f

@y02 :

for rotated coordinates. It is given that

x = x0 cos µ ¡ y0 sin µ and y = x0 sin µ + y0 cos µ

where µ is the angle of rotation. We want to show that the right sides of the first two

equations are equal. We start with
@f

@x0 =
@f

@x

@x

@x0 +
@f

@y

@y

@x0

=
@f

@x
cos µ +

@f

@y
sin µ

Taking the partial derivative of this expression again with respect to x0 yields

@2f

@x02 =
@2f

@x2
cos2 µ +

@

@x

µ
@f

@y

¶
sin µ cos µ +

@

@y

µ
@f

@x

¶
cos µ sin µ +

@2f

@y2
sin2 µ

Next, we compute
@f

@y0 =
@f

@x

@x

@y0 +
@f

@y

@y

@y0

= ¡@f

@x
sin µ +

@f

@y
cos µ

Taking the derivative of this expression again with respect to y0 gives

@2f

@y02 =
@2f

@x2
sin2 µ ¡ @

@x

µ
@f

@y

¶
cos µ sinµ ¡ @

@y

µ
@f

@x

¶
sin µ cos µ +

@2f

@y2
cos2 µ

Adding the two expressions for the second derivatives yields

@2f

@x02 +
@2f

@y02 =
@2f

@x2
+

@2f

@y2

which proves that the Laplacian operator is independent of rotation.

Problem 3.27

Consider the following equation:
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f(x; y) ¡ r2f(x; y) = f(x; y) ¡ [f(x + 1; y) + f(x ¡ 1; y) + f(x; y + 1)

+f(x; y ¡ 1) ¡ 4f(x; y)]

= 6f(x; y) ¡ [f(x + 1; y) + f(x ¡ 1; y) + f(x; y + 1)

+f(x; y ¡ 1) + f(x; y)]

= 5 f1:2f(x; y)¡
1

5
[f(x + 1; y) + f(x ¡ 1; y) + f(x; y + 1)

+f(x; y ¡ 1) + f(x; y)]g
= 5

£
1:2f(x; y) ¡ f(x; y)

¤

where f(x; y) denotes the average of f(x; y) in a predefined neighborhood that is cen­

tered at (x; y) and includes the center pixel and its four immediate neighbors. Treating

the constants in the last line of the above equation as proportionality factors, we may

write

f(x; y) ¡ r2f(x; y) s f(x; y) ¡ f(x; y):

The right side of this equation is recognized as the definition of unsharp masking given

in Eq. (3.7­7). Thus, it has been demonstrated that subtracting the Laplacian from an

image is proportional to unsharp masking.
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Problem 4.1

By direct substitution of f(x) [Eq. (4.2­6)] into F (u) [Eq. (4.2­5)]:

F (u) =
1

M

M¡1X

x=0

"
M¡1X

r=0

F (r)ej2¼rx=M

#
e¡j2¼ux=M

=
1

M

M¡1X

r=0

F (r)
M¡1X

x=0

ej2¼rx=Me¡j2¼ux=M

=
1

M
F (u) [M ]

= F (u)

where the third step follows from the orthogonality condition given in the problem state­

ment. Substitution of F (u) into f(x) is handled in a similar manner.

Problem 4.4

An important aspect of this problem is to recognize that the quantity (u2 + v2) can

be replaced by the distance squared, D2(u; v). This reduces the problem to one vari­

able, which is notationally easier to manage. Rather than carry an award capital letter

throughout the development, we define w2 , D2(u; v) = (u2 + v2). Then we proceed

as follows:

H(w) = e¡w2=2¾2

:

The inverse Fourier transform is

h(z) =

Z 1

¡1
H(w)ej2¼wzdw

=

Z 1

¡1
e¡w2=2¾2

ej2¼wzdw

=

Z 1

¡1
e¡ 1

2¾2 [w2¡j4¼¾2wz]dw:

RCG


RCG


RCG


RCG

RCG
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We now make use of the identity

e¡ (2¼)2z2¾2

2 e
(2¼)2z2¾2

2 = 1:

Inserting this identity in the preceding integral yields

h(z) = e¡ (2¼)2z2¾2

2

Z 1

¡1
e¡ 1

2¾2 [w2¡j4¼¾2wz¡(2¼)2¾4z2]dw

= e¡ (2¼)2z2¾2

2

Z 1

¡1
e¡ 1

2¾2 [w ¡ j2¼¾2z]2dw:

Next we make the change of variable r = w ¡ j2¼¾2z. Then, dr = dw and the above

integral becomes

h(z) == e¡ (2¼)2z2¾2

2

Z 1

¡1
e¡ r2

2¾2 dr:

Finally, we multiply and divide the right side of this equation by
p

2¼¾:

h(z) =
p

2¼¾e¡ (2¼)2z2¾2

2

·
1p
2¼¾

Z 1

¡1
e¡ r2

2¾2 dr

¸
:

The expression inside the brackets is recognized as a Gaussian probability density func­

tion, whose integral from ¡1 to 1 is 1. Then,

h(z) =
p

2¼¾e¡ (2¼)2z2¾2

2 :

Going back to two spatial variables gives the final result:h(x; y) =
p

2¼¾ e¡2¼2¾2(x2+y2):

Problem 4.6

(a) We note first that (¡1)x+y = ej¼(x+y). Then,

=
h
f(x; y)ej¼(x+y)

i
=

1

MN

M¡1X

x=0

N¡1X

y=0

h
f(x; y)ej¼(x+y)

i
e¡j2¼(ux=M + vy=N)

=
1

MN

M¡1X

x=0

N¡1X

y=0

h
f(x; y)e¡j2¼(¡ xM

2M ¡ yN
2N )

i

e¡j2¼(ux=M + vy=N)

=
1

MN

M¡1X

x=0

N¡1X

y=0

f(x; y)e¡j2¼(x[u¡ M
2 ]=M+y[v¡ N

2 ]=N)

= F (u ¡ M=2; v ¡ N=2):

Problem 4.8

With reference to Eq. (4.4­1), all the highpass filters in discussed in Section 4.4 can be

expressed a 1 minus the transfer function of lowpass filter (which we know do not have
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an impulse at the origin). The inverse Fourier transform of 1 gives an impulse at the

origin in the highpass spatial filters.

Problem 4.11

Starting from Eq. (4.2­30), we easily find the expression for the definition of continuous

convolution in one dimension:

f(x) ¤ g(x) =

Z 1

¡1
f(®)g(x ¡ ®)d®:

The Fourier transform of this expression is

= [f(x) ¤ g(x)] =

Z 1

¡1

·Z 1

¡1
f(®)g(x ¡ ®)d®

¸
e¡j2¼uxdx

=

Z 1

¡1
f(®)

·Z 1

¡1
g(x ¡ ®)e¡j2¼uxdx

¸
d®:

The term inside the inner brackets is the Fourier transform of g(x ¡ ®). But,

= [g(x ¡ ®)] = G(u)e¡j2¼u®

so

= [f(x) ¤ g(x)] =

Z 1

¡1
f(®)

£
G(u)e¡j2¼u®

¤
d®

= G(u)

Z 1

¡1
f(®)e¡j2¼u®d®

= G(u)F (u):

This proves that multiplication in the frequency domain is equal to convolution in the

spatial domain. The proof that multiplication in the spatial domain is equal to convolu­

tion in the spatial domain is done in similar way.

Problem 4.13

(a) One application of the filter gives:

G(u; v) = H(u; v)F (u; v)

= e¡D2(u;v)=2D2
0F (u; v):

Similarly, K applications of the filter would give

GK(u; v) = e¡KD2(u;v)=2D2
0F (u; v):

The inverse DFT of GK(u; v) would give the image resulting from K passes of the

Gaussian filter. If K is “large enough,” the Gaussian LPF will become a notch pass

filter, passing only F (0; 0). We know that this term is equal to the average value of the

image. So, there is a value of K after which the result of repeated lowpass filtering
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will simply produce a constant image. The value of all pixels on this image will be

equal to the average value of the original image. Note that the answer applies even as

K approaches infinity. In this case the filter will approach an impulse at the origin, and

this would still give us F (0; 0) as the result of filtering.

Problem 4.15

The problem statement gives the form of the difference in the x­direction. A similar

expression gives the difference in the y­direction. The filtered function in the spatial

domain then is:

g(x; y) = f(x; y) ¡ f(x + 1; y) + f(x; y) ¡ f(x; y + 1):

From Eq. (4.6­2),

G(u; v) = F (u; v) ¡ F (u; v)ej2¼u=M + F (u; v) ¡ F (u; v)ej2¼v=N

= [1 ¡ ej2¼u=M ]F (u; v) + [1 ¡ ej2¼v=N ]F (u; v)

= H(u; v)F (u; v);

where H(u; v) is the filter function:

H(u; v) = ¡2j
h
sin(¼u=M)ej¼u=M + sin(¼v=N)ej¼v=N

i
:

(b) To see that this is a highpass filter, it helps to express the filter function in the form

of our familiar centered functions:

H(u; v) = ¡2j
h
sin(¼[u ¡ M=2]=M)ej¼u=M + sin(¼[v ¡ N=2]=N)ej¼v=N

i
:

Consider one variable for convenience. As u ranges from 0 to M , H(u; v) starts at

its maximum (complex) value of 2j for u = 0 and decreases from there. When u =

M=2 (the center of the shifted function), A similar argument is easily carried out when

considering both variables simultaneously.. The value of H(u; v) starts increasing again

and achieves the maximum value of 2j again when u = M . Thus, this filter has a

value of 0 a the origin and increases with increasing distance from the origin. This

is the characteristic of a highpass filter. A similar argument is easily carried out when

considering both variables simultaneously.

Problem 4.18

The answer is no. The Fourier transform is a linear process, while the square and square

roots involved in computing the gradient are nonlinear operations. The Fourier trans­

form could be used to compute the derivatives (as differences—see Prob.4.15), but the
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squares, square root, or absolute values must be computed directly in the spatial domain.

Problem 4.21

Recall that the reason for padding is to establish a ”buffer” between the periods that are

implicit in the DFT. Imagine the image on the left being duplicated infinitely many times

to cover the xy­plane. The result would be a checkerboard, with each square being in

the checkerboard being the image (and the black extensions). Now imagine doing the

same thing to the image on the right. The results would be indistinguishable. Thus,

either form of padding accomplishes the same separation between images, as desired.

Problem 4.24

(a) and (b) See Figs. P4.24(a) and (b).

Figures P4.24(a) and (b)

Problem 4.25

Because M = 2n, we can write Eqs. (4.6­47) and (4.6­48) respectively as

m(n) =
1

2
Mn

and

a(n) = Mn:

Proof by induction begins by showing that both equations hold for n = 1:

m(1) =
1

2
(2)(1) = 1 and a(1) = (2)(1) = 2:
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We know these results to be correct from the discussion in Section 4.6.6. Next, we

assume that the equations hold for n. Then, we are required to prove that they also are

true for n + 1. From Eq. (4.6­45),

m(n + 1) = 2m(n) + 2n:

Substituting m(n) from above,

m(n + 1) = 2

µ
1

2
Mn

¶
+ 2n

= 2

µ
1

2
2nn

¶
+ 2n

= 2n(n + 1)

=
1

2

¡
2n+1

¢
(n + 1):

Therefore, Eq. (4.6­47) is valid for all n.

From Eq. (4.6­46),

a(n + 1) = 2a(n) + 2n+1:

Substituting the above expression for a(n) yields

a(n + 1) = 2Mn + 2n+1

= 2(2nn) + 2n+1

= 2n+1(n + 1)

which completes the proof.
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Problem 5.1

The solutions to (a), (b), and (c) are shown in Fig. P5.1, from left to right:

Figure P5.1

Problem 5.3

The solutions to (a), (b), and (c) are shown in Fig. P5.3, from left to right:

Figure P5.3



24 Chapter 5 Solutions (Students)

Problem 5.5

The solutions to (a), (b), and (c) are shown in Fig. P5.5, from left to right:

Figure P5.5

Problem 5.7

The solutions to (a), (b), and (c) are shown in Fig. P5.7, from left to right:

Figure P5.7

Problem 5.9

The solutions to (a), (b), and (c) are shown in Fig. P5.9, from left to right:
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Figure P5.9

Problem 5.10

(a) The key to this problem is that the geometric mean is zero whenever any pixel is

zero. Draw a profile of an ideal edge with a few points valued 0 and a few points valued

1. The geometric mean will give only values of 0 and 1, whereas the arithmetic mean

will give intermediate values (blur).

Problem 5.12

A bandpass filter is obtained by subtracting the corresponding bandreject filter from 1:

Hbp(u; v) = 1 ¡ Hbr(u; v):

Then:

(a) Ideal bandpass filter:

HIbp(u; v) =

8
><
>:

0 if D(u; v) < D0 ¡ W
2

1 if D0 ¡ W
2 · D(u; v) · D0 + W

2 :

0 D(u; v) > D0 + W
2

(b) Butterworth bandpass filter:

HBbp(u; v) = 1 ¡ 1

1 +
h

D(u;v)W
D2(u;v)¡D2

0

i2n

=

h
D(u;v)W

D2(u;v)¡D2
0

i2n

1 +
h

D(u;v)W
D2(u;v)¡D2

0

i2n :
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(c) Gaussian bandpass filter:

HGbp(u; v) = 1 ¡
"
1 ¡ e

¡ 1
2

·
D2(u;v)¡D2

0
D(u;v)W

¸2#

= e
¡ 1

2

·
D2(u;v)¡D2

0
D(u;v)W

¸2

:

Problem 5.14

We proceed as follows:

F (u; v) =

ZZ 1

¡1
f(x; y)e¡j2¼(ux + vy)dx dy

=

ZZ 1

¡1
A sin(u0x + v0y)e¡j2¼(ux + vy)dx dy:

Using the exponential definition of the sine function:

sin µ =
1

2j

¡
ejµ ¡ e¡jµ

¢

gives us

F (u; v) =
¡jA

2

ZZ 1

¡1

h
ej(u0x + v0y) ¡ e¡j(u0x + v0y)

i
e¡j2¼(ux + vy)dxdy

=
¡jA

2

·ZZ 1

¡1
ej2¼(u0x=2¼ + v0y=2¼)e¡j2¼(ux + vy)dxdy

¸
¡

jA

2

·ZZ 1

¡1
e¡j2¼(u0x=2¼ + v0y=2¼)e¡j2¼(ux + vy)dx dy

¸
:

These are the Fourier transforms of the functions

1 £ ej2¼(u0x=2¼ + v0y=2¼)

and

1 £ e¡j2¼(u0x=2¼ + v0y=2¼)

respectively. The Fourier transform of the 1 gives an impulse at the origin, and the

exponentials shift the origin of the impulse, as discussed in Section 4.6.1. Thus,

F (u; v) =
¡jA

2

h
±
³
u ¡ u0

2¼
; v ¡ v0

2¼

´
¡ ±

³
u +

u0

2¼
; v +

v0

2¼

´i
:

Problem 5.16

From Eq. (5.5­13),

g(x; y) =

ZZ 1

¡1
f(®; ¯)h(x ¡ ®; y ¡ ¯) d® d¯:
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It is given that f(x; y) = ±(x ¡ a); so f(®;¯) = ±(® ¡ a): Then, using the impulse

response given in the problem statement,

g(x; y) =

ZZ 1

¡1
±(® ¡ a)e¡[(x¡®)2+(y¡¯)2] d® d¯

=

ZZ 1

¡1
±(® ¡ a)e¡[(x¡®)2] e¡[(y¡¯)2] d®d¯

=

Z 1

¡1
±(® ¡ a)e¡[(x¡®)2] d®

Z 1

¡1
e¡[(y¡¯)2] d¯

= e¡[(x¡a)2]
Z 1

¡1
e¡[(y¡¯)2] d¯

where we used the fact that the integral of the impulse is nonzero only when ® = a:

Next, we note that Z 1

¡1
e¡[(y¡¯)2] d¯ =

Z 1

¡1
e¡[(¯¡y)2] d¯

which is in the form of a constant times a Gaussian density with variance ¾2 = 1=2 or

standard deviation ¾ = 1=
p

2. In other words,

e¡[(¯¡y)2] =
p

2¼(1=2)

"
1p

2¼(1=2)
e

¡(1=2)

·
(¯¡y)2

(1=2)

¸ #
:

The integral from minus to plus infinity of the quantity inside the brackets is 1, so

g(x; y) =
p

¼e¡[(x¡a)2]

which is a blurred version of the original image.

Problem 5.18

Following the procedure in Section 5.6.3,

H(u; v) =

Z T

0

e¡j2¼ux0(t)dt

=

Z T

0

e¡j2¼u[(1=2)at2]dt

=

Z T

0

e¡j¼uat2dt

=

Z T

0

£
cos(¼uat2) ¡ j sin(¼uat2)

¤
dt

=

r
T 2

2¼uaT 2

£
C(

p
¼uaT ) ¡ jS(

p
¼uaT )

¤

where

C(x) =

r
2¼

T

Z x

0

cos t2dt
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and

S(x) =

r
2

¼

Z x

0

sin t2dt:

These are Fresnel cosine and sine integrals. They can be found, for example, the Hand­

book of Mathematical Functions, by Abramowitz, or other similar reference.

Problem 5.20

Measure the average value of the background. Set all pixels in the image, except the

cross hairs, to that gray level. Denote the Fourier transform of this image by G(u; v).

Since the characteristics of the cross hairs are given with a high degree of accuracy,

we can construct an image of the background (of the same size) using the background

gray levels determined previously. We then construct a model of the cross hairs in the

correct location (determined from he given image) using the provided dimensions and

gray level of the crosshairs. Denote by F (u; v) the Fourier transform of this new image

. The ratio G(u; v)=F (u; v) is an estimate of the blurring function H(u; v). In the likely

event of vanishing values in F (u; v), we can construct a radially­limited filter using the

method discussed in connection with Fig. 5.27. Because we know F (u; v) and G(u; v),

and an estimate of H(u; v), we can also refine our estimate of the blurring function

by substituting G and H in Eq. (5.8­3) and adjusting K to get as close as possible to a

good result for F (u; v) [the result can be evaluated visually by taking the inverse Fourier

transform]. The resulting filter in either case can then be used to deblur the image of the

heart, if desired.

Problem 5.22

This is a simple plugin problem. Its purpose is to gain familiarity with the various terms

of the Wiener filter. From Eq. (5.8­3),

HW (u; v) =

"
1

H(u; v)

jH(u; v)j2

jH(u; v)j2 + K

#

where

jH(u; v)j2 = H¤(u; v)H(u; v)

= 2¼¾2(u2 + v2)2e¡4¼2¾2(x2+y2):

Then,

HW (u; v) = ¡
" p

2¼¾(u2 + v2)e¡2¼2¾2(x2+y2)

£
2¼¾2(u2 + v2)2e¡4¼2¾2(x2+y2)

¤
+ K

#
:
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Problem 5.25

(a) It is given that ¯̄
¯F̂ (u; v)

¯̄
¯
2

= jR(u; v)j2 jG(u; v)j2 :

From Problem 5.24,¯̄
¯F̂ (u; v)

¯̄
¯
2

= jR(u; v)j2
h
jH(u; v)j2 jF (u; v)j2 + jN(u; v)j2

i
:

Forcing
¯̄
¯F̂ (u; v)

¯̄
¯
2

to equal jF (u; v)j2 gives

R(u; v) =

"
jF (u; v)j2

jH(u; v)j2 jF (u; v)j2 + jN(u; v)j2

#1=2

:

Problem 5.27

The basic idea behind this problem is to use the camera and representative coins to

model the degradation process and then utilize the results in an inverse filter operation.

The principal steps are as follows:

1. Select coins as close as possible in size and content as the lost coins. Select a back­
ground that approximates the texture and brightness of the photos of the lost coins.

2. Set up the museum photographic camera in a geometry as close as possible to give
images that resemble the images of the lost coins (this includes paying attention to
illumination). Obtain a few test photos. To simplify experimentation, obtain a TV
camera capable of giving images that resemble the test photos. This can be done by
connecting the camera to an image processing system and generating digital images,
which will be used in the experiment.

3. Obtain sets of images of each coin with different lens settings. The resulting images
should approximate the aspect angle, size (in relation to the area occupied by the
background), and blur of the photos of the lost coins.

4. The lens setting for each image in (3) is a model of the blurring process for the
corresponding image of a lost coin. For each such setting, remove the coin and
background and replace them with a small, bright dot on a uniform background,
or other mechanism to approximate an impulse of light. Digitize the impulse. Its
Fourier transform is the transfer function of the blurring process.

5. Digitize each (blurred) photo of a lost coin, and obtain its Fourier transform. At this
point, we have H(u; v) and G(u; v) for each coin.

6. Obtain an approximation to F (u; v) by using a Wiener filter. Equation (5.8­3) is
particularly attractive because it gives an additional degree of freedom (K) for ex­
perimenting.
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7. The inverse Fourier transform of each approximate F (u; v) gives the restored image.
In general, several experimental passes of these basic steps with various different
settings and parameters are required to obtain acceptable results in a problem such
as this.
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Problem 6.2

Denote by c the given color, and let its coordinates be denoted by (x0; y0). The distance

between c and c1 is

d(c; c1) =
h
(x0 ¡ x1)

2 + (y0 ¡ y1)
2
i1=2

:

Similarly the distance between c1 and c2

d(c1; c2) =
h
(x1 ¡ x2)

2 + (y1 ¡ y2)
2
i1=2

:

The percentage p1 of c1 in c is

p1 =
d(c1; c2) ¡ d(c; c1)

d(c1; c2)
£ 100:

The percentage p2 of c2 is simply p2 = 100 ¡ p1. In the preceding equation we see,

for example, that when c = c1, then d(c; c1) = 0 and it follows that p1 = 100%

and p2 = 0%. Similarly, when d(c; c1) = d(c1; c2); it follows that p1 = 0% and

p2 = 100%. Values in between are easily seen to follow from these simple relations.

Problem 6.4

Use color filters sharply tuned to the wavelengths of the colors of the three objects.

Thus, with a specific filter in place, only the objects whose color corresponds to that

wavelength will produce a predominant response on the monochrome camera. A mo­

torized filter wheel can be used to control filter position from a computer. If one of the

colors is white, then the response of the three filters will be approximately equal and

high. If one of the colors is black, the response of the three filters will be approximately

equal and low.

Problem 6.6

For the image given, the maximum intensity and saturation requirement means that the
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RGB component values are 0 or 1. We can create the following table with 0 and 255

representing black and white, respectively:

Table P6.6

Color R G B Mono R Mono G Mono B

Black 0 0 0 0 0 0

Red 1 0 0 255 0 0

Yellow 1 1 0 255 255 0

Green 0 1 0 0 255 0

Cyan 0 1 1 0 255 255

Blue 0 0 1 0 0 255

Magenta 1 0 1 255 0 255

White 1 1 1 255 255 255

Gray 0.5 0.5 0.5 128 128 128

Thus, we get the monochrome displays shown in Fig. P6.6.

Figure P6.6

Problem 6.8

(a) All pixel values in the Red image are 255. In the Green image, the first column is

all 0’s; the second column all 1’s; and so on until the last column, which is composed of

all 255’s. In the Blue image, the first row is all 255’s; the second row all 254’s, and so

on until the last row which is composed of all 0’s.

Problem 6.10

Equation (6.2­1) reveals that each component of the CMY image is a function of a single

component of the corresponding RGB image—C is a function of R, M of G, and Y of

B. For clarity, we will use a prime to denote the CMY components. From Eq. (6.5­6),
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we know that

si = kri

for i = 1; 2; 3 (for the R, G, and B components). And from Eq. (6.2­1), we know

that the CMY components corresponding to the ri and si (which we are denoting with

primes) are

ri¶= 1 ¡ ri

and

si¶= 1 ¡ si:

Thus,

ri = 1 ¡ ri¶

and

si¶= 1 ¡ si = 1 ¡ kri = 1 ¡ k (1 ¡ ri¶)

so that

si¶= kri¶+ (1 ¡ k) :

Problem 6.12

Using Eqs. (6.2­2) through (6.2­4), we get the results shown in Table P6.12.

Table P6.12

Color R G B H S I Mono H Mono S Mono I

Black 0 0 0 – 0 0 – – 0

Red 1 0 0 0 1 0.33 0 255 85

Yellow 1 1 0 0.17 1 0.67 43 255 170

Green 0 1 0 0.33 1 0.33 85 255 85

Cyan 0 1 1 0.5 1 0.67 128 255 170

Blue 0 0 1 0.67 1 0.33 170 255 85

Magenta 1 0 1 0.83 1 0.67 213 255 170

White 1 1 1 – 0 1 – 0 255

Gray 0.5 0.5 0.5 – 0 0.5 – 0 128

Note that, in accordance with Eq. (6.2­2), hue is undefined when R = G = B since

µ = cos¡1
¡

0
0

¢
. In addition, saturation is undefined when R = G = B = 0 since Eq.

(6.2­3) yields S = 1 ¡ 3 min(0)
3¢0 = 1 ¡ 0

0
. Thus, we get the monochrome display shown

in Fig. P6.12.



34 Chapter 6 Solutions (Students)

Figure P6.12

Problem 6.14

There are two important aspects to this problem. One is to approach it in HSI space

and the other is to use polar coordinates to create a hue image whose values grow as a

function of angle. The center of the image is the middle of whatever image area is used.

Then, for example, the values of the hue image along a radius when the angle is 0± would

be all 0’s. The angle then is incremented by, say, one degree, and all the values along

that radius would be 1’s, and so on. Values of the saturation image decrease linearly

in all radial directions from the origin. The intensity image is just a specified constant.

With these basics in mind it is not difficult to write a program that generates the desired

result.

Problem 6.16

(a) It is given that the colors in Fig. 6.16(a) are primary spectrum colors. It also is

given that the gray­level images in the problem statement are 8­bit images. The latter

condition means that hue (angle) can only be divided into a maximum number of 256

values. Since hue values are represented in the interval from 0± to 360± this means

that for an 8­bit image the increments between contiguous hue values are now 360=255.

Another way of looking at this is that the entire [0, 360] hue scale is compressed to the

range [0, 255]. Thus, for example, yellow (the first primary color we encounter), which

is 60± now becomes 43 (the closest integer) in the integer scale of the 8­bit image shown

in the problem statement. Similarly, green, which is 120± becomes 85 in this image.

From this we easily compute the values of the other two regions as being 170 and 213.

The region in the middle is pure white [equal proportions of red green and blue in Fig.

6.61(a)] so its hue by definition is 0. This also is true of the black background.
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Problem 6.18

Using Eq. (6.2­3), we see that the basic problem is that many different colors have the

same saturation value. This was demonstrated in Problem 6.12, where pure red, yellow,

green, cyan, blue, and magenta all had a saturation of 1. That is, as long as any one of

the RGB components is 0, Eq. (6.2­3) yields a saturation of 1.

Consider RGB colors (1, 0, 0) and (0, 0.59, 0), which represent a red and a green.

The HSI triplets for these colors [per Eq. (6.4­2) through (6.4­4)] are (0, 1, 0.33) and

(0.33, 1, 0.2), respectively. Now, the complements of the beginning RGB values (see

Section 6.5.2) are (0, 1, 1) and (1, 0.41, 1), respectively; the corresponding colors are

cyan and magenta. Their HSI values [per Eqs. (6.4­2) through (6.4­4)] are (0.5, 1, 0.66)

and (0.83, 0.48, 0.8), respectively. Thus, for the red, a starting saturation of 1 yielded

the cyan “complemented” saturation of 1, while for the green, a starting saturation of

1 yielded the magenta “complemented” saturation of 0.48. That is, the same starting

saturation resulted in two different “complemented” saturations. Saturation alone is not

enough information to compute the saturation of the complemented color.

Problem 6.20

The RGB transformations for a complement [from Fig. 6.33(b)] are:

si = 1 ¡ ri

where i = 1; 2; 3 (for the R, G, and B components). But from the definition of the

CMY space in Eq. (6.2­1), we know that the CMY components corresponding to ri and

si, which we will denote using primes, are

ri¶= 1 ¡ ri

si¶= 1 ¡ si

Thus,

ri = 1 ¡ ri¶

and

si¶= 1 ¡ si = 1 ¡ (1 ¡ ri) = 1 ¡ (1 ¡ (1 ¡ ri¶))

so that

s¶= 1 ¡ ri¶
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Problem 6.22

Based on the discussion is Section 6.5.4 and with reference to the color wheel in Fig.

6.32, we can decrease the proportion of yellow by (1) decreasing yellow, (2) increasing

blue, (3) increasing cyan and magenta, or (4) decreasing red and green.

Problem 6.24

The conceptually simplest approach is to transform every input image to the HSI color

space, perform histogram specification per the discussion in Section 3.3.2 on the inten­

sity (I) component only (leaving H and S alone), and convert the resulting intensity

component with the original hue and saturation components back to the starting color

space.

Problem 6.27

(a) The cube is composed of 6 intersecting planes in RGB space. The general equation

for such planes is

a zR + b zG + c zB + d = 0

where a, b, c, and d are parameters and the z’s are the components of any point (vector)

z in RGB space lying on the plane. If an RGB point z does not lie on the plane, and

its coordinates are substituted in the preceding equation, then equation will give either a

positive or a negative value; it will not yield zero. We say that z lies on the positive or

negative side of the plane, depending on whether the result is positive or negative. We

can change the positive side of a plane by multiplying its coefficients (except d) by ¡1.

Suppose that we test the point a given in the problem statement to see whether it is on

the positive or negative side each of the six planes composing the box, and change the

coefficients of any plane for which the result is negative. Then, a will lie on the positive

side of all planes composing the bounding box. In fact all points inside the bounding

box will yield positive values when their coordinates are substituted in the equations of

the planes. Points outside the box will give at least one negative or zero value. Thus,

the method consists of substituting an unknown color point in the equations of all six

planes. If all the results are positive, the point is inside the box; otherwise it is outside

the box. A flow diagram is asked for in the problem statement to make it simpler to

evaluate the student’s line of reasoning.
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Problem 7.2

A mean approximation pyramid is formed by forming 2 £ 2 block averages. Since the

starting image is of size 4 £ 4, J = 2, and f(x; y) is placed in level 2 of the mean

approximation pyramid. The level 1 approximation is (by taking 2 £ 2 block averages

over f(x; y) and subsampling):
"

3:5 5:5

11:5 13:5

#

and the level 0 approximation is similarly [8.5]. The completed mean approximation

pyramid is 2
66664

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3
77775

"
3:5 5:5

11:5 13:5

#h
8:5

i
:

Since no interpolation filtering is specified, pixel replication is used in the generation of

the mean prediction residual pyramid levels. Level 0 of the prediction residual pyramid

is the lowest resolution approximation, [8.5]. The level 2 prediction residual is obtained

by upsampling the level 1 approximation and subtracting it from the level 2 (original

image). Thus, we get

2
66664

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3
77775

¡

2
66664

3:5 3:5 5:5 5:5

3:5 3:5 5:5 5:5

11:5 11:5 13:5 13:5

11:5 11:5 13:5 13:5

3
77775

=

2
66664

¡2:5 ¡1:5 ¡2:5 ¡1:5

1:5 2:5 1:5 2:5

¡2:5 ¡1:5 ¡2:5 ¡1:5

1:5 2:5 1:5 2:5

:

3
77775
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Similarly, the level 1 prediction residual is obtained by upsampling the level 0 approxi­

mation and subtracting it from the level 1 approximation to yield"
3:5 5:5

11:5 13:5

#
¡

"
8:5 8:5

8:5 8:5

#
=

"
¡5 ¡3

3 5

#
:

The mean prediction residual pyramid is therefore
2
66664

¡2:5 ¡1:5 ¡2:5 ¡1:5

1:5 2:5 1:5 2:5

¡2:5 ¡1:5 ¡2:5 ¡1:5

1:5 2:5 1:5 2:5

3
77775

"
¡5 ¡3

3 5

#
[8:5] :

Problem 7.3

The number of elements in a J + 1 level pyramid is bounded by 4/3 (see Section 7.1.1):

22J

"
1 +

1

(4)1
+

1

(4)2
+ ¢ ¢ ¢ +

1

(4)J

#
· 4

3
22J

for J > 0. We can generate the following table:

Table P7.3

J Pyramid Elements Compression Ratio

0 1 1

1 5 5=4 = 1:25

2 21 21=16 = 1:3125

3 85 85=86 = 1:328
...

1 4=3 = 1:33

All but the trivial case (J = 0) are expansions. The expansion factor is a function of

and bounded by 4/3 or 1.33.

Problem 7.4

(a) The QMF filters must satisfy Eqs. (7.1­9) and (7.1­10). From Table 7.1, G0(z) =

H0(z) and H1(z) = H0(¡z), so H1(¡z) = H0(z). Thus, beginning with Eq. (7.1­9),

H0(¡z)G0(z) + H1(¡z)G1(z) = 0

H0(¡z)H0(z) ¡ H0(z)H0(¡z) = 0

0 = 0:
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Similarly, beginning with Eq. (7.1­10) and substituting for H1(z), G0(z), and G1(z)

from rows 2, 3, and 4 of Table 7.1, we get

H0(z)G0(z) + H1(z)G1(z) = 2

H0(z)H0(z) + H0(¡z)[¡H0(¡z)] = 2

H2
0 (z) ¡ H2

0 (¡z) = 2

which is the design equation for the H0(z) prototype filter in row 1 of the table.

PROBLEM 7.7 Reconstruction is performed by reversing the decomposition process;

that is, by replacing the downsamplers with upsamplers and the analysis filters by their

synthesis filter counterparts, as shown in Fig. P7.7.

Figure P7.7

Problem 7.10

(a) The basis is orthonormal and the coefficients are computed by the vector equivalent
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of Eq. (7.2­5):

®0 =
h

1p
2

1p
2

i "
3

2

#

=
5
p

2

2

®1 =
h

1p
2

¡ 1p
2

i"
3

2

#

=

p
2

2
so,

5
p

2

2
'0 +

p
2

2
'1 =

5
p

2

2

"
1p
2

1p
2

#
+

p
2

2

"
1p
2

¡ 1p
2

#

=

"
3

2

#
:

Problem 7.13

From Eq. (7.2­19) we find that

Ã3;3(x) = 23=2Ã(23x ¡ 3)

= 2
p

2Ã(8x ¡ 3)

and using the Haar wavelet function definition from Eq. (7.2­30), obtain the plot shown

in Fig. P7.13.

To express Ã3;3(x) as a function of scaling functions, we employ Eq. (7.2­28) and the

Haar wavelet vector defined in Example 7.6—that is, hÃ(0) = 1=
p

2 and hÃ(1) =

¡1=
p

2. Thus we get

Ã(x) =
X

n

hÃ(n)
p

2'(2x ¡ n)

so that

Ã(8x ¡ 3) =
X

n

hÃ(n)
p

2'(2[8x ¡ 3] ¡ n)

=
1p
2

p
2'(16x ¡ 6) +

µ¡1p
2

¶ p
2'(16x ¡ 7)

= '(16x ¡ 6) ¡ '(16x ¡ 7):

Then, since Ã3;3 = 2
p

2Ã(8x ¡ 3),
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Ã3;3 = 2
p

2Ã(8x ¡ 3)

= 2
p

2'(16x ¡ 6) ¡ 2
p

2'(16x ¡ 7):

Figure P7.13

Problem 7.17

Intuitively, the continuous wavelet transform (CWT) calculates a “resemblance index”

between the signal and the wavelet at various scales and translations. When the index is

large, the resemblance is strong; else it is weak. Thus, if a function is similar to itself

at different scales, the resemblance index will be similar at different scales. The CWT

coefficient values (the index) will have a characteristic pattern. As a result, we can say

that the function whose CWT is shown is self­similar—like a fractal signal.

Problem 7.18

(b) The DWT is a better choice when we need a space saving representation that is

sufficient for reconstruction of the original function or image. The CWT is often easier

to interpret because the built­in redundancy tends to reinforce traits of the function or

image. For example, see the self­similarity of Problem 7.18.

Problem 7.19

The filter bank is the first bank in Fig. (7.17), as shown in Fig. P7.19:
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Figure P7.19

PROBLEM 7.21 (a) Input '(n) = f1; 1; 1; 1; 1; 1; 1; 1g = '0;0(n) for a three­scale

wavelet transform with Haar scaling and wavelet functions. Since wavelet transform

coefficients measure the similarity of the input to the basis functions, the resulting trans­

form is

fW'(0; 0); WÃ(0; 0); WÃ(1; 0); WÃ(1; 1); WÃ(2; 0); WÃ(2; 1); WÃ(2; 2)

WÃ(2; 3)g = f2
p

2; 0; 0; 0; 0; 0; 0; 0g
The W'(0; 0) term can be computed using Eq. (7.3­5) with j0 = k = 0.

PROBLEM 7.22 They are both multi­resolution representations that employ a single

reduced­resolution approximation image and a series of “difference” images. For the

FWT, these “difference” images are the transform detail coefficients; for the pyramid,

they are the prediction residuals.

To construct the approximation pyramid that corresponds to the transform in Fig. 7.8(a),

we will use the FWT¡1 2­d synthesis bank of Fig. 7.22(c). First, place the 64 £ 64 ap­

proximation “coefficients” from Fig. 7.8(a) at the top of the pyramid being constructed.

Then use it, along with 64 £ 64 horizontal, vertical, and diagonal detail coefficients

from the upper­left of Fig. 7.8(a), to drive the filter bank inputs in Fig. 7.22(c). The

output will be a 128 £ 128 approximation of the original image and should be used as

the next level of the approximation pyramid. The 128 £ 128 approximation is then used

with the three 128 £ 128 detail coefficient images in the upper 1/4 of the transform in

Fig. 7.8(a) to drive the synthesis filter bank in Fig. 7.22(c) a second time—producing

a 256 £ 256 approximation that is placed as the next level of the approximation pyra­

mid. This process is then repeated a third time to recover the 512 £ 512 original image,

which is placed at the bottom of the approximation pyramid. Thus, the approximation

pyramid would have 4 levels.

PROBLEM 7.24 As can be seen in the sequence of images that are shown, the DWT
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is not shift invariant. If the input is shifted, the transform changes. Since all original

images in the problem are 128 £ 128, they become the W'(7; m; n) inputs for the FWT

computation process. The filter bank of Fig. 7.22(a) can be used with j + 1 = 7. For

a single scale transform, transform coefficients W'(6;m;n) and W i
Ã(6;m;n) for i =

H; V; D are generated. With Haar wavelets, the transformation process subdivides the

image into non­overlapping 2£2 blocks and computes 2­point averages and differences

(per the scaling and wavelet vectors). Thus, there are no horizontal, vertical, or diagonal

detail coefficients in the first two transforms shown; the input images are constant in all

2 £ 2 blocks (so all differences are 0). If the original image is shifted by 1 pixel, detail

coefficients are generated since there are then 2 £ 2 areas that are not constant. This is

the case in the third transform shown.
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Problem 8.3

Table P8.3 shows the data, its 6­bit code, the IGS sum for each step, the actual IGS 3­bit

code and its equivalent decoded value, the error between the decoded IGS value and the

input values, and the squared error.

Table P8.3

Data 6­bit Code Sum IGS Code Decoded IGS Error Sq. Error

000000

12 001100 001100 001 8 4 16

12 001100 010000 010 16 ­4 16

13 001101 001101 001 8 5 25

13 001101 010010 010 16 ­3 9

10 001010 001100 001 8 2 4

13 001101 010001 010 16 ­3 9

57 111001 111001 111 56 1 1

54 110110 110111 110 48 6 36

Problem 8.5

(b) For 1100111, construct the following three bit odd parity word:

c1 = h1 © h3 © h5 © h7 = 1 © 0 © 1 © 1 = 1

c2 = h2 © h3 © h6 © h7 = 1 © 0 © 1 © 1 = 1

c4 = h4 © h5 © h6 © h7 = 0 © 1 © 1 © 1 = 1

A parity word of 1112 indicates that bit 7 is in error. The correctly decoded binary value

is 01102. In a similar manner, the parity words for 1100110 and 1100010 are 000 and

101, respectively. The decoded values are identical and are 0110.
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Problem 8.6

The conversion factors are computed using the logarithmic relationship

loga x =
1

logb a
logb x

Thus, 1 Hartley = 3.3219 bits and 1 nat = 1.4427 bits.

Problem 8.7

Let the set of source symbols be fa1; a2; :::; aqg and have probabilities

z = [P (a1) ; P (a2) ; :::; P (aq)]
T :

Then, using Eq. (8.3­3) and the fact that the sum of all P (ai) is 1, we get

log q ¡ H (z) =

qX

i=1

P (ai) log q +

qX

i=1

P (ai) log P (ai)

=

qX

i=1

P (ai) log qP (ai)

Using the log relationship from Problem 8.6, this becomes

= log e

qX

i=1

P (ai) ln qP (ai)

Then, multiplying the inequality lnx · x ¡ 1 by ­1 to get ln1=x ¸ 1 ¡ x and applying

it to this last result,

log q ¡ H (z) ¸ log e

qX

i=1

P (ai)

·
1 ¡ 1

qP (ai)

¸

¸ log e

"
qX

i=1

P (ai) ¡ 1

q

qX

i=1

P (ai)

P (ai)

#

¸ log e [1 ¡ 1]

¸ 0

so that

log q ¸ H (z)

Thus, H (z) is always less than, or equal to, log q. Furthermore, in view of the equality

condition (x = 1) for ln 1=x ¸ 1 ¡ x, which was introduced at only one point in the

above derivation, we will have strict equality if and only if P (ai) = 1=q for all i.
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Problem 8.9

(a) Substituting the given values of pbs and pe into the binary entropy function derived

in the example, the average information or entropy of the source is 0.811 bits/symbol.

(b) The equivocation or average entropy of the source given that the output has been

observed (using Eq. 8.3­9) is 0.75 bits/symbol. Thus, the decrease in uncertainty is

0.061 bits/symbol.

(c) It is the mutual information I(z;v) of the system and is less than the capacity of

the channel, which is, in accordance with the equation derived in the example, 0.0817

bits/symbol.

Problem 8.10

(b) Substituting 0.5 into the above equation, the capacity of the erasure channel is 0.5.

Substituting 0.125 into the equation for the capacity of a BSC given in Section 8.3.2, we

find that its capacity is 0.456. Thus, the binary erasure channel with a higher probability

of error has a larger capacity to transfer information.

Problem 8.11

(a) The plot is shown in Fig. P8.11.
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Figure P8.11

Problem 8.14

The arithmetic decoding process is the reverse of the encoding procedure. Start by

dividing the [0, 1) interval according to the symbol probabilities. This is shown in Table

P8.14.
Table P8.14

Symbol Probability Range

a 0.2 [0.0, 0.2)

e 0.3 [0.2, 0.5)

i 0.1 [0.5, 0.6)

o 0.2 [0.6, 0.8)

u 0.1 [0.8, 0.9)

! 0.1 [0.9, 1.0)

The decoder immediately knows the message 0.23355 begins with an “e”, since the

coded message lies in the interval [0.2, 0.5). This makes it clear that the second symbol

is an “a”, which narrows the interval to [0.2, 0.26). To further see this, divide the interval

[0.2, 0.5) according to the symbol probabilities. Proceeding like this, which is the same

procedure used to code the message, we get “eaii!”.

Problem 8.16

The input to the LZW decoding algorithm for the example in Example 8.12 is

39 39 126 126 256 258 260 259 257 126

The starting dictionary, to be consistent with the coding itself, contains 512 locations–

with the first 256 corresponding to gray level values 0 through 255. The decoding algo­

rithm begins by getting the first encoded value, outputting the corresponding value from

the dictionary, and setting the ”recognized sequence” to the first value. For each addi­

tional encoded value, we (1) output the dictionary entry for the pixel value(s), (2) add a

new dictionary entry whose content is the ”recognized sequence” plus the first element

of the encoded value being processed, and (3) set the ”recognized sequence” to the en­

coded value being processed. For the encoded output in Example 8.12, the sequence of

operations is as shown in Table P8.16.

Note, for example, in row 5 of the table that the new dictionary entry for location 259
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is 126­39, the concatenation of the currently recognized sequence, 126, and the first

element of the encoded value being processed–the 39 from the 39­39 entry in dictionary

location 256. The output is then read from the third column of the table to yield

39 39 126 126

39 39 126 126

39 39 126 126

39 39 126 126

where it is assumed that the decoder knows or is given the size of the image that was

recieved. Note that the dictionary is generated as the decoding is carried out.

Table P8.16

Recognized Encoded Value Pixels Dict. Address Dict. Entry

39 39

39 39 39 256 39­39

39 126 126 257 39­126

126 126 126 258 126­126

126 256 39­39 259 126­39

256 258 126­126 260 39­39­126

258 260 39­39­126 261 126­126­39

260 259 126­39 262 39­39­126­126

259 257 39­126 263 126­39­39

257 126 126 264 39­126­126

Problem 8.19

(a) The motivation is clear from Fig. 8.17. The transition at c must somehow be tied

to a particular transition on the previous line. Note that there is a closer white to black

transition on the previous line to the right of c, but how would the decoder know to use

it instead of the one to the left. Both are less than ec. The first similar transition past e

establishes the convention to make this decision.

Problem 8.21

The derivation proceeds by substituting the uniform probability function into Eqs. (8.5­

20) ­ (8.5­22) and solving the resulting simultaneous equations with L = 4. Eq. (8.5­21)
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yields
s0 = 0

s1 = 1
2 (t1 + t2)

s2 = 1
Substituting these values into the integrals defined by Eq. (8.5­20), we get two equations.

The first is (assuming s1 · A)Z s1

s0

(s ¡ t1) p (s) ds = 0

1

2A

Z 1
2 (t1+t2)

0

(s ¡ t1) ds =
s2

2
¡ t1s

¯̄
¯̄
¯

1
2 (t1 + t2)

0
= 0

(t1 + t2)
2 ¡ 4t1 (t1 + t2) = 0

(t1 + t2) (t2 ¡ 3t1) = 0

t1 = ¡t2 and t2 = 3t1
The first of these relations does not make sense since both t1 and t2 must be positive.

The second relationship is a valid one. The second integral yields (noting that s1 is less

than A so the integral from A to 1 is 0 by the definition of p(s))

1

2A

Z A

1
2 (t1+t2)

(s ¡ t2) ds =
s2

2
¡ t2s

¯̄
¯̄
¯

A
1
2 (t1 + t2)

= 0

4A2 ¡ 8At2 ¡ (t1 + t2)
2 ¡ 4t2 (t1 + t2) = 0

Substituting t2 = 3t1 from the first integral simplification into this result, we get

8t21 ¡ 6At1 + A2 = 0£
t1 ¡ A

2

¤
(8t1 ¡ 2A) = 0

t1 = A
2 and t1 = A

4

Back substituting these values of t1, we find the corresponding t2 and s1 values:

t2 = 3A
2 and s1 = A for t1 = A

2

t2 = 3A
4 and s1 = A

2 for t1 = A
4

Since s1 = A is not a real solution (the second integral equation would then be evaluated

from A to A, yielding 0 or no equation), the solution is given by the second. That is,

s0 = 0 s1 = A
2 s2 = 1

t1 = A
4

t2 = 3A
4

Problem 8.23

(a) ­ (b) Following the procedure outlined in Section 8.6.2, we obtain the results shown
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in Table P8.23.
Table P8.23

DC Coefficient Difference Two’s Complement Value Code

­7 1...1001 00000

­6 1...1010 00001

­5 1...1011 00010

­4 1...1100 00011

4 0...0100 00100

5 0...0101 00101

6 0...0110 00110

7 0...0111 00111

Problem 8.27

The appropriate MPEG decoder is shown in Fig. P8.27

Figure P8.27





9 Solutions (Students)

Problem 9.2

(a) The answer is shown shaded in Fig. P9.2.

Figure P9.2

Problem 9.3

(a) With reference to the discussion in Section 2.5.2, m­connectivity is used to avoid

multiple paths that are inherent in 8­connectivity. In one­pixel­thick, fully connected

boundaries, these multiple paths manifest themselves in the four basic patterns shown in

Fig. P9.3. The solution to the problem is to use the hit­or­miss transform to detect the

patterns and then to change the center pixel to 0, thus eliminating the multiple paths. A
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basic sequence of morphological steps to accomplish this is as follows:

X1 = A ~ B1

Y1 = A \ Xc
1

X2 = Y1 ~ B2

Y2 = Y1 \ Xc
2

X3 = Y2 ~ B3

Y3 = Y2 \ Xc
3

X4 = Y3 ~ B4

Y4 = Y3 \ Xc
4

where A is the input image.

Figure P9.3

Problem 9.5

(a) Erosion is set intersection. The intersection of two convex sets is convex also. See

Fig. P9.5 the for solution to part (b). Keep in mind that the digital sets in question

are the larger black dots. The lines are shown for convenience in visualizing what the

continuous sets would be. In (b) the result of dilation is not convex because the center

point is not in the set.

Problem 9.6

Refer to Fig. P9.6. The center of each structuring element is shown as a black dot.

Solution (a) was obtained by eroding the original set (shown dashed) with the structuring

element shown (note that the origin is at the bottom, right). Solution (b) was obtained

by eroding the original set with the tall rectangular structuring element shown. Solution

(c) was obtained by first eroding the image shown down to two vertical lines using the

rectangular structuring element; this result was then dilated with the circular structuring
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element. Solution (d) was obtained by first dilating the original set with the large disk

shown. Then dilated image was then eroded with a disk of half the diameter of the disk

used for dilation.

Figure P9.5

Problem 9.8

(a) The dilated image will grow without bound. (b) A one­element set (i.e., a one­pixel

image).

Problem 9.10

The approach is to prove thatn
x 2 Z2

¯̄
¯(B̂)x \ A 6= ;

o
´ ©

x 2 Z2 j x = a + b for a 2 A and b 2 B:
ª

The elements of (B̂)x are of the form x ¡ b for b 2 B. The condition (B̂)x \ A 6= ;
implies that for some b 2 B, x ¡ b 2 A, or x ¡ b = a for some a 2 A (note in the

preceding equation that x = a+b). Conversely, if x = a+b for some a 2 A and b 2 B,

then x ¡ b = a or x ¡ b 2 A, which implies that (B̂)x \ A 6= ;.

Problem 9.12

The proof, which consists of proving that
©
x 2 Z2 j x + b 2 A , for every b 2 B

ª ´ ©
x 2 Z2 j (B)x µ A

ª
,

follows directly from the definition of translation because the set (B)x has elements of

the form x + b for b 2 B. That is, x + b 2 A for every b 2 B implies that (B)x µ A.

Conversely, (B)x µ A implies that all elements of (B)x are contained in A, or x+b 2 A

for every b 2 B.
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Figure P9.6

Problem 9.14

Starting with the definition of closing,

(A ² B)c = [(A © B) Ä B]c

= (A © B)c © B̂

= (Ac Ä B̂) © B̂

= Ac ± B̂:

Problem 9.15

(a) Erosion of a set A by B is defined as the set of all values of translates, z, of B such

that (B)z is contained in A. If the origin of B is contained in B, then the set of points

describing the erosion is simply all the possible locations of the origin of B such that

(B)z is contained in A. Then it follows from this interpretation (and the definition of

erosion) that erosion of A by B is a subset of A. Similarly, dilation of a set C by B is

the set of all locations of the origin of B̂ such that the intersection of C and (B̂)z is not

empty. If the origin of B is contained in B, this implies that C is a subset of the dilation

of C by B. Now, from Eq. (9.3­1), we know that A± B = (AÄB)©B. Let C denote

the erosion of A by B. It was already established that C is a subset of A. From the
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preceding discussion, we know also that C is a subset of the dilation of C by B. But C

is a subset of A, so the opening of A by B (the erosion of A by B followed by a dilation

of the result) is a subset of A.

Problem 9.18

It was possible to reconstruct the three large squares to their original size because they

were not completely eroded and the geometry of the objects and structuring element

was the same (i.e., they were squares). This also would have been true if the objects

and structuring elements were rectangular. However, a complete reconstruction, for

instance, by dilating a rectangle that was partially eroded by a circle, would not be

possible.

Problem 9.20

The key difference between the Lake and the other two features is that the former forms

a closed contour. Assuming that the shapes are processed one at a time, basic two­step

approach for differentiating between the three shapes is as follows:

Step 1. Apply an end­point detector to the object until convergence is achieved. If the

result is not the empty set, the object is a Lake. Otherwise it is a Bay or a Line.

Step 2. There are numerous ways to differentiate between a lake and a line. One of the

simplest is to determine a line joining the two end points of the object. If the AND of

the object and this line contains only two points, the figure is a Bay. Otherwise it is

a line segment. There are pathological cases in which this test will fail, and additional

”intelligence” needs to be built into the process, but these pathological cases become

less probable with increasing resolution of the thinned figures.

Problem 9.22

(a) With reference to the example shown in Fig. P9.22(a), the boundary that results

from using the structuring element in Fig. 9.15(c) generally forms an 8­connected path

(leftmost figure), whereas the boundary resulting from the structuring element in Fig.

9.13(b) forms a 4­connected path (rightmost figure).
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(b) Using a 3 £ 3 structuring element of all 1’s would introduce corner pixels into seg­

ments characterized by diagonally­connected pixels. For example, square (2,2) in Fig.

9.15(e) would be a 1 instead of a 0. That value of 1 would carry all the way to the final

result in Fig. 9.15(i). There would be other 1’s introduced that would turn Fig. 9.15(i)

into a much more distorted object.

Figure P9.22(a)

PROBLEM 9.24

Denote the original image by A. Create an image of the same size as the original,

but consisting of all 0’s, call it B. Choose an arbitrary point labeled 1 in A, call it

p1, and apply the algorithm. When the algorithm converges, a connected component

has been detected. Label and copy into B the set of all points in A belonging to the

connected components just found, set those points to 0 in A and call the modified image

A1. Choose an arbitrary point labeled 1 in A1, call it p2, and repeat the procedure just

given. If there are K connected components in the original image, this procedure will

result in an image consisting of all 0’s after K applications of the procedure just given.

Image B will contain K labeled connected components.

Problem 9.25

(a) Equation (9.6­1) requires that the (x; y) used in the computation of dilation must

satisfy the condition (x; y) 2 Db. In terms of the intervals given in the problem state­

ment, this means that x and y must be in the closed interval x 2 [Bx1;Bx2] and
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y 2 [By1; By2]. It is required also that (s ¡ x); (t ¡ y) 2 Df , which means that

(s ¡ x) 2 [Fx1; Fx2] and (t ¡ y) 2 [Fy1; Fy2]. Since the valid range of x is the interval

[Bx1; Bx2], the valid range of (s¡x) is [s¡Bx1; s¡Bx2]. But, since x must also satisfy

the condition (s ¡ x) 2 [Fx1; Fx2], it follows that Fx1 · s ¡ Bx1 and Fx2 ¸ s ¡ Bx2,

which finally yields Fx1 + Bx1 · s · Fx2 + Bx2. Following the same analysis for t

yields Fy1 + By1 · t · Fy2 + By2. Since dilation is a function of (s; t), these two

inequalities establish the domain of (f © b)(s; t) in the st­plane.

Problem 9.26

(a) The noise spikes are of the general form shown in Fig. P9.26(a), with other possi­

bilities in between. The amplitude is irrelevant in this case; only the shape of the noise

spikes is of interest. To remove these spikes we perform an opening with a cylindri­

cal structuring element of radius greater than Rmax, as shown in Fig. P9.26(b) (see Fig.

9.30 for an explanation of the process). Note that the shape of the structuring element is

matched to the known shape of the noise spikes.

Figure P9.26

Problem 9.27

(a) Color the image border pixels the same color as the particles (white). Call the result­

ing set of border pixels B. Apply the connected component algorithm. All connected

components that contain elements from B are particles that have merged with the border

of the image.
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Problem 10.1

The masks would have the coefficients shown in Fig. P10.1. Each mask would yield

a value of 0 when centered on a pixel of an unbroken 3­pixel segment oriented in the

direction favored by that mask. Conversely, the response would be a +2 when a mask

is centered on a one­pixel gap in a 3­pixel segment oriented in the direction favored by

that mask.

Figure P10.1

Problem 10.3

(a) The lines were thicker than the width of the line detector masks. Thus, when, for

example, a mask was centered on the line it ”saw” a constant area and gave a response

of 0.

Problem 10.5

The gradient and Laplacian (first and second derivatives) are shown in Fig. P10.5.
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Figure P10.5

Problem 10.7

Consider first the Sobel masks of Figs. 10.8 and 10.9. The easiest way to prove that

these masks give isotropic results for edge segments oriented at multiples of 45± is to

obtain the mask responses for the four general edge segments shown in Fig. P10.7,

which are oriented at increments of 45±. The objective is to show that the responses

of the Sobel masks are indistinguishable for these four edges. That this is the case is

evident from Table P10.1, which shows the response of each Sobel mask to the four

general edge segments. We see that in each case the response of the mask that matches

the edge direction is (4a ¡ 4b), and the response of the corresponding orthogonal mask

is 0. The response of the remaining two masks is either (3a ¡ 3b) or (3b ¡ 3a). The

sign difference is not significant because the gradient is computed by either squaring or

taking the absolute value of the mask responses. The same line of reasoning applies to

the Prewitt masks.
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Table P10.7

Edge Horizontal Vertical +45± ¡45±

direction Sobel (Gx) Sobel (Gy) Sobel (G45) Sobel (G¡45)

Horizontal 4a ¡ 4b 0 3a ¡ 3b 3b ¡ 3a

Vertical 0 4a ¡ 4b 3a ¡ 3b 3a ¡ 3b

+45± 3a ¡ 3b 3a ¡ 3b 4a ¡ 4b 0

¡45± 3b ¡ 3a 3a ¡ 3b 0 4a ¡ 4b

Figure P10.7

Problem 10.9

The solution is as follows (negative numbers are shown underlined):

Edge direction

E NE N NW W SW S SE

Gradient direction

N NW W SW S SE E NE

Compass gradient operators

1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 10 1 0 1 0 1 1

0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

Problem 10.11

(a) With reference to Eq. (10.1­17), we need to prove that
1Z

¡1

·
r2 ¡ ¾2

¾4

¸
e¡ r2

2¾2 dr = 0:
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Expanding this equation results in the expression
1Z

¡1

·
r2 ¡ ¾2

¾4

¸
e¡ r2

2¾2 dr =
1

¾4

1Z

¡1

r2e¡ r2

2¾2 dr

¡ 1

¾2

1Z

¡1

e¡ r2

2¾2 dr:

Recall from the definition of the Gaussian density that

1p
2¼¾2

1Z

¡1

e¡ r2

2¾2 dr = 1

and, from the definition of the variance of a Gaussian random variable that

Var(r) = ¾2 =

1Z

¡1

r2e¡ r2

2¾2 dr:

Thus, it follows from the preceding equations that
1Z

¡1

·
r2 ¡ ¾2

¾4

¸
e¡ r2

2¾2 dr =

p
2¼¾2

¾4
¾2 ¡

p
2¼¾2

¾2
= 0:

Problem 10.13

(a) Point 1 has coordinates x = 0 and y = 0. Substituting into Eq. (10.2­3) yields

½ = 0, which, in a plot of ½ vs. µ,is a straight line.

(b) Only the origin (0; 0) would yield this result.

(c) At µ = +90±, it follows from Eq. (10.2­3) that x ¢ (0) + y ¢ (1) = ½, or y = ½. At

µ = ¡ 90±, x ¢ (0) + y ¢ (¡1) = ½, or ¡y = ½. Thus the reflective adjacency.

Problem 10.16

(a) The paths are shown in Fig. P10.16. These paths are as follows:

1 : (1; 1)(1; 2) ! (2; 1)(2; 2) ! (3; 1)(3; 2)

2 : (1; 1)(1; 2) ! (2; 1)(2; 2) ! (3; 2)(2; 2) ! (3; 2)(3; 3)
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3 : (1; 1)(1; 2) ! (2; 2)(1; 2) ! (2; 2)(2; 3) ! (3; 2)(3; 3)

4 : (1; 1)(1; 2) ! (2; 2)(1; 2) ! (2; 2)(2; 3) ! (2; 2)(3; 2) ! (3; 1)(3; 2)

5 : (1; 2)(1; 3) ! (2; 2)(2; 3) ! (3; 2)(3; 3)

6 : (1; 2)(1; 3) ! (2; 2)(2; 3) ! (2; 2)(3; 2) ! (3; 1)(3; 2)

7 : (1; 2)(1; 3) ! (1; 2)(2; 2) ! (2; 1)(2; 2) ! (3; 1)(3; 2)

8 : (1; 2)(1; 3) ! (1; 2)(2; 2) ! (2; 1)(2; 2) ! (3; 2)(2; 2) ! (3; 2)(3; 3)

(b) From Fig. 10.24 and (a), we see that the optimum path is path 6. Its cost is c =

2 + 0 + 1 + 1 = 4.

Figure P10.16

Problem 10.18

(a) The number of boundary points between black and white regions is much larger in

the image on the right. When the images are blurred, the boundary points will give rise

to a larger number of different values for the image on the right, so the histograms of the

two blurred images will be different.

(b) To handle border effects, we surround the image with a border of 0’s. We assume

that the image is of size N £ N (the fact that the image is square is evident from the

right image in the problem statement). Blurring is implemented by a 3 £ 3 mask whose

coefficients are 1=9. Figure P10.18 shows the different types of values that the blurred

left image (see problem statement) will have. These values are summarized in Table

P10.18­1. It is easily verified that the sum of the numbers on the left column of the

table is N2.
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Table P10.18­1

No. of Points Value

N
¡

N
2

¡ 1
¢

0

2 2=9

N ¡ 2 3=9

4 4=9

3N ¡ 8 6=9

(N ¡ 2)
¡

N
2 ¡ 2

¢
1

A histogram is easily constructed from the entries in this table. A similar (tedious, but

not difficult) procedure yields the results shown in Table P10.18­2 for the checkerboard

image.

Table P10.18­2

No. of Points Value
N2

2
¡ 14N + 98 0

28 2=9

14N ¡ 224 3=9

128 4=9

98 5=9

16N ¡ 256 6=9
N2

2 ¡ 16N + 128 1

Figure P10.18

Problem 10.20

(a) A1 = A2 and ¾1 = ¾2 = ¾, which makes the two modes identical. If the number

of samples is not large, convergence to a value at or near the mid point between the two
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means also requires that a clear valley exist between the two modes. We can guarantee

this by assuming that ¾ << (m1 + m2)=2:

(b) That this condition cannot happen if A2 6= 0. This is easily established by starting

the algorithm with an initial value less than m1. Even if the right mode associated with

m2 is much smaller in size (e.g., A1 >> A2 and ¾1 >> ¾2) the average value of the

region to the left of the starting threshold will be smaller than the average of the region to

the right because the modes are symmetrical about their mean, and the mode associated

with m2 will bias the data to the right. Thus, the next iterative step will bring the value

of the threshold closer to m1, and eventually to the right of it. This analysis assumes that

enough points are available in order to avoid pathological cases in which the algorithm

can get ”stuck” due to insufficient data that truly represents the shapes assumed in the

problem statement.

Problem 10.22

From the figure in the problem statement,

p1(z) =

8
><
>:

0 z < 1
1
2z ¡ 1

2 1 · z · 3

0 z > 3

and

p2(z) =

8
><
>:

0 z < 0

¡ 1
2z + 1 0 · z · 2

0 z > 2

:

The optimum threshold is the value z = T for which P1p1(T ) = P2p2(T ). In this case

P1 = P2, so
1

2
T ¡ 1

2
= ¡1

2
T + 1

from which we get T = 1:5.

Problem 10.24

From Eq. (10.3­10),

P1p1(T ) = P2p2(T ):

Taking the ln of both sides yields

lnP1 + ln p1(T ) = lnP2 + ln p2(T ):
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But

p1(T ) =
1p

2¼¾1

e
¡ (T ¡¹1)2

2¾2
1

and

p2(T ) =
1p

2¼¾2

e
¡ (T ¡¹2)2

2¾2
2

so it follows that

lnP1 + ln
1p

2¼¾1

¡ (T ¡ ¹1)
2

2¾2
1

= lnP2 + ln
1p

2¼¾2

¡ (T ¡ ¹2)
2

2¾2
2

lnP1 ¡ ln¾1 ¡ (T ¡ ¹1)
2

2¾2
1

¡ lnP2 + ln¾2 +
(T ¡ ¹2)

2

2¾2
2

= 0

ln
P1

P2
+ ln

¾1

¾2
¡ 1

2¾2
1

(T 2 ¡ 2¹1T + ¹2
1) +

1

2¾2
2

(T 2 ¡ 2¹2T + ¹2
2) = 0

ln
¾2P1

¾1P2
+ T 2

µ
1

2¾2
2

¡ 1

2¾2
1

¶
+ T

µ
¹1

¾2
1

¡ ¹2

¾2
2

¶
+

µ
¹2

2

2¾2
2

¡ ¹2
1

2¾2
1

¶
= 0:

From this expression we get

AT 2 + BT + C = 0

with

A = (¾2
1 ¡ ¾2

2)

B = 2(¾2
2¹1 ¡ ¾2

1¹2)

and

C = ¾2
1¹

2
2 ¡ ¾2

2¹
2
1 + 2¾2

1¾
2
2 ln

¾2P1

¾1P2
:

Problem 10.26

The simplest solution is to use the given means and standard deviations to form two

Gaussian probability density functions, and then to use the optimum thresholding ap­

proach discussed in Section 10.3.5 (in particular, see Eqs. (10.3­11) through (10.3­13).

The probabilities P1 and P2 can be estimated by visual analysis of the images (i.e., by

determining the relative areas of the image occupied by objects and background). It is

clear by looking at the image that the probability of occurrence of object points is less

than that of background points. Alternatively, an automatic estimate can be obtained by

thresholding the image into points with values greater than 200 and less than 110 (see

problem statement). Using the given parameters, the results would be good estimates of

the relative probability of occurrence of object and background points due to the separa­

tion between means, and the relatively tight standard deviations. A more sophisticated

approach is to use the Chow­Kaneko procedure discussed in Section 10.3.5.
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Problem 10.29

(a) The elements of T [n] are the coordinates of points in the image below the plane

g(x; y) = n, where n is an integer that represents a given step in the execution of the

algorithm. Since n never decreases, the set of elements in T [n ¡ 1] is a subset of the el­

ements in T [n]. In addition, we note that all the points below the plane g(x; y) = n ¡ 1

are also below the plane g(x; y) = n, so the elements of T [n] are never replaced. Sim­

ilarly, Cn(Mi) is formed by the intersection of C(Mi) and T [n], where C(Mi) (whose

elements never change) is the set of coordinates of all points in the catchment basin as­

sociated with regional minimum Mi. Since the elements of C(Mi) never change, and

the elements of T [n] are never replaced, it follows that the elements in Cn(Mi) are never

replaced either. In addition, we see that Cn¡1(Mi) µ Cn(Mi):

Problem 10.31

The first step in the application of the watershed segmentation algorithm is to build a

dam of height max + 1 to prevent the rising water from running off the ends of the

function, as shown in Fig. P10.31(b). For an image function we would build a box of

height max + 1 around its border. The algorithm is initialized by setting C[1] = T [1].

In this case, T [1] = fg(2)g, as shown in Fig. P10.31(c) (note the water level). There is

only one connected component in this case: Q[1] = fq1g = fg(2)g:

Next, we let n = 2 and, as shown in Fig. P10.31(d), T [2] = fg(2); g(14)g and

Q[2] = fq1; q2g, where, for clarity, different connected components are separated by

semicolons. We start construction of C[2] by considering each connected component in

Q[2]. When q = q1, the term q \C[1] is equal to fg(2)g, so condition 2 is satisfied and,

therefore, C[2] = fg(2)g. When q = q2, q \ C[1] = ; (the empty set) so condition

1 is satisfied and we incorporate q in C[2], which then becomes C[2] = fg(2); g(14)g
where, as above, different connected components are separated by semicolons.

When n = 3 [Fig. P10.31(e)], T [3] = f2; 3; 10; 11; 13; 14g and Q[3] = fq1; q2; q3g =

f2; 3; 10; 11; 13; 14g where, in order to simplify the notation we let k denote g(k). Pro­

ceeding as above, q1 \ C[2] = f2g satisfies condition 2, so q1 is incorporated into the

new set to yield C[3] = f2; 3; 14g. Similarly, q2 \ C[2] = ; satisfies condition 1 and

C[3] = f2; 3; 10; 11; 14g. Finally, q3 \ C[2] = f14g satisfies condition 2 and C[3] =

f2; 3; 10; 11; 13; 14g. It is easily verified that C[4] = C[3] = f2; 3; 10; 11; 13; 14g.
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Figure P10.31

When n = 5 [Fig. P10.31(f)], we have, T [5] = f2; 3; 5; 6; 10; 11; 12; 13; 14g and

Q[5] = fq1; q2; q3g = f2; 3; 5; 6; 10; 11; 12; 13; 14g (note the merging of two previously
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distinct connected components). Is is easily verified that q1 \ C[4] satisfies condition 2

and that q2 \ C[4] satisfied condition 1. Proceeding with these two connected compo­

nents exactly as above yields C[5] = f2; 3; 5; 6; 10; 11; 13; 14g up to this point. Things

get more interesting when we consider q3. Now, q3 \ C[4] = f10; 11; 13; 14g which,

since it contains two connected components of C[4] satisfies condition 3. As mentioned

previously, this is an indication that water from two different basins has merged and a

dam must be built to prevent this. Dam building is nothing more than separating q3 into

the two original connected components. In this particular case, this is accomplished by

the dam shown in Fig. P10.31(g), so that now q3 = fq31; q32g = f10; 11; 13; 14g. Then,

q31 \C[4] and q32 \C[4] each satisfy condition 2 and we have the final result for n = 5,

C[5] = f2; 3; 5; 6; 10; 11; 13; 14g.

Continuing in the manner just explained yields the final segmentation result shown in

Fig. P10.31(h), where the ”edges” are visible (from the top) just above the water line. A

final post­processing step would remove the outer dam walls to yield the inner edges of

interest.
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Problem 11.1

(a) The key to this problem is to recognize that the value of every element in a chain

code is relative to the value of its predecessor. The code for a boundary that is traced

in a consistent manner (e.g., clockwise) is a unique circular set of numbers. Starting

at different locations in this set does not change the structure of the circular sequence.

Selecting the smallest integer as the starting point simply identifies the same point in the

sequence. Even if the starting point is not unique, this method would still give a unique

sequence. For example, the sequence 101010 has three possible starting points, but they

all yield the same smallest integer 010101.

Problem 11.3

(a) The rubber­band approach forces the polygon to have vertices at every inflection

of the cell wall. That is, the locations of the vertices are fixed by the structure of the

inner and outer walls. Since the vertices are joined by straight lines, this produces the

minimum­perimeter polygon for any given wall configuration.

Problem 11.4

(a) The resulting polygon would contain all the boundary pixels.

Problem 11.5

(a) The solution is shown in Fig. P11.5(b).
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Figure P11.5

Problem 11.6

(a) From Fig. P11.6(a), we see that the distance from the origin to the triangle is given

by

r(µ) =
D0

cos µ
0± · µ < 60±

=
D0

cos(120± ¡ µ)
60± · µ < 120±

=
D0

cos(180± ¡ µ)
120± · µ < 180±

=
D0

cos(240± ¡ µ)
180± · µ < 240±

=
D0

cos(300± ¡ µ)
240± · µ < 300±

=
D0

cos(360± ¡ µ)
300± · µ < 360±

where D0 is the perpendicular distance from the origin to one of the sides of the triangle,

and D = D0= cos(60±) = 2D0. Once the coordinates of the vertices of the triangle are

given, determining the equation of each straight line is a simple problem, and D0 (which

is the same for the three straight lines) follows from elementary geometry. The signature

is shown in Fig. P11.6(b).
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Figure P11.6

Problem 11.7

The solutions are shown in Fig. P11.7.

Figure P11.7

Problem 11.8

(a) In the first case, N(p) = 5, S(p) = 1, p2 ¢ p4 ¢ p6 = 0, and p4 ¢ p6 ¢ p8 = 0, so

Eq. (11.1­1) is satisfied and p is flagged for deletion. In the second case, N(p) = 1,

so Eq. (11.1­1) is violated and p is left unchanged. In the third case p2 ¢ p4 ¢ p6 = 1

and p4 ¢ p6 ¢ p8 = 1, so conditions (c) and (d) of Eq. (11.1­1) are violated and p is

left unchanged. In the forth case S(p) = 2, so condition (b) is violated and p is left

unchanged.

Problem 11.9

(a) The result is shown in Fig. 11.9(b).



76 Chapter 11 Solutions (Students)

Figure P11.9

Problem 11.10

(a) The number of symbols in the first difference is equal to the number of segment

primitives in the boundary, so the shape order is 12.

Problem 11.12

The mean is sufficient.

Problem 11.14

This problem can be solved by using two descriptors: holes and the convex deficiency

(see Section 9.5.4 regarding the convex hull and convex deficiency of a set). The deci­

sion making process can be summarized in the form of a simple decision, as follows: If

the character has two holes, it is an 8. If it has one hole it is a 0 or a 9. Otherwise, it is

a 1 or an X. To differentiate between 0 and 9 we compute the convex deficiently. The

presence of a ”significant” deficiency (say, having an area greater than 20% of the area

of a rectangle that encloses the character) signifies a 9; otherwise we classify the char­

acter as a 0. We follow a similar procedure to separate a 1 from an X. The presence of

a convex deficiency with four components whose centroids are located approximately in

the North, East, West, and East quadrants of the character indicates that the character is

an X. Otherwise we say that the character is a 1. This is the basic approach. Imple­

mentation of this technique in a real character recognition environment has to take into

account other factors such as multiple ”small” components in the convex deficiency due

to noise, differences in orientation, open loops, and the like. However, the material in

Chapters 3, 9 and 11 provide a solid base from which to formulate solutions.
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Problem 11.16

(a) The image is
0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

:

Let z1 = 0 and z2 = 1. Since there are only two gray levels the matrix A is of order

2 £ 2. Element a11 is the number of pixels valued 0 located one pixel to the right of a 0.

By inspection, a11 = 0. Similarly, a12 = 10, a21 = 10, and a22 = 0. The total number

of pixels satisfying the predicate P is 20, so

C =

"
0 1=2

1=2 0

#
:

Problem 11.18

The mean square error, given by Eq. (11.4­12), is the sum of the eigenvalues whose

corresponding eigenvectors are not used in the transformation. In this particular case,

the four smallest eigenvalues are applicable (see Table 11.5), so the mean square error is

ems =
6X

j=3

¸j = 280:

The maximum error occurs when K = 0 in Eq. (11.4­12) which then is the sum of all the

eigenvalues, or 4421 in this case. Thus, the error incurred by using the two eigenvectors

corresponding to the largest eigenvalues is only 6.3 % of the total possible error.

Problem 11.20

When the boundary is symmetric about the both the major and minor axes and both axes

intersect at the centroid of the boundary.

Problem 11.22

We can compute a measure of texture using the expression

R(x; y) = 1 ¡ 1

1 + ¾2(x; y)
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where ¾2(x; y) is the gray­level variance computed in a neighborhood of (x; y). The

size of the neighborhood must be sufficiently large so as to contain enough samples to

have a stable estimate of the mean and variance. Neighborhoods of size 7 £ 7 or 9 £ 9

generally are appropriate for a low­noise case such as this.

Since the variance of normal wafers is known to be 400, we can obtain a normal value

for R(x; y) by using ¾2 = 400 in the above equation. An abnormal region will have

a variance of about (50)2 = 2; 500 or higher, yielding a larger value of R(x; y). The

procedure then is to compute R(x; y) at every point (x; y) and label that point as 0 if

it is normal and 1 if it is not. At the end of this procedure we look for clusters of 1’s

using, for example, connected components (see Section 9.5.3 regarding computation of

connected components) . If the area (number of pixels) of any connected component

exceeds 400 pixels, then we classify the sample as defective.
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Problem 12.2

From the definition of the Euclidean distance,

Dj(x) = kx ¡ mjk =
£
(x ¡ mj)

T (x ¡ mj)
¤1=2

Since Dj(x) is non­negative, choosing the smallest Dj(x) is the same as choosing the

smallest D2
j (x), where

D2
j (x) = kx ¡ mjk2 = (x ¡ mj)

T (x ¡ mj)

= xTx ¡ 2xTmj + mT
j mj

= xTx ¡ 2

µ
xT mj ¡ 1

2
mT

j mj

¶

We note that the term xTx is independent of j (that is, it is a constant with respect to j in

D2
j (x), j = 1; 2; :::). Thus, choosing the minimum of D2

j (x) is equivalent to choosing

the maximum of
¡
xTmj ¡ 1

2m
T
j mj

¢
.

Problem 12.4

The solution is shown in Fig. P12.4, where the x’s are treated as voltages and the Y ’s

denote impedances. From basic circuit theory, the currents, I’s, are the products of the

voltages times the impedances.

Problem 12.6

The solution to the first part of this problem is based on being able to extract connected

components (see Chapters 2 and 11) and then determining whether a connected com­

ponent is convex or not (see Chapter 11). Once all connected components have been

extracted we perform a convexity check on each and reject the ones that are not convex.

All that is left after this is to determine if the remaining blobs are complete or incom­

plete. To do this, the region consisting of the extreme rows and columns of the image is
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declared a region of 1’s. Then if the pixel­by­pixel AND of this region with a particu­

lar blob yields at least one result that is a 1, it follows that the actual boundary touches

that blob, and the blob is called incomplete. When only a single pixel in a blob yields

an AND of 1 we have a marginal result in which only one pixel in a blob touches the

boundary. We can arbitrarily declare the blob incomplete or not. From the point of view

of implementation, it is much simpler to have a procedure that calls a blob incomplete

whenever the AND operation yields one or more results valued 1.

After the blobs have been screened using the method just discussed, they need to be

classified into one of the three classes given in the problem statement. We perform the

classification problem based on vectors of the form x = (x1; x2)
T , where x1 and x2 are,

respectively, the lengths of the major and minor axis of an elliptical blob, the only type

left after screening. Alternatively, we could use the eigen axes for the same purpose.

(See Section 11.2.1 on obtaining the major axes or the end of Section 11.4 regarding the

eigen axes.) The mean vector of each class needed to implement a minimum distance

classifier is really given in the problem statement as the average length of each of the two

axes for each class of blob. If‘ they were not given, they could be obtained by measuring

the length of the axes for complete ellipses that have been classified a priori as belonging

to each of the three classes. The given set of ellipses would thus constitute a training set,

and learning would simply consist of computing the principal axes for all ellipses of one

class and then obtaining the average. This would be repeated for each class. A block

diagram outlining the solution to this problem is straightforward.

Figure P12.4
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Problem 12.8

(a) As in Problem 12.7,

m1 =

"
0

0

#

m1 =

"
0

0

#

C1 =
1

2

"
1 0

0 1

#
; C¡1

1 = 2

"
1 0

0 1

#
; jC1j = 0:25

and

C2 = 2

"
1 0

0 1

#
; C¡1

2 =
1

2

"
1 0

0 1

#
; jC2j = 4:00

Since the covariance matrices are not equal, it follows from Eq. (12.2­26) that

d1(x) = ¡1

2
ln(0:25) ¡ 1

2

(
xT

"
2 0

0 2

#
x

)

= ¡1

2
ln(0:25) ¡ (x2

1 + x2
2)

and

d2(x) = ¡1

2
ln(4:00) ¡ 1

2

(
xT

"
0:5 0

0 0:5

#
x

)

= ¡1

2
ln(4:00) ¡ 1

4
(x2

1 + x2
2)

where the term ln P (!j) was not included because it is the same for both decision

functions in this case. The equation of the Bayes decision boundary is

d(x) = d1(x) ¡ d2(x) = 1:39 ¡ 3

4
(x2

1 + x2
2) = 0:

(b) A plot of the boundary is shown in Fig. P12.8.

Figure P12.8
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Problem 12.10

From basic probability theory,

p(c) =
X

x

p(c=x)p(x):

For any pattern belonging to class !j , p(c=x) = p(!j=x). Therefore,

p(c) =
X

x

p(!j=x)p(x):

Substituting into this equation the formula p(!j=x) = p(x=!j)p(!j)=p(x) gives

p(c) =
X

x

p(x=!j)p(!j):

Since the argument of the summation is positive, p(c) is maximized by maximizing

p(x=!j)p(!j) for each j. That is, if for each x we compute p(x=!j)p(!j) for j =

1; 2; :::;W , and use the largest value each time as the basis for selecting the class from

which x came, then p(c) will be maximized. Since p(e) = 1 ¡ p(c), the probability of

error is minimized by this procedure.

Problem 12.12

We start by taking the partial derivative of J with respect to w:
@J

@w
=

1

2

£
ysgn(wTy) ¡ y

¤

where, by definition, sgn(wTy) = 1 if wTy > 0, and sgn(wTy) = ¡1 otherwise.

Substituting the partial derivative into the general expression given in the problem state­

ment gives

w(k + 1) = w(k) +
c

2

n
y(k) ¡ y(k)sgn

h
w(k)Ty(k)

io

where y(k) is the training pattern being considered at the kth iterative step. Substituting

the definition of the sgn function into this result yields

w(k + 1) = w(k) + c

(
0 if w(k)Ty(k)

y(k) otherwise

where c > 0 and w(1) is arbitrary. This expression agrees with the formulation given in

the problem statement.

Problem 12.14

The single decision function that implements a minimum distance classifier for two
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classes is of the form

dij(x) = xT (mi ¡ mj) ¡ 1

2
(mT

i mi ¡ mT
j mj):

Thus, for a particular pattern vector x, when dij(x) > 0, x is assigned to class !1 and,

when dij(x) < 0, x is assigned to class !2. Values of x for which dij(x) = 0 are on

the boundary (hyperplane) separating the two classes. By letting w = (mi ¡ mj) and

wn+1 = ¡ 1
2(mT

i mi ¡mT
j mj), we can express the above decision function in the form

d(x) = wTx ¡ wn+1:

This is recognized as a linear decision function in n dimensions, which is implemented

by a single layer neural network with coefficients

wk = (mik ¡ mjk) k = 1; 2; : : : ; n

and

µ = wn+1 = ¡1

2
(mT

i mi ¡ mT
j mj):

Problem 12.16

(a) When P (!i) = P (!j) and C = I.

(b) No. The minimum distance classifier implements a decision function that is the

perpendicular bisector of the line joining the two means. If the probability densities are

known, the Bayes classifier is guaranteed to implement an optimum decision function

in the minimum average loss sense. The generalized delta rule for training a neural

network says nothing about these two criteria, so it cannot be expected to yield the

decision functions in Problems 12.14 or 12.15.

Problem 12.18

All that is needed is to generate for each class training vectors of the form x = (x1; x2)
T ,

where x1 is the length of the major axis and x2 is the length of the minor axis of the blobs

comprising the training set. These vectors would then be used to train a neural network

using, for example, the generalized delta rule. (Since the patterns are in 2D, it is useful

to point out to students that the neural network could be designed by inspection in the

sense that the classes could be plotted, the decision boundary of minimum complexity

obtained, and then its coefficients used to specify the neural network. In this case the

classes are far apart with respect to their spread, so most likely a single layer network

implementing a linear decision function could do the job.)
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Problem 12.20

The first part of Eq. (12.3­3) is proved by noting that the degree of similarity, k, is non­

negative, so D(A;B) = 1=k ¸ 0. Similarly, the second part follows from the fact that

k is infinite when (and only when) the shapes are identical.

To prove the third part we use the definition of D to write

D(A;C) · max [D(A;B);D(B;C)]

as
1

kac
· max

·
1

kab
;

1

kbc

¸

or, equivalently,

kac ¸ min [kab; kbc]

where kij is the degree of similarity between shape i and shape j. Recall from the de­

finition that k is the largest order for which the shape numbers of shape i and shape j

still coincide. As Fig. 12.24(b) illustrates, this is the point at which the figures ”sepa­

rate” as we move further down the tree (note that k increases as we move further down

the tree). We prove that kac ¸ min[kab; kbc] by contradiction. For kac · min[kab; kbc]

to hold, shape A has to separate from shape C before (1) shape A separates from shape

B; and (2) before shape B separates from shape C, otherwise kab · kac or kbc · kac,

which automatically violates the condition kac < min[kab; kbc]. But, if (1) has to hold,

then Fig. P12.20 shows the only way that A can separate from C before separating from

B. This, however, violates (2), which means that the condition kac < min[kab; kbc]

is violated (we can also see this in the figure by noting that kac = kbc which, since

kbc < kab, violates the condition). We use a similar argument to show that if (2)

holds then (1) is violated. Thus, we conclude that it is impossible for the condition

kac < min[kab; kbc] to hold, thus proving that kac ¸ min[kab; kbc] or, equivalently, that

D(A; C) · max[D(A;B);D(B; C)].

Figure P12.20
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Problem 12.22

(a) An automaton capable of accepting only strings of the form abna ¸ 1, shown in Fig.

P12.22, is given by

Af = (Q;§; ±; q0; F );

with

Q = fq0; q1; q2; q3; q;g;

§ = fa; bg;

mappings

±(q0; a) = fq1g;

±(q1; b) = fq1; q2g;

±(q2; a) = fq3g
and

F = fq3g:
For completeness we write

±(q0; b) = ±(q1; a) = ±(q2; b) = ±(q3; a) = ±(q3; b) = ±(q;; a) = ±(q;; b) = fq;g;

corresponding to the null state.

Figure P12.22

Problem 12.24

For the sample set R+ = faba; abba; abbbag it is easily shown that, for k = 1 and 2,

h(¸;R+; k) = ;, the null set. Since q0 = h(¸;R+; k) is part of the inference procedure,

we need to choose k large enough so that h(¸;R+; k) is not the null set. The shortest



86 Chapter 12 Solutions (Students)

string in R+ has three symbols, so k = 3 is the smallest value that can accomplish

this. For this value of k, a trial run will show that one more string needs to be added

to R+ in order for the inference procedure to discover iterative regularity in symbol b.

The sample string set then becomes R+ = faba; abba; abbba; abbbbag. Recalling that

h(z;R+; k) = fw jzw inR+; jwj · kg we proceed as follows:

z = ¸; h(¸;R+; 3) = fw j¸w inR+; jwj · 3g
= fabag
= q0;

z = a; h(a;R+; 3) = fw jaw inR+; jwj · 3g
= fba; bbag
= q1;

z = ab; h(ab;R+; 3) = fw jabw inR+; jwj · 3g
= fa; ba; bbag
= q2;

z = aba; h(aba;R+; 3) = fw jabaw inR+; jwj · 3g
= f¸g
= q3;

z = abb; h(abb;R+; 3) = fw jabbw inR+; jwj · 3g
= fa; ba; bbag
= q2;

z = abba; h(abba;R+; 3) = fw jabbaw inR+; jwj · 3g
= f¸g
= q3;

z = abbb; h(abbb;R+; 3) = fw jabbbw inR+; jwj · 3g
= fa; bag
== q4;

z = abbba; h(abbba;R+; 3) = fw jabbbaw inR+; jwj · 3g
= f¸g
= q3;

z = abbbb; h(abbbb;R+; 3) = fw jabbbbw inR+; jwj · 3g
= fag
= q5;

z = abbbba; h(abbbba;R+; 3) = fw jabbbbaw inR+; jwj · 3g
= f¸g
= q3;

Other strings z in §¤ = (a; b)¤ yield strings zw that do not belong to R+, giving rise
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to another state, denoted q;, which corresponds to the condition that h is the null set.

Therefore, the states are q0 = fabag, q1 = fba; bbag, q2 = fa; ba; bbag, q3 = f¸g,

q4 = fa; bag, and q5 = fag, which gives the set Q = fq0; q1; q2; q3; q4; q5; q;g.

The next step is to obtain the mappings. We start by recalling that, in general, q0 =

h(¸;R+; k). Also in general,

±(q; c) = fq0 inQ
¯̄
q0 = h(zc;R+; k); with q = h(z;R+; k)g:

In our case, q0 = h(¸; R+; 3) and, therefore,

±(q0; a) = h(¸a;R+; 3) = h(a; R+; 3) = fq1g = q1

and

±(q0; b) = h(¸b; R+; 3) = h(b;R+; 3) = fq;g = q;;

where we have omitted the curly brackets for clarity in notation since the set contains

only one element. Similarly, q1 = h(a;R+; 3), and

±(q1; a) = h(aa;R+; 3) = h(a;R+; 3) = q;;

±(q1; b) = h(ab;R+; 3) = q2:

Continuing in this manner gives q2 = h(ab; R+; 3) = h(abb;R+; 3),

±(q2; a) = h(aba; R+; 3) = h(abba; R+; 3) = q3;

±(q2; b) = h(abb; R+; 3) = q2;

and, also,

±(q2; b) = h(abbb;R+; 3) = q4:

Next, q3 = h(aba;R+; 3) = h(abba; R+; 3) = h(abbba;R+; 3) = h(abbbba;R+; 3),

from which we obtain

±(q3; a) = h(abaa; R+; 3) = h(abbaa; R+; 3)

= h(abbbaa;R+; 3) = h(abbbbaa;R+; 3)

= q;

±(q3; b) = h(abab; R+; 3) = h(abbab;R+; 3)

= h(abbbab;R+; 3) = h(abbbbab; R+; 3)

= q;;

For the following state, q4 = h(abbb;R+; 3);

±(q4; a) = h(abbba; R+; 3) = q3;

±(q4; b) = h(abbbb; R+; 3) = q5:
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Finally, for the last state, q5 = h(abbbb;R+; 3), and

±(q5; a) = h(abbbba; R+; 3) = q3;

±(q5; b) = h(abbbbb;R+; 3) = q;:

We complete the elements of the automaton by recalling that F = fq jq inQ; ¸ in qg =

q3. We also include two remaining mappings that yield the null set: ±(q;; a) = ±(q;; b) =

q;.

Summarizing, the state mappings are:

±(q0; a) = q1; ±(q0; b) = q;;

±(q1; a) = q;; ±(q1; b) = q2;

±(q2; a) = q3; ±(q2; b) = fq2; q4g;

±(q3; a) = q;; ±(q3; b) = q;;

±(q4; a) = q3; ±(q4; b) = q5;

±(q5; a) = q3; ±(q5; b) = q;;

±(q;; a) = q;; ±(q;; b) = q;:

A diagram of the automaton is shown in Fig. P12.24. The iterative regularity on b is ev­

ident in state q2. This automaton is not as elegant as its counterpart in Problem 12.22(a).

This is not unexpected because nothing in the inference procedure deals with state min­

imization. Note, however, that the automaton accepts only strings of the form abna,

b ¸ 1, as desired. The minimization aspects of a design generally follow inference and

are based on one of several standard methods (see, for example, Gonzalez and Thoma­

son [1978]). In this particular example, even visual inspection reveals that states q4 and

q5 are redundant.

Figure P12.24








