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Abstract

Traditional genetic algorithms use only one crossover and one mutation operator

to generate the next generation. The chosen crossover and mutation operators are

critical to the success of genetic algorithms. Different crossover or mutation operators,

however, are suitable for different problems, even for different stages of the genetic

process in a problem. Determining which crossover and mutation operators should be

used is quite difficult and is usually done by trial-and-error. In this paper, a new

genetic algorithm, the dynamic genetic algorithm (DGA), is proposed to solve the

problem. The dynamic genetic algorithm simultaneously uses more than one

crossover and mutation operators to generate the next generation. The crossover and

mutation ratios change along with the evaluation results of the respective offspring in

the next generation. By this way, we expect that the really good operators will have an

increasing effect in the genetic process. Experiments are also made, with results

showing the proposed algorithm performs better than the algorithms with a single

crossover and a single mutation operator.

Keywords: Genetic Algorithms, Evolution, Crossover, Mutation.
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1. Introduction

Genetic Algorithms (GAs) [8][12] have become increasingly important for

researchers in solving difficult problems since they could provide feasible solutions in

a limited amount of time [15]. They were first proposed by Holland in 1975 [12] and

have been successfully applied to the fields of optimization [8][21][22], machine

learning [8][21], neural network [22], fuzzy logic controllers [26], and so on. GAs are

developed mainly based on the ideas and the techniques from genetic and

evolutionary theory [9]. According to the principle of survival of the fittest, they

generate the next population by several operations, with each individual in the

population representing a possible solution. There are three principal operations in a

genetic algorithm:

1. The crossover operation generates offspring from two chosen individuals in

the population, by exchanging some bits in the two individuals. The

offspring thus inherit some characteristics from each parent.

 
2. The mutation operation generates offspring by randomly changing one or

several bits in an individual. Offspring may thus possess different

characteristics from their parents. Mutation prevents local searches of the

search space and increases the probability of finding global optima.

 
3. The selection operation chooses some offspring for survival according to

predefined rules. This keeps the population size within a fixed constant and

puts good offspring into the next generation with a high probability.

In the earliest genetic algorithms, the related research on Holland’s original GA
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[12] usually used a single crossover operator and a single mutation operator to

produce successive generations. There is evidence showing that for many applications

the crossover and mutation operators adopted are the key to the success of the genetic

algorithms [2][5][12][17]. Determining which crossover and mutation operators

should be used is quite difficult and is usually done by trial-and-error. In [13] and [14],

we respectively discussed the effect of dynamically adjusting multiple crossover

operators and multiple mutation operators. In this paper, we propose the Dynamic

Genetic Algorithm (DGA) to simultaneously apply multiple crossover and mutation

operators in the genetic process. Their ratios are dynamically adjusted according to

the evaluation results of the respective offspring in the next generation. The Dynamic

Genetic Algorithm can be thought of as a generalization of the traditional genetic

algorithms by setting the initial ratios of the applied crossover and mutation operators

as the assigned values and the initial ratios of the other operators (not applied) as zero.

Experiments are also made to show the effectiveness of the proposed dynamic

genetic algorithms. The test suite includes some simple functions, the functions used

in [16], the optimization problems in [23], and the 0-1 knapsack problem [20]. The

experimental results show that the proposed algorithm performs better than those with

a single crossover and a single mutation operators. They also show that the proposed

algorithm is better than those in [13] and [14].

The content of this paper is organized as follows. A brief review of genetic

algorithms and related work is introduced in Section 2. The Dynamic Genetic

Algorithm is proposed in Section 3. An example is also given there to illustrate the
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proposed algorithm. Section 4 describes the experiments we made. Finally,

conclusions and future work are given in Section 5.

2. Review of Genetic Algorithms and Related Work

On applying genetic algorithms to solving a problem, the first step is to define a

representation that describes the problem states. The most common way used is the bit

string. An initial population is then defined and three genetic operations (crossover,

mutation, and selection) are performed to generate the next generation. Traditional

genetic algorithms use a single crossover operator and a single mutation operator

throughout the entire evolutionary process. This procedure is repeated until the

termination criterion is satisfied. This so called Simple Genetic Algorithm (SGA) [8]

is described as follows.

The Simple Genetic Algorithm:

Step 1: Create an initial population of N individuals for evolution.

Step 2: Define a suitable fitness function for the individuals.

Step 3: Perform genetic operations (crossover and mutation) to generate offspring.

Step 4: Evaluate the fitness of each individual.

Step 5: Select N superior individuals according to their fitness values to form the next

generation.

Step 6: If the termination criterion is not satisfied, go to Step 3; otherwise, stop the

algorithm.
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The simple genetic algorithm uses several parameters such as population size (N),

crossover probability (pc) and mutation probability (pm). A number of guidelines

existed in the literature for setting the values of pc and pm [9][16][28]. These general

guidelines were drawn from empirical studies on a fixed set of test problems and were

inadequate since optimal use of pc and pm is specific to the problem under

consideration. Some studies particularly focused on finding optimal mutation rates

[1][10][24]. These heralded the need for self-adaption of the crossover or mutation

rates. In [7], Fogarty used a varying mutation rate, demonstrating that a mutation rate

that decreased exponentially over generations had superior performance. A analogous

way of cyclically varying the mutation rate reported in [11] exhibited similar effect. In

[32], an adaptive genetic algorithm was proposed in which pc and pm were varied

according to the fitness values of the solutions.

There were also works on devising adaptive crossover operators instead of

varying the crossover rates [36]. Examples included Punctuated Crossover [27],

Masked Crossover [19], Adaptive Uniform Crossover [37], Selective Crossover [36];

and Simulated Binary Crossover [6]. Besides, in 1989, Davis first proposed the

concept of adapting probabilities of operators selection [3][4]. Several operators were

employed and the probabilites of applying each operator were adapted according to

the performance of the offsprings generated by the operator. Since then, several

similar works have also be done [13][18][29][33][34].

3. The Dynamic Genetic Algorithm

Traditional genetic algorithms use only a single crossover operator and a single

mutation operator to produce offspring. Different crossover operators can however
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produce different styles of offspring and different mutation operators can traverse

different search directions in state space, thus affecting the performance of the applied

genetic algorithm. Designing a new genetic algorithm to automatically choose the

appropriate crossover and mutation operators are then necessary. In this section, we

propose a new genetic algorithm, the Dynamic Genetic Algorithm (DGA), to achieve

this purpose.

3.1 Description

The dynamic genetic algorithm simultaneously applies multiple crossover and

mutation operators in each genetic process and automatically adjusts their ratios. Thus,

the dynamic genetic algorithm can be thought of as a generalization of the

conventional genetic algorithms by setting the initial ratios of the applied crossover

and mutation operators as the assigned values and the initial ratios of the other

operators (not applied) as zero. The flow chart of the dynamic mutation genetic

algorithm is shown in Figure 1.
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Figure 1. The flow chart of the dynamic genetic algorithm.

The detailed algorithm is described as follows.

Start

Initialize a population of N individuals

Evaluate each individual's fitness value

Form a mating set X

Assign the appropriate crossover and
mutation methods, each with an initial ratio

Apply nc different crossover methods to generate 
offspring

Evaluate each new string's fitness value and compute
progress value of each crossover method

Apply nm different mutation methods to generate 
offspring

Evaluate each new string's fitness value and compute
progress value of each mutation method

Quit?
NO YES

Stop

Adjust the mutation ratios of the mutation operators 
according to the progress values

Adjust the crossover ratios of the  crossover operators 
according to the progress values
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The Dynamic Genetic Algorithm:

Step 1: Create an initial population set of N individuals for evolution.

Step 2: Evaluate the fitness of each individual.

Step 3: Assign nc candidate crossovers and nm mutations, each with an initial ratio.

Step 4: Form a mating set Χ. The parents are then picked up at random from the

mating set Χ.

Step 5: Apply the crossover operators to generate the offspring (each crossover

operator is applied proportionally to its ratio).

Step 6: Evaluate the fitness values of each individual and calculate the average

progress value generated by each crossover operator as follows.

Assume parents p and q are chosen by a crossover operation to

produce two offspring a and b. The progress value of the crossover

operator is calculated as follows:

      (The sum of first two biggest fitness values among f(p), f(q), f(a), f(b)) -

(f(p)+f(q)).

Assume that r pairs of parents are chosen by this crossover operator

in this generation. The average progress value Progress(Ci) of this

crossover operator Ci is the average of the r values.

Step 7: Adjust the crossover ratios of the candidate crossover operators according

to the average progress values.

Step 8: Apply the mutation operators to generate the offspring.

Step 9: Evaluate the fitness values of each individual and calculate the average

progress value generated by each mutation operator as follows.
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Assume that a new string p is chosen by a mutation operator to

produce a new offspring a. The progress value of the mutation operator is

calculated as follows:

max{f(p), f(a)} − f(p).

If r old strings are chosen by this mutation operator in this generation,

the progress value Progress(Mi) of this mutation operator Mi is then the

average of the r values.

Step 10: Adjust the mutation ratios of the candidate mutation operators according

to the average progress values.

Step 11: Select N individuals to form the new population.

Step 12: If the termination criteria are not satisfied, go to Step 4; otherwise, stop

the algorithm.

After Step 12, the individual with the highest fitness value is then output as the

best solution. Below, an example is given to demonstrate the algorithm.

3.2. An Example

Assume that we want to find a value of t to maximize the following function by

the dynamic genetic algorithm:

f(t) = t4 |sin(5πt)|, t ∈[0.000, 1.024], find the max.

Each step of the algorithm is illustrated as follows.

Step 1: Create an initial population of N individuals for evolution.
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Assume that the value of t is represented by a bit string of length = 10.

Each individual in the population is then composed of 10 bits. For example,

the genetic representation for t = 0.738 is 1011100010. Let N = 8. Eight

individuals are thus randomly generated for evolution.

Step 2: Evaluate the fitness of each individual.

In this example, the fitness function is f(t) itself. An example of the initial

population after this step is shown in Table 1.

Table 1. An example of initial population after Step 2.

No. Bit string t f(t)

1 1101100000 0.864 0.4705

2 011011000 0.432 0.0168

3 1111000001 0.961 0.4904

4 1100100010 0.802 0.0130

5 0111011010 0.474 0.0463

6 1000110111 0.567 0.0512

7 0000110001 0.049 0.0000

8 1000001011 0.523 0.0700

Step 3: Assign several appropriate or common candidate crossover and mutation

operators, each with an initial ratio.

Assume that pc = 1 and pm = 0.04. Furthermore, assume that four

crossover operators C1 to C4 and four mutation operators M1 to M4 are used.
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The initial ratio for each crossover operator Ci is pc/nc = 1/4 = 0.25, and the

initial ratio for each mutation operator Mi is pm/nm = 1/4 = 0.01, for i =1 to 4.

Step 4: Form a mating set Χ.

There are several methods to construct the mating set. For example, a

chromosome can be put into the mating set by a probability proportional to its

fitness value. The parents can be picked up at random from the mating set Χ to

generate offspring.

Step 5: Apply the crossover operators to generate the offspring (each crossover

operator is applied proportionally to its crossover ratio).

In this step, the applied four crossover operators do crossover according

to their crossover ratios.

Step 6: Evaluate the fitness value of each individual and calculate the average

progress value generated by each crossover operator.

Assume that the eight individuals before operation are shown in Table 2

and the offspring generated by the crossover operators are shown in Table 3.

The average progress value for a crossover operator is calculated as follows.



13

Table 2. The fitness values of eight individuals before operation.

No Old string t f(t)

1 1011100010 0.738 0.2453

2 1100001100 0.78 0.1144

3 1100101010 0.81 0.0673

4 0110101101 0.429 0.0149

5 0110100111 0.423 0.0113

6 0100100111 0.295 0.0076

7 0011111001 0.249 0.0027

8 0010010101 0.149 0.0004

Table 3. Eight offspring generated by the crossover operators.

No Parents Offspring t f(t) Crossover
method

N1 (7, 8) 0011010001 0.209 0.0003 C4

N2 (7, 8) 0010111101 0.189 0.0002 C4

N3 (8, 4) 0110010101 0.405 0.0021 C1

N4 (8, 4) 0010101101 0.173 0.0004 C1

N5 (4, 6) 0100101101 0.301 0.0082 C3

N6 (4, 6) 0110100111 0.423 0.0113 C3

N7 (1, 8) 1010100011 0.675 0.1918 C2

N8 (1, 8) 0011010100 0.212 0.0004 C2

For example, parents No. 4 (p) and No. 8 (q) are chosen by crossover

operator C1 to produce two offspring N3 (a) and N4 (b). According to the



14

algorithm in Section 3, the average progress value of the crossover operator

C1 is thus calculated as follows:

 (0.0149 + 0.0021) − (0.0149 + 0.0004) = 0.0017

Repeating the same calculation for all the other crossover operators, the

average progress values are shown in Table 4.

Table 4. The average progress values of the crossover operators.

Crossover method Progress value Rank

C1 0.0017 3

C2 0.0186 1

C3 0.0037 2

C4 0.0000 4

Step 7: Adjust the crossover ratios of the candidate crossover operators according to

the average progress values.

There are several methods that can be used in adjusting the ratios of the

crossover operators [13]. The geometric progression method [14], which

adjusts the ratios of the crossover operators in a geometric progression, is

explained here as an example. The crossover operators are first sorted by their

progress values in each generation. The crossover operators ranked in the first

half then increase their ratios by a geometric progression series, and those

ranked in the second half then decrease their ratios by a geometric progression

series. By this way, the best crossover method will gradually get the largest

control rate and dominate the main crossover action in the genetic process.



15

Step 8: Apply the mutation operators to generate the offspring.

In this step, the adopted four mutation operators are executed according

to their mutation ratios.

Step 9: Evaluate the fitness value of each individual and calculate the average

progress value generated by each mutation operator.

The average progress value for a mutation operator is calculated in a

way a little different from that for a crossover operator. Assume that string

No. 3 (p) with fitness value 0.0673 in Table 2 is chosen by a mutation

operator M1 to produce a new offspring (a) with fitness value 0.0083.

According to the proposed algorithm in Section 3, the average progress

value of the mutation operator is 0.0673 − 0.0083 = 0.0590.

The average progress values for the other mutation operators can be

similarly calculated.

Step 10: Adjust the mutation ratios of the candidate mutation operators according to

their average progress values.

This can be done in a way similar to that in Step 7.

Step 11: Select N individuals to form the new population.

The best N individuals will be picked up as the new population.
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Step 12: If the termination criteria are not satisfied, go to Step 4; otherwise, stop the

algorithm.

For this example, we stop the genetic algorithm at the 100th

generation.

4. Experiments

In this section, we report the experiments made on showing the performance of

the proposed dynamic genetic algorithm. We also compare the execution time of the

proposed algorithm with that of the simple genetic algorithm. All programs were run

on an Intel PC. The experiments consisted of two parts. In the first part, we tested

fourteen function optimization problems that were classified into five groups; in the

second part, we used the proposed algorithm to solve the 0-1 knapsack problem.

4.1 Experiment 1

In this experiment, we tested fourteen problems classified into five groups. The

functions in Group A were simple functions with only one variable. The functions in

Group B were simple functions with more than one variable. The problems in Group

C were linear programming problems with multiple constraints. Group D included the

problems used by De Jong [16] in 1975, and widely seen in the GA literature. Group

E included the two special functions in [23]. These functions are described as follows.

(A) Single-variable functions:

Function 1: 384.16000.0 ,3 ≤≤= xxf , find the maximum.

Function 2: 160 |,)sin(|4 <<= xxxf π , find the maximum.

(B) Multiple-variable functions:
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Function 3: 10230,321 ≤≤+−= ixxxxf , find the maximum.

Function 4: 10230,321 ≤≤+= ixxxxf , find the maximum.

Function 5: 10230 ,)1/( 321 ≤≤++= ixxxxf , find the maximum.

Function 6: 512512 ,100 21321 ≤≤−−= ixxxxxxf , find the maximum.

(C) Linear Programming Problems

Function 7 :

100054 321 ≤++ xxx

100044 321 ≤++ xxx

1200158 321 ≤+− xxx

10230 ≤≤ ix

Maximize 321 102 xxxf ++= .

Function 8 :

100054 321 ≤++ xxx

1000425 321 ≤++ xxx

1200583 321 ≤++ xxx

10230 ≤≤ ix

Maximize 321 102 xxxf ++= .

(D) De Jong's Test Functions:

Function 9: 12.512.5 ,)(
3

1

2
≤≤−= ∑

=
i

i

xixf , find the minimum.

Function 10: 048.2048.2 ,)1()(100 2
1

2
2

2
1 ≤≤−−+−= ixxxxf , find the

minimum.
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Function 11: 12.512.5 ),int(
5

1

≤≤−= ∑
=i

ii xxf , find the minimum.

Function 12: )1,0(
30

1

4 Gaussixf
i

i += ∑
=

, find the minimum.

(E) Other Problems:

Function 13: ( ) 12512 ,||sin
10

1

<≤−−= ∑
=

i
i

ii xxxf , find the minimum.

Function 14 : 512512 ,1)/cos(4000/)(
10

1

10

1

2 ≤≤−+−= ∏∑
==

i
i

i
i

i xixxf , find

the minimum.

The performance of the dynamic genetic algorithm by four crossover operators

and four mutation operators is compared with that of the simple genetic algorithms,

each with a single crossover operator and a single mutation operator. The following

four crossover operators and four mutation operators are used in the dynamic genetic

algorithm:

Crossover 1. Single-point crossover: This method defines a mask to determine

which bits should be exchanged between two individuals. However there is only

one bit with value 1 on the mask. For the position of bit value 1 on the mask, the

parents exchange the corresponding bits.

Crossover 2. Multi-point crossover [31]: This method defines a mask to

determine which bits should be exchanged between two individuals. For the

positions that are 1 on the mask, the parents exchange the corresponding bits.
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Crossover 3. Substring crossover: This method changes arbitrary substrings

between two individuals. Length and positions of these substrings are chosen at

random, but are the same for both individuals.

Crossover 4. Uniform crossover [34]: This method defines a mask to determine

which bits should be exchanged between two individuals. Bit values of 1 and 0

however alternative with each other on the mask. For the positions that are 1 on

the mask, the parents exchange the corresponding bits.

Mutation 1. 0, 1 change: This method changes one bit of a string.

Mutation 2. Swapping: This method exchanges arbitrary two bits in a single

chromosome.

Mutation 3. Inversion: This method changes the order of the bits in an arbitrary

interval of the string.

Mutation 4. Bit-change: This method changes the bit value 0 to 1 and 1 to 0.

Traditionally, most genetic algorithms perform the 0, 1 change mutation method

with a very small mutation probability. This mutation method is adopted in the

following SGA1~SGA4, for comparison.

The relationship between the best fitness values (average 500 runs for each

problem) and the generations can then be found from these experiments. In all the

following figures, the notations are illustrated as follows:
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SGA1: The simple genetic algorithm using crossover operator 1 and the 0,1

change mutation method;

SGA2: The simple genetic algorithm using crossover operator 2 and the 0, 1

change mutation method;

SGA3: The simple genetic algorithm using crossover operator 3 and the 0, 1

change mutation method;

SGA4: The simple genetic algorithm using crossover operator 4 and the 0, 1

change mutation method;

SGA5: The simple genetic algorithm using mutation operator 1 and the

substring crossover method.

SGA6: The simple genetic algorithm using mutation operator 2 and the

substring crossover method.

SGA7: The simple genetic algorithm using mutation operator 3 and the

substring crossover method.

SGA8: The simple genetic algorithm using mutation operator 4 and the

substring crossover method.

DGA : The dynamic genetic algorithm using crossover operators 1〜4 and

mutation operators 1〜4.

Due to the limitation of paper length, only the experimental results for

Function 10 are shown here. Similar results are observed for the other problems.

Table 5 is a summary of the results obtained by DGA and SGA for the 14 functions,

where column SGA lists the best of the eight SGAs. The results for Function 10 are

shown in Figures 2 and 3.
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Table 5. Summary of the best results obtained by DGA and SGA in Experiment 1.

Fitness value
Function DGA SGA

1 4397.106 4391.920
2 63427.40 62876.97
3 2045.954  2045.936
4 9.98 9.98
5 2043.103 2042.911
6 1506.331 1499.016
7 1280.176 1253.370
8 1414.604 1398.738
9 0.004 0.002
10 1.989 2.558
11 -24.548 -24.536
12 0.004 0.009
13 -3836.31 -3739.82
14 0.879 0.985

       f x x x xi= − + − − ≤ ≤100 1 2 048 2 0481
2

2
2

1
2( ) ( ) , . . , find the minimum

String length: 24

Crossover rate: 1.0

Mutation rate: 0.24

Population size: 40

Generation #: 40

Experiment #: 500

 

Figure 2.Experimental results of DGA and SGA1 to SGA4 for Function 10.
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Figure 3. Experimental results of DGA and SGA5 to SGA8 for Function 10.

From Figures 2 and 3, it is observed that DGA has a better performance than the

others, quite consistent with our discussion.

Next, experiments were made for comparing the performance of the proposed

dynamic genetic algorithm with that of DCGA (which applied a fixed mutation

operator and simultaneous applied multiple crossover operators) and DMGA (which

applied a fixed crossover operator and simultaneous applies multiple mutation

crossover operators). Results are shown in Figure 4.

From Figure 4, we find that DGA is better than DCGA and DMGA. DGA

combines the advantages of these two methods and therefore converges faster and

gets better fitness values than DCGA and DMGA.
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Figure 4. Experimental results of DGA, DCGA and DMGA for Function 10.

Experiments were finally made for comparing the cpu time (in seconds) of using

DGA and SGAs. The time is averaged over 500 runs for each algorithm. The

experimental results for Function 10 are shown in Table 6, where SGA time is the

average time of a simple GA, SGA16 is the average total time of 16 different SGAs,

each with a different crossover or mutation operator, and DGA is the average time of

a dynamic GA.

Table 6. The average CPU time spent for Function 10

Gen# Pop.
Size

SGA
time

SGA16
time

DGA
time

DGA
/SGA

DGA
/SGA16

30 40 1.39 22.21 2.10 1.51 0.09

From Table 6, we can observe that the time of DGA is a little more than a single

SGA. It is however much less than the summation of time in 16 SGAs. Since the

performance of DGA is better than all the 16 SGAs, the extra time paid by using
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DGA is worth, rather than applying the 16 different SGAs to determine which

combination yields the best result.

4.2 Experiment 2  The 0/1 knapsack problem

In this subsection, we examine the performance of the dynamic genetic

algorithm on the 0/1 knapsack problem, which belongs to the class of knapsack-type

problems and is well known as NP-hard [21]. The problem of 0/1 knapsack is, given a

set of objects, ai, for 1 ≤ i ≤ n, together with their profits Pi, weights Wi, and a capacity

C, to find a binary vector x = <x1, x2, …, xn>, such that

CWx
n

i
ii ≤⋅∑

=1

 and ∑
=

⋅
n

i
ii Px

1

 is maximal.

Since the difficulty of the knapsack problems is greatly affected by the

correlation between profits and weights [20], we followed the three randomly

generated sets of data used in [21]:

(1) uncorrelated:

 Wi and Pi: random(1..v);

 

(2) weakly correlated:

 Wi: random(1..v),

 Pi: Wi + random(−r..r);

 

(3) strongly correlated:

Wi: random(1..v),
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Pi: Wi + r.

The data were generated with the following parameter settings: v = 10, r = 5, and

n = 250. Following a suggestion from [20], two different types of capacity C were

adopted: 1) C = 2v, for which the optimal solution contained very few items; and 2) C

= 0.5∑Wi, in which about half of the items were in the optimal solution.

To be consistent with the crossover and mutation operators considered, we used

the simple binary string encoding scheme: each bit represented the inclusion or

exclusion of an object. It was however possible to generate infeasible solutions with

this representation. That was, the total weights of the selected objects would exceed

the knapsack capacity. In the literature, there were two ways of handling the

constraint violation [21]. One way used a penalty function to penalize the fitness of

the infeasible candidate so as to diminish its survival chance. The second way used a

repair mechanism to correct the representation of the infeasible candidate. As

indicated in [21], the repair method was more effective than the penalty approach. We

hence adopted the repair approach in our implementation for both of the simple

genetic algorithm and the dynamic genetic algorithm. The repair scheme we used was

a greedy approach. All objects in a knapsack represented by an overfilled bit string

were sorted in the decreasing order of their profit weight ratios. The last object was

then selected for elimination (change the corresponding bit of “1” to “0”). This

procedure was executed until the weight of the remaining objects was less than the

total capacity. The parameters in this experiment were set as below:

Crossover rate: 1.0,

Mutation rate: 0.24,



26

Population size: 100,

Generation #: 500,

Experiment #: 20.

The greedy-repair DGA (GDGA) was compared with the eight greedy-repair

SGAs (GSGAs) as chosen in Experiment 1. The results are shown in Figures 5 to 10.
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Figure 5. Experimental results on uncorrelated 0/1 knapsack for C = 2v.
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Figure 6. Experimental results on uncorrelated 0/1 knapsack for C = 0.5∑Wi.
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Figure 7. Experimental results on weakly correlated 0/1 knapsack for C = 2v.
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Figure 8. Experimental results on weakly correlated 0/1 knapsack for C = 0.5∑Wi.

30

40

50

60

70

1 100 200 300 400 500
Generation

F
it

ne
ss

 V
al

ue

GSGA1 GSGA2 GSGA3 GSGA4 GSGA5

GSGA6 GSGA7 GSGA8 GDGA

Figure 9. Experimental results on strongly correlated 0/1 knapsack for C = 2v.
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Figure 10. Experimental results on strongly correlated 0/1 knapsack for C = 0.5∑Wi.

The test suit we used represents two different types of problem instances. Those

data sets in Group 1 under constraint C = 2v is quite simpler than those in Group 2

under constraint C = 0.5∑W, because the number of candidate solutions in Group 1 is

much less than that in Group 2. For the simpler problems in Group 1 we can observed

from Figures 5, 7 and 9 that GDGA and GSGA2 outperform the others and alternate

the leading place both in searching speed and output quality. In the other group, we

observe from Figures 6, 8 and 10 that GDGA and GSGA2 again outperform the other

methods in the resulting quality but evolve more slowly, and GDGA performs quite

similar to GSGA2.

These observations show that GSGA2 is the best combination of concern for 0-1

knapsack problem. However, this is concluded from 16 different trials. On the other

hand, through the capability of automatically adjusting the appropriate operators,

GDGA can ultimately find the most suitable operator combination, e.g., the multi-

point crossover and 0,1 change mutation in this experiment, thus behaves like GSGA2.
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And, sometimes, as in Figure 7, GDGA can retain the population diversity to explore

further to find better solution. This experiment illustrates again the capability of

automatically adjusting the appropriate crossover and mutation operators eliminating

the effort for determining the best combinations via trial-and-error.

5. Conclusions and Future Work

Genetic algorithms (GAs) have become increasingly important for researchers in

solving difficult problems since they could provide feasible solutions in a limited

amount of time. This paper has presented a new enhanced genetic algorithm for

automatically applying suitable crossover and mutation operators to generate

offspring for solving an arbitrary problem. The new genetic algorithm can save much

time in searching for an appropriate crossover or mutation operator than applying the

simple genetic algorithms one by one. The performance of the proposed genetic

algorithm is also better than the simple genetic algorithms. Also, the simple genetic

algorithms are the special cases of the proposed dynamic genetic algorithms by

appropriately setting the adjusting ratios. The dynamic genetic algorithm thus makes a

good trade-off between time-complexity and performance. In the future, we will

attempt to design other sophisticated algorithms to automatically adapt the other

parameters.
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