
Improving Parallel Ordering of Sparse

Matrices using Genetic Algorithms

April 23, 2005

Wen-Yang Lin

Department of Information Management

I-Shou University

Kaohsiung County, Taiwan 84008, ROC

Email: wylin@isu.edu.tw

Abstract

In the direct solution of sparse symmetric and positive definite lin-

ear systems, finding an ordering of the matrix to minimize the height

1

of the elimination tree (an indication of the number of parallel elimi-

nation steps) is crucial for effectively computing the Cholesky factor

in parallel. This problem is known to be NP-hard. Though many ef-

fective heuristics have been proposed, the problems of how good these

heuristics are near optimal and how to further reduce the height of

the elimination tree remain unanswered. This paper is an effort for

this investigation. We introduce a genetic algorithm tailored to this

parallel ordering problem, which is characterized by two novel genetic

operators, adaptive merge crossover and tree rotate mutation. Exper-

iments showed that our approach is cost effective in the number of

generations evolved to reach a better solution in reducing the height

of the elimination tree.

Keywords. Sparse matrix ordering, parallel factorization, genetic

algorithms, elimination tree.

1 Introduction

In the direct solution of sparse symmetric and positive definite linear systems,

it has been recognized that parallel pivoting (pivots that can be eliminated

simultaneously) is crucial for effectively computing the Cholesky factor in

parallel (Calahan 1973, Heath 1991). When the sparse matrix is viewed as

2

a graph, the parallel pivoting problem is equivalent to finding an ordering of

the vertices to minimize the height of the elimination tree (an indication of

the number of parallel elimination steps). For general graphs this problem is

known to be NP-hard. Researchers are devoted to finding effective heuristics

and usually adopt a modular approach. First, a fill-reducing ordering, such as

minimum degree (George 1989) or nested dissection (George 1973), is applied.

Then, based on this ordering, an equivalent reordering (which preserves the

fills) is produced such that the reordered matrix can be factored effectively

in parallel (Lewis 1989, Liu 1989). The modular approach, though would

generate an ordering that minimizes the number of parallel elimination steps

and preserve the fill, has prevented further exploitation of better solutions

because of the fill preserving constraint. Even if the fill preserving property is

neglected, the problem of how to further reduce the height of the elimination

tree remains unanswered.

In recent years, a large body of work exists in applying genetic algorithms

to different application areas (Goldberg 1989, Mitchell 1996). In contrast, not

much work has been done on the parallel ordering problem. In a previous

work, we have found the possibility of applying genetic algorithms to this

problem. This paper is a further investigation in this problem.

We propose a genetic algorithm that is tailored to the parallel ordering

3

problem and is characterized by two novel genetic operators, adaptive merge

crossover and tree rotate mutation. Experiments showed that our approach is

cost effective in the number of generations evolved to reach a better solution

that has considerable improvement in reducing the height of the elimination

tree.

An outline of the paper is as follows. First, we describe the background

for parallel sparse Cholesky factorization and the parallel ordering problem.

In Section 3, we describe the proposed genetic algorithm and discuss some

implementation issues. In Section 4 we present the experimental results on

a set of test matrices from the Harwell-Boeing collection. Finally, Section 5

states the conclusions.

2 Background

Consider a system of linear equations

Ax = b,

where A is an n × n sparse symmetric and positive definite matrix, b is a

given vector, and x is the unknown vector to be solved. It is known that

many scientific applications give rise to such a system of linear equations.

In the direct solution of the linear systems, A is usually first decomposed

4

into LLT , which is known as Cholesky factorization, where L is the lower

triangular. Then the solution vector x is computed by solving two triangular

systems Ly = b and LT x = y (George 1981). Since A is sparse, meaning that

most of its entries are zeros and, as a variable is eliminated during factoring

A into LLT , some entries that are initially zero in A may become nonzero in

L. These entries are known as fill or fill-in.

As an example, consider the following system



































4 2 2 0.5 2

2 2 0 0 0

2 0 3 0 0

0.5 0 0 0.875 0

2 0 0 0 16





































































x1

x2

x3

x4

x5



































=



































3

1

6

4

2



































.

The Cholesky factor of the coefficient matrix is



































2

1 1

1 −1 1

0.25 −0.25 −0.5 0.5

1 −1 −2 −3 1



































,

where the bold faced values denote the fill.

For efficient use of computer storage and processing time, it is desirable

5

for the amount of fill to be small, and only the nonzeros in A and L are

stored and operated.

Calahan (Calahan 1973) was the first one to recognize that in parallel

computation of the Cholesky factor of a sparse matrix, pivots of no data

dependency can be eliminated simultaneously. And the more pivots being

processed simultaneously, the less computation time is spent on the factor-

ization. Research has shown that the order of equations has great impact

on exploiting the parallel pivoting (Jess 1981). The problem of finding a

good ordering of the sparse set of equations appropriate for parallel fac-

torization is called the parallel pivoting or parallel ordering problem. For

example, consider the tridiagonal system shown in Figure 1(a). Let us call

the ordering that preserves the tridiagonal the natural ordering. Under the

natural ordering, we observe that each column except the first one depends

on the immediately preceding column and must be computed sequentially

during the factorization. The ordering exhibits no parallelism. Consider the

same matrix ordered by a nested dissection ordering as shown in Figure 1(b).

Now columns 1, 2, 4 and 5 have no preceding dependence and thus can be

computed simultaneously.

By the combinatorial nature of the sparse ordering problem, it is conve-

nient to view a sparse matrix as a graph. Let A be a n×n sparse symmetric

6

and positive definite matrix. Define its associated graph, G(A) = (V, E), as

an undirected graph with the vertex set V = {1, 2, . . . , n} and the edge set

E = {(i, j) |if aij 6= 0}. An ordering α of V is a bijection α : {1, 2, . . . , n} →

V . Figure 2 shows an 8× 8 sparse matrix and its associated graph ordered

by the natural ordering.

Given a graph ordered by α, Gα(A) = (V, E, α), we call the adjacency

graph of the resulting filled matrix F = L + LT the filled graph of Gα(A),

where L denotes the Cholesky factor. Figure 3 shows the Cholesky factor of

the matrix in Figure 2 ordered by 3 2 6 8 1 5 7 4 and the filled graph, where

symbol ’×’ denotes a nonzero and ’•’ a fill.

To exploit the inherent parallelism among pivots in sparse matrix fac-

torization, a commonly used structure is the elimination tree (Jess 1981,

Schreiber 1982). Given a graph ordered by α, Gα(A) = (V, E, α), the elimi-

nation tree Tα(A) is a tree containing the same nodes as the filled graph of

the Cholesky factor of A and, for each node k with k < n, its parent node is

p, where p = min {j | j > k and ljk 6= 0}. That is, the parent node of k is

the first nonzero off the diagonal on column k. The effect of reordering for

reducing elimination tree height is illustrated in Figure 4, where the matrix

ordered by 3 2 6 8 1 5 7 4 has decreased the height by one.

The elimination tree structure exhibits in a minimal form of the depen-

7

dencies among pivots in a sparse matrix. The height of the elimination tree

indicates essentially the minimum number of parallel elimination steps to

complete the factorization. From this viewpoint, the parallel ordering prob-

lem can be regarded as finding an ordering of the associated graph of a sparse

matrix to minimize the height of the elimination tree.

For a general graph, the ordering problem of minimizing elimination tree

height is known to be NP-hard. In the literature there are many effective

heuristic methods. But how well these methods are near to the optimal

remains unanswered. Our intention in this work has two aspects: devise a

genetic algorithm to improve the quality of an ordering generated by some

heuristic method and to appraise the effectiveness of the heuristic method.

3 The Proposed Genetic Algorithm

The genetic algorithm (Holland 1992) is an innovative approach composed of

many biological imitations, such as the chromosome representation, genetic

operators, population selection, and fitness functions. Our work is based on

a modified simple genetic algorithm (Goldberg 1989), which is described in

Algorithm 1. Below, we state the primary issues involved in applying the GA

to the parallel ordering problem, and propose new genetic operators tailored

to this problem.

8

Algorithm 1. A GA for parallel pivoting

Input: A heuristic ordering and an adjacent structure of the sparse matrix

Output: A resulting ordering

begin

Initialize the parameters;

Generate a population P randomly;

generation← 1;

while generation ≤ max gen do

Clear the new population P ′;

Use a fitness function F(·) to evaluate each individual in P ;

while |P ′| ≤ population size do

Select two parents from P ;

Perform crossover;

Perform mutation;

Place the offspring into P ′;

endwhile

P ← P ′; /* Replace the old population. */

generation← generation + 1;

endwhile

9

end

3.1 Chromosome Representation

The encoding scheme is the first step in, and a key part of using GAs. To facil-

itate the crossover and mutation operations, and to enhance the performance

of the algorithm, a chromosome representation that stores current solution

states is desirable. Choosing an appropriate chromosome representation is

not trivial. It depends on the problem of concern and the size of the search

space. In this work, we use a straightforward representation: each ordering

is represented as a chromosome. That is, a chromosome χ = x1x2 . . . xn cor-

responds to an ordering of G(A). For example, consider the matrix in Figure

3, which is ordered by 3 2 6 8 1 5 7 4. The corresponding chromosome is

χ = 32681574.

3.2 Fitness Evaluation

The fitness function is important for devising an effective GA. Indeed, it

may be the most time-consuming and critical component in GAs. The fit-

ness function evaluates each chromosome and generates values representing

the degree of fitness. Chromosomes with smaller fitness values are usually

discarded to increase the population superiority. A simple evaluation for the

10

parallel ordering problem is using the height of the elimination tree. That

is, given a chromosome χ, we define the fitness function F below

F(χ) = height(Tχ(A)).

Algorithm 2 describes the function for computing the elimination tree height,

where the tree structure is accomplished in the form of a Parnt(∗) vector.

Vector Heght(∗) stores the height of the subtree rooted at each node in

the elimination tree. For example, the Parnt and Heght vectors for the

elimination tree in Figure 4 with respect to ordering 3 2 6 8 1 5 7 4 are

described below

i 1 2 3 4 5 6 7 8

Parnt 5 1 4 0 7 7 4 5

Heght 2 1 1 5 3 1 4 1

where the node i with Parnt(i) = 0 denotes the root.

Algorithm 2. Elimination Tree Height

Input: An ordering χ and the adjacency structure of the sparse matrix

Output: The elimination tree height

begin

for i = 1 to n do

ni← χ(i);

11

Parnt(ni)← 0;

Heght(ni)← 1;

/* Add the i-th node xi into the elimination tree. */

for k ∈ AdjG(A)(ni) and χ(k)−1 < i do

r ← k;

/* Trace in the partial elimination tree constructed so far to find

the root of the subtree containg the node k. */

while Parnt(r) 6= 0 and Parnt(r) 6= ni do

r ← Parnt(r);

if Parnt(r) = 0 then

/* Add xi to the elimination tree by setting xi as the root of the

found subtree. Also update the height of the subtree. */

Parnt(r)← ni;

if Heght(ni) < Heght(r) + 1 then

Heght(ni)← Heght(r) + 1;

endif

endfor

endfor

return(Heght(ni));

end

12

The algorithm starts with a null elimination tree. At each step i, the ith

node, i.e., χ(i), is added to the elimination tree in the manner of a bottom-up

traverse along the current Parnt structure to identify all its current children.

The Parnt and the Heght vectors are updated accordingly to reflect this

partial elimination tree. This procedure is repeated till the whole elimination

tree is constructed. Figure 5 shows the stages in executing Algorithm 2 on

the example in Figure 2, where χ = 32681574.

The most time-consuming part of Algorithm 2 is the while loop for tracing

the children of the ith node. A technique called path compression can be used

to speed up the traverse process. With this modification, the complexity of

Algorithm 2 can be reduced to O(|E(A)| log2 n). We adopt this technique in

our implementation. The interested reader should refer to (Liu 1986) for the

details.

3.3 Crossover

The crossover operation is perhaps the most distinguishing feature of GAs.

By exchanging genes in a pair of individuals (parents) chosen from the pop-

ulation, the crossover mimics the ecological mating process to generate off-

spring. In the literature, there are diverse forms of crossover and they usu-

13

ally are tailored to the chromosome representations (Mitchell 1996). One

class, called the sequencing crossover, is dedicated to order-based GAs, in

which all solutions are encoded as a permutation of a list. Typical sequenc-

ing crossovers include edge recombination (ER) or enhanced edge recombina-

tion (EER), order crossover #1 (OX1), order crossover #2 (OX2), partially

mapped crossover (PMX), cycle crossover (CX), and position based crossover

(POX). The main difference between these operators is the information to

be preserved during recombination. The edge recombination operator is de-

signed to preserve the adjacency information while the others are more sensi-

tive to the relative order (OX1, OX2, and POX) or absolute position (PMX

and CX). A comprehensive study of these operators was conducted in (Stark-

weather 1993).

Most sequencing crossovers are based on the local precedence among the

genes in a chromosome and dependent only on the contents of the chromo-

somes. Recall that our purpose is, given an ordering generated by some

heuristic method such as minimum degree or a hybrid of minimum degree

and minimum height, to improve the ordering quality, i.e., reduce the height

of the elimination tree. This heuristic solution can be seen as a local mini-

mum in the search space. One way to make this local minimum conducive

to the optimal solution is incorporating the local minimum in the initial

14

population and applying one of the sequencing crossovers in subsequent evo-

lutionary processes. In a preliminary work, we have considered this approach

and found that it usually needs much more recombinations to reach another

better minimum. This means that the information concealed in the heuristic

solution does not contribute effectively to the genetic search. Another way is

generating all of the individuals in the initial population with the heuristic

method. This approach seems to be promising but has two deficiencies. First,

we have to apply the heuristic method many times with different seeds. This

could be too time consuming. Second, the solutions obtained by the heuristic

method usually have similar characteristics even with different seeds. The

population diversity would be limited to a local landscape in the search space

and may not explore further areas.

To alleviate these problems, we adapted Blanton Jr. and Wainwright’s

merge operator (Blanton Jr. 1993) in the present work, which was origi-

nally proposed to tackle the optimization of vehicle routing problems with

constraints. Given a solution encoded as an n-gene chromosome, a global

precedence relationship among the genes is first created according to the

constraint. The precedence vector is used as a guide for generating offspring.

For example, consider the following two chromosomes, p1 and p2, and a

15

precedence vector ω.

p1 : 4 3 2 6 1 7 5 8

p2 : 5 1 7 8 2 3 4 6

ω : 3 2 7 4 1 8 6 5

c : 4

The first gene in p1, 4, has earlier precedence in ω than the first gene of p2, 5.

Therefore the offspring inherits its first gene from p1. The two genes, 4 and

5, in p2 are then swapped to maintain the validity. The process continues

until the offspring is filled with genes. The final result is shown below.

c : 4 3 2 8 7 1 5 6

For the purpose of our work, the precedence vector is initially set to the

solution obtained by some heuristic method and replaced by the best chro-

mosome of the population in each subsequent generation. This effects the

genetic search always being directed by the current best solution. As one

might expect, the search space would converge more quickly to an optimal.

We called this modified operator the adaptive merge crossover, whose func-

tion is described in Algorithm 3.

Algorithm 3. Adaptive merge crossover (AMX)

Input: Two randomly selected chromosomes p1, p2 and the best chromo-

16

some of the current population, χ

Output: An offspring c

begin

ω ← χ; /* ω is set to the current best chromosome. */

for i = 1 to n do

/* Compare in ω the precedence of the i-th gene of p1 and p2. */

if ω−1(p1(i)) < ω−1(p2(i)) then

c(i)← p1(i); /* Inherit the i-th gene from p1. */

swap the two genes, p1(i) and p2(i), in p2;

else if ω−1(p1(i)) > ω−1(p2(i)) then

c(i)← p2(i); /* Inherit the i-th gene from p2. */

swap the two genes, p1(i) and p2(i), in p1;

else

c(i)← p1(i);

endif

return(c);

end

17

3.4 Mutation

The mutation operator is used to randomly change some elements in a se-

lected individual so as to yield additional genetic diversity to help the search

process escape from local optimal traps. For order-based GAs, it is natural

to imitate the mutation by exchanging two randomly chosen elements, called

the Swapping Mutation (SWM), or by inverting a subsequence, called the

Inversion Mutation (IVM). In our preliminary experiments, we found that

these two mutations are not amenable to our adaptive merge crossover. The

diversity effect is faint. Hence, we devise another method, called the tree

rotate mutation.

As usual, a chromosome for mutation together with a mutation point

is randomly selected. Let the selected chromosome be x1x2 . . . xn and the

mutation point be m. The tree rotate mutation is accomplished by moving

xm and those genes adjacent to xm in the graph G(A) with later precedence

than xm to form the latter part of this chromosome. Then the remaining

genes form the former part, retaining their relative orders in the chromosome.

The effect of this operation, as will be illustrated later, looks like rotating

the elimination tree at the node adjacent to xm and ordered last.

For example, consider the graph in Figure 2 and the ordering 3 2 6 8 1

5 7 4 in Figure 3. Assume that the mutation point is 5; therein the element

18

is 1. The set of genes adjacent to 1 with later precedence is {5}. Thus the

tree rotate mutation moves 1 and 5 to the latter part of the chromosome

and forms the former part with other genes, both parts of genes retaining

their relative orders. The resulting chromosome is 3 2 6 8 7 4 1 5. As Figure

6 shows, the elimination tree looks like it is undergoing a rotation at node

5, resulting in a decrement on the tree height. The mutation operator is

described in Algorithm 4.

Algorithm 4. Tree Rotate Mutation (TRM)

Input: A randomly selected chromosome χ and a mutation point m

Output: The mutated chromosome χ

begin

j ← 1; k ← m;

for i = m to n do

/* Check if xi is adjacent to xm with later precedence. */

if χ(i) ∈ AdjG(A)(χ(m)) ∪ {χ(m)} then

/* Keep xi to a temporary vector τ . */

τ(j)← χ(i);

j ← j + 1;

else

19

/* Move xi to the later part of the chromosome. */

χ(k)← χ(i);

k ← k + 1;

endif

/* Copy those genes in vector τ to the former part. */

for i = 1 to j − 1 do

χ(i + k − 1)← τ(i);

return(χ)

end

4 Experimental Results

The evaluation is against the well-known modular approach, Liu’s multiple

minimum degree (MMD) ordering (Liu 1985), followed by an implementation

(Lewis 1989) of the Jess and Kees algorithm (Jess 1981) to minimize the

elimination tree height. Given a sparse matrix, this approach finds a good

fill-reducing ordering first, and then generates an equivalent reordering in

minimizing the elimination tree height while preserving the fill. We choose

the power network matrices in the Harwell-Boeing collection (Duff 1992) as

the benchmark. Table 1 summarizes the characteristics of the test matrices.

All programs were coded in the C language. The experiment was per-

20

formed on a PC with Intel Pentium-III 600MHz CPU. All evaluations were

the average over 20 runs and were performed under the following parameter

settings: maximum generation is set to 50 with population size of 100; the

crossover rate is set to 0.6 while mutation rate is set to 0.1.

In our preliminary work, we have tested the six sequencing crossovers,

EER, OX1, OX2, PMX, CX, and POX, discussed in (Starkweather 1993), and

found that the position-based crossover (POX) is superior to the others while

edge recombination performs the worst. Our result is consistent with that

observed by Starkweather (Starkweather 1993): Position or order preserving

operators were superior to adjacency preserving operators for problems that

are more sensitive to the order of the sequence, e.g., scheduling problems.

For comparison, we consider four versions in the evaluation: POX+SWM

(swapping mutation), POX+TRM, AMX+SWM, and AMX+TRM. Figures

5 and 6 depict the results of the population diversity and the fitness of the

best solution, respectively, for matrix BCSPWR09; similar phenomena were

observed for the other matrices. For a population P composed of N chro-

mosomes, each of length n, the diversity, measuring the degree to which a

population is nonhomogeneous, is defined below

div(P) =
2

nN(N − 1)

∑

χ,χ′∈P∧χ6=χ′

n
∑

i=1

[xi = x′i] ,

where xi and x′i denote the ith gene in chromosome χ and χ′, respectively,

21

and [xi = x′i] is 1 if xi = x′i; otherwise 0.

As one might expect from the conductive nature of the AMX operator,

the population diversity converges quickly. Figure 7 clearly depicts this phe-

nomenon. The diversity, when SWM is used, converges very quickly to zero

after only 20 generations. But through the TRM operator, the population

diversity is maintained sufficiently high above a minimum. This shows that

the swapping mutation is not effective as a global exploring mechanism when

it is incorporated with the AMX operator.

When cooperating with the POX operator, however, there is no signif-

icant difference between TRM and SWM, both retaining high diversity of

the population. This means that POX performs better in exploring search

dynamics than AMX. The result in Figure 8 asserts this inference. As

the graph shows, AMX+TRM outperforms both in the convergence speed

and the solution quality, but the curve is stable after 12 generations. The

curve of POX+SWM, though it converges slowly, reveals further possibility

in light of its downstairs shape to reach a better solution for more evolu-

tions. We performed more evolutions in another experiment and found that

POX+SWM needs more than about 100 generations to reach a better solu-

tion than AMX+TRM. The best results and the minimum generation the

best appears for all matrices are reported in Table 2. On average, our pro-

22

posed GA reduced by 15% the elimination tree height obtained by minimum

degree and Jess and Kees algorithm after 8 evolutionary generations. This

essentially asserts the feasibility of applying genetic algorithms as an effective

postprocess in improving the ordering quality for parallel factorization.

Additionally, we also compared our proposed GA with another well-

known class of fill-reducing methods, nested dissection, which is better at

generating a balanced elimination tree. Here, we choose one of the lead-

ing packages, METIS (Karypis 1998). As the graph in Figure 9 shows,

AMX+TRM again outperforms both in the convergence speed and the so-

lution quality than the other combinations, for matrice BCSPWR09; similar

phenomena were observed for the other matrices. The best results and the

minimum generation the best appears for all matrices are summarized in

Table 3. On average, our proposed GA reduced by 6% the elimination tree

height after 5 evolutionary generations. This illustrates that METIS is bet-

ter than MMD and that our approach can be used to appraise the quality of

different heuristic methods.

5 Conclusions

We have presented a genetic algorithm to improve the quality of a given

heuristic ordering in reducing the height of an elimination tree. The pro-

23

posed algorithm is characterized by two novel operators, the adaptive merge

crossover and tree rotate mutation. Through these two operators, our ap-

proach can make use of the information concealed in a heuristic solution to

aid the exploration of better solutions.

Experimental results on some test matrices from the Harwell-Boeing col-

lection showed that considerable improvements in the elimination tree height

can be obtained within a very limited number of generations, even though

the given heuristic solution is a fill-preserving, minimum height ordering.

Our method can be used as an effective postprocess to any heuristic ordering

methods.

The ordering of sparse matrices for reducing elimination tree height we

consider in this work is just one of the ordering problems for sparse matrix

computation. Other classes such as ordering for minimizing the fill, the com-

pletion time, storage, communication or any combinations of these criteria

deserve further investigation.

Acknowledgments

This research was supported in part by the National Science Council of ROC

under grant NSC87-2213-E-214-005.

24

References

[1] D. Calahan, Parallel solution of sparse simultaneous linear equations,

in Proc. 11th Annual Allerton Conference Circuit and System Theory

(1973) 729-735.

[2] I.S. Duff, R.G. Grimes and J.G. Lewis, User′s guide for the Harwell-

Boeing sparse matrix collection, CERFACS, Toulouse Cedex, France,

1992.

[3] A. George, Nested dissection of a regular finite element mesh, SIAM J.

Numer. Anal. 10 (1973) 345-363.

[4] A. George and J.W.-H. Liu, Computer Solution of Large Sparse Positive

Definite Systems (Prentice-Hall, 1981).

[5] A. George and J.W.-H. Liu, The evolution of the minimum degree or-

dering algorithm, SIAM Review 31 (1989) 1-19.

[6] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning (Addison-Wesley, 1989).

[7] M.T. Heath, E. Ng and B.W. Peyton, Parallel algorithms for sparse

linear systems, SIAM Review 33 (1991) 420-460.

25

[8] J. Holland, Adaptation in Natural and Artificial Systems (MIT Press,

1992).

[9] J.A.G. Jess and H.G.M. Kees, A data structure for parallel L/U decom-

position, IEEE Trans. Comput. 31 (1982) 231-239.

[10] J.L. Blanton Jr. and R.L. Wainwright, Multiple vehicle routing with

time and capacity constraints using genetic algorithms, in Proc. Int’l

Conference on Genetic Algorithms (1993) 452-459.

[11] G. Karypis and V. Kumar, METIS: a software package for partitioning

unstructured graphs, partitioning meshes, and computing fill-reducing

orderings of sparse matrices, Department of Computer Science, Univer-

sity of Minnesota, 1998. http://www-users.cs.umn.edu/ karypis/metis

[12] J.G. Lewis, B.W. Peyton and A. Pothen, A fast algorithm for reordering

sparse matrices for parallel factorization, SIAM J. Sci. Stat. Comput.

10 (1989) 1146-1173.

[14] J.W.-H. Liu, Modification of the minimum degree algorithm by multiple

elimination, ACM Trans. Math. Software 11 (1985) 141-153.

[15] J.W.-H. Liu, A compact row storage scheme for Cholesky factors using

elimination trees, ACM Trans. Math. Software 12 (1986) 127-148.

26

[16] J.W.-H. Liu, Reordering sparse matrices for parallel elimination, Paral-

lel Comput. 11 (1989) 73-91.

[17] M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996).

[19] R. Schreiber, A new implementation of sparse Gaussian elimination,

ACM Trans. Math. Software 8 (1982) 256-276.

[20] T. Starkweather, et al, A comparison of genetic sequencing operators,

in Proc. Int’l Conference on Genetic Algorithms (1993) 69-76.

27

(a)
 (b)

Figure 1: A 7 × 7 naturally ordered matrix and its counterpart ordered by

nested dissection ordering.

28

1

2

3

4

7

5

6

8

4
 7

5
 8

1

6

2

3

Figure 2: An 8× 8 matrix and its associated graph.

29

1

2

3

4

7

5

6

8

4
 7

5
 8

1

6

2

3

Figure 3: The Cholesky factor of the matrix in Figure 2 ordered by 3 2 6 8

1 5 7 4 and the associated filled graph.

30

2

3

4

1

6

5

7

8

4

3
 7

6
5

1

2

8

Figure 4: The elimination trees of the matrix in Figure 2 that correspondingly

ordered by natural ordering and 3 2 6 8 1 5 7 4.

31

Step(s) i
 Constructed etree

1~4

5

6

7

8

3
 2
 6
 8

1

3
 2
 6
 8

1

3
 2
 6

8

5

1

3
 2

6

8

5

7

1

3

2

6

8

5

7

4

Figure 5: Stages in executing Algorithm 2 on the graph in Figure 2 ordered

by 3 2 6 8 1 5 7 4.

32

4

3
 7

6
8

4

3
 7

6
5

1

2

8

3 2 6 8 1 5 7 4
 3 2 6 8 7 4 1 5

1

2

5

Figure 6: The corresponding elimination trees of the matrix in Figure 2

before and after a tree rotate mutation.

33

0

0.2

0.4

0.6

0.8

1

1
 5
 9
 13
 17
 21
 25
 29
 33
 37
 41
 45
 49

Generation

D
iv

er
si

ty

AMX+TRM
 AMX+SWM

POX+TRM
 POX+SWM

Figure 7: Diversity vs. generation, for matrix BCSPWR09 ordered by MMD.

34

40

42

44

46

48

50

52

1
 4
 7
 10
 13
 16
 19
 22
 25
 28
 31
 34
 37
 40
 43
 46
 49

Generation

B
es

t f
itn

es
s

AMX+TRM
 AMX+SWM

POX+TRM
 POX+SWM

Figure 8: Best results achieved vs. generation, for matrix BCSPWR09 or-

dered by MMD.

35

33

34

35

36

37

38

1
 4
 7
 10
 13
 16
 19
 22
 25
 28
 31
 34
 37
 40
 43
 46
 49

Generation

B
es

t f
itn

es
s

AMX+SWM
 AMX+TRM

POX+SWM
 POX+TRM

Figure 9: Best results achieved vs. generation, for matrix BCSPWR09 or-

dered by METIS.

36

Table 1: Test matrices from the Harwell-Boeing sparse matrix collection.

Key Order Nonzeros

BCSPWR01 39 85

BCSPWR02 49 108

BCSPWR03 118 297

BCSPWR04 274 943

BCSPWR05 443 1033

BCSPWR06 1454 3377

BCSPWR07 1612 3718

BCSPWR08 1624 3837

BCSPWR09 1723 4117

37

Table 2: Improvement of the proposed GA in reducing elimination tree

height, compared with MMD+JK.

Key MDD+JK GA Imprv Gen

BCSPWR01 7 6 14% 5

BCSPWR02 8 6 25% 8

BCSPWR03 14 12 14% 4

BCSPWR04 38 33 13% 6

BCSPWR05 25 22 14% 6

BCSPWR06 39 34 13% 13

BCSPWR07 41 36 12% 13

BCSPWR08 43 37 14% 8

BCSPWR09 50 43 14% 12

Average 15% 8

38

Table 3: Improvement of the proposed GA in reducing elimination tree

height, compared with METIS+JK.

Key METIS+JK GA Imprv Gen

BCSPWR01 7 7 – –

BCSPWR02 6 6 – –

BCSPWR03 13 12 8% 3

BCSPWR04 33 30 9% 6

BCSPWR05 23 22 4% 4

BCSPWR06 32 30 6% 6

BCSPWR07 33 31 6% 4

BCSPWR08 37 35 5% 6

BCSPWR09 42 41 2% 5

Average 6% 5

39

