
1

Maintenance of Generalized Association Rules with

Multiple Minimum Supports

Ming-Cheng Tseng1 and Wen-Yang Lin2

1(corresponding author)

Institute of Information Engineering, I-Shou University, Kaohsiung 840, Taiwan

Tel: +886-7-3635377

E-mail: clark.tseng@msa.hinet.net

2Dept. of Information Management, I-Shou University, Kaohsiung 840, Taiwan

E-mail: wylin@isu.edu.tw

Abstract

Mining generalized association rules among items in the presence of taxonomy has

been recognized as an important model in data mining. Earlier work on generalized

association rules confined the minimum supports to be uniformly specified for all

items or items within the same taxonomy level. This constraint would restrain an ex-

pert from discovering more interesting but much less supported association rules. In

our previous work, we have addressed this problem and proposed two algorithms,

MMS_Cumulate and MMS_Stratify. In this paper, we examined the problem of main-

taining the discovered multi-supported, generalized association rules when new trans-

actions are added into the original database. We proposed two algorithms,

UD_Cumulate and UD_Stratify, which can incrementally update the discovered gen-

eralized association rules with non-uniform support specification and are capable of

2

effectively reducing the number of candidate sets and database re-scanning. Empirical

evaluation showed that UD_Cumulate and UD_Stratify are 2-6 times faster than run-

ning MMS_Cumulate or MMS_Stratify on the updated database afresh.

Keywords: Generalized association rules, maintenance, multiple minimum supports,

sorted closure, taxonomy.

1. Introduction

Mining association rules from a large database of business data, such as transac-

tion records, has been a popular topic within the area of data mining [1, 2, 11, 13].

This problem is originally motivated by applications known as market basket analysis

to find relationships among items purchased by customers, that is, the kinds of prod-

ucts tend to be purchased together. For example, an association rule,

Desktop  Ink-jet (Support=30%, Confidence=60%),

says that 30% (support) of customers purchase both Desktop PC and Ink-jet printer

together, and 60% (confidence) of customers who purchase Desktop PC also purchase

Ink-jet printer. Such information is useful in many aspects of market management,

such as store layout planning, target marketing, and understanding the behavior cus-

tomers.

In many applications, there are taxonomies (hierarchies), explicitly or implicitly,

over the items. In some applications, it may be more useful to find associations at dif-

ferent levels of the taxonomy than only at the primitive concept level [7, 14]. For ex-

ample, consider Figure 1, the taxonomy of items from which the previous association

rule is derived can be represented as

3

Printer PC Scanner

Non-impact Dot-matrix Desktop Notebook

Laser Ink-jet

Figure 1. An example of taxonomy T.

It is likely to happen that the association rule

Desktop  Ink-jet (Support=30%, Confidence=60%)

does not hold when the minimum support is set to 40%, but the following association

rule may be valid

PC  Printer.

Besides, note that in reality the frequencies of items are not uniform. Some items

occur very frequently in the transactions while others rarely appear. In this case, a uni-

form minimum support assumption would hinder the discovery of some deviations or

exceptions that are more interesting but much less supported than general trends.

To meet such situations, we have investigated the problem of mining generalized

association rules across different levels of taxonomy with non-uniform minimum sup-

ports [16]. We proposed two efficient algorithms, MMS_Cumulate and MMS_Stratify,

which not only can discover associations that span different hierarchy levels but also

have high potential to produce rare but informative item rules.

The proposed approaches, however, are not effective to the situation for fre-

quently updating the large source database. In this case, adopting the mining approach

tends to re-applying the whole process on the updated database to reflect correctly the

most recent associations among items. This is not cost-effective and is unacceptable in

general. To be more realistic and cost-effective, it is better to perform the association

mining algorithms to generate the initial association rules, and then upon updating the

source database, apply an incremental maintenance method to re-build the discovered

rules. The major challenge here is to deploy an efficient maintenance algorithm to fa-

4

cilitate the whole mining process. This problem is nontrivial because updates may in-

validate some of the discovered association rules, turn previous weak rules into strong

ones and import new, undiscovered rules.

In this paper, we addressed the issues for developing efficient maintenance meth-

ods and proposed two algorithms, UD_Cumulate and UD_Stratify. Our algorithms can

incrementally update the generalized association rules with non-uniform support

specification and is capable of effectively reducing the number of candidate sets and

database re-scanning. The performance study showed that UD_Cumulate and

UD_Stratify are 2-6 times faster than running MMS_Cumulate or MMS_Stratify on

the updated database afresh.

The remainder of the paper is organized as follows. The problem of maintaining

generalized association rules with multiple minimum supports is formalized in Sec-

tion 2. In Section 3, we explain the proposed algorithms for updating frequent itemsets

with multiple minimum supports. The evaluation of the proposed algorithms on IBM

synthetic data is described in Section 4. A review of related work is given in Section 5.

Finally, our conclusions are stated in Section 6.

2. Problem statement

2.1 Mining multi-supported, generalized association rules

Let I = {i1, i2, …, im} be a set of items and DB = {t1, t2, …, tn} be a set of transac-

tions, where each transaction ti = tid, Ahas a unique identifier tid and a set of items

A (AI). We assume that the taxonomy of items, T, is available and is denoted as a

directed acyclic graph on I J, where J = {j1, j2, …, jp} represents the set of general-

ized items derived from I. An edge in T denotes an is-a relationship. That is, if there is

an edge from j to i, we call j a parent (generalization) of i and i a child of j. For exam-

ple, in Figure 1 I = {Laser printer, Ink-jet printer, Dot matrix printer, Desktop PC,

Notebook, Scanner} and J = {Non-impact printer, Printer, Personal computer}.

5

Definition 1. Given a transaction t = tid, A, we say an itemset B is in t if every

item in B is in A or is an ancestor of some item in A. An itemset B has support s, de-

noted as s = sup(B), in the transaction set DB if s% of transactions in DB contain B.

Definition 2. Given a set of transactions DB and a taxonomy T, a generalized as-

sociation rule is an implication of the form A  B, where A, B I J, A B = ,

and no item in B is an ancestor of any item in A. The support of this rule, sup(A  B),

is equal to the support of A B. The confidence of the rule, conf(A  B), is the ratio

of sup(A B) and sup(A).

The condition in Definition 2 that no item in A is an ancestor of any item in B is

essential; otherwise, a rule of the form, a  ancestor(a), always has 100% confidence

and is trivial.

Definition 3. Let ms(a) denote the minimum support of an item a in I J. An

itemset A = {a1, a2, …, ak}, where ai I J, is frequent if the support of A is larger

than the lowest value of minimum support of items in A, i.e., sup(A) min ai A ms(ai).

Definition 4. A multi-supported, generalized association rule A  B is strong if

sup(A  B) min ai AB ms(ai)

and

conf(A  B) minconf.

Definition 5. Given a set of transactions DB, a taxonomy T, the user-specified

minimum supports for all items in T, {ms(a1), ms(a2), …, ms(an)}, and the minconf,

the problem of mining multi-supported, generalized association rules is to find all as-

sociation rules that are strong.

Example 1. Suppose that a shopping transaction database DB in Table 1 consists

of items I {Laser printer, Ink-jet printer, Dot matrix printer, Desktop PC, Note-

book, Scanner} and taxonomy T as shown in Figure 1. Let the minimum confidence

(minconf) be 60% and the minimum support (ms) associated with each item in the tax-

onomy be as follows:

6

ms(Printer) 80% ms(Non-impact) 65% ms(Dot matrix) 70%
ms(Laser) 25% ms(Ink-jet) 60% ms(Scanner) 15%
ms(PC) 35% ms(Desktop) 25% ms(Notebook) 25%

The following generalized association rule,

PC, Laser  Dot matrix (sup 16.7%, conf 50%),

fails because its support is less than min{ms(PC), ms(Laser), ms(Dot matrix)} 25%.

But another rule,

PC  Laser (sup 33.3%, conf 66.7%),

holds because both its support and confidence are larger than min{ms(PC), ms(Laser)}

25% and minconf, respectively. Table 2 lists the frequent itemsets and the resulting

strong rules for this example.

Table 1. A transaction database (DB).

TID Items Purchased
11 Notebook, Laser printer
12 Scanner, Dot matrix printer
13 Dot matrix printer, Ink-jet printer
14 Notebook, Dot matrix printer, Laser printer
15 Scanner
16 Desktop computer

Table 2. Frequent itemsets and association rules generated for Example 1.

Itemsets min ms (%) Support (%)
{Scanner} 15 33.3
{PC} 35 50.0
{Notebook} 25 33.3
{Laser} 25 33.3
{Scanner, Printer} 15 16.7
{Scanner, Dot matrix} 15 16.7
{Laser, PC} 25 33.3
{Notebook, Printer} 25 33.3
{Notebook, Non-impact} 25 33.3
{Notebook, Laser} 25 33.3

Rules

7

PC  Laser (sup 33.3%, conf 66.7%)
Laser  PC (sup 33.3%, conf 100%)

Notebook  Printer (sup 33.3%, conf 100%)
Notebook  Non-impact (sup 33.3%, conf 100%)

Notebook  Laser (sup 33.3%, conf 100%)

As shown in [1], the task of mining association rules is usually decomposed into

two steps:

1. Itemset generation: find all frequent itemsets those have support exceeding a

threshold minimum support.

2. Rule construction: from the set of frequent itemsets, construct all association

rules that have a confidence exceeding a threshold minimum confidence.

Since the solution to the second subproblem is straightforward, the problem can be

reduced to finding the set of frequent itemsets that satisfy the specified minimum sup-

port.

2.2 Maintaining multi-supported, generalized association rules

In real business applications, the database grows over time. This implies that if

the updated database is processed afresh, the previously discovered associations might

be invalid and some undiscovered associations should be generated. That is, the dis-

covered association rules must be updated to reflect the new circumstance. Analogous

to mining associations, this problem can be reduced to updating the frequent itemsets.

Definition 6. Let DB denote the original database, db the incremental database,

UD the updated database containing db and DB, i.e., UD = db + DB, T the taxonomy

of items, and LDB the set of frequent itemsets in DB. The problem of updating the fre-

quent itemsets with taxonomy and multiple supports is to find

LUD = {A| supUD(A) min ai A ms(ai)},

8

given the knowledge of DB, T, db, LDB, and supDB(A) A LDB.

Example 2. Consider Example 1 again, and suppose that the incremental transac-

tion database db is shown in Table 3. Table 4 lists the frequent itemsets and the result-

ing strong rules. Comparing Table 4 to Table 2, we observe that two old frequent 2-

itemsets in Table 2, {Scanner, Printer} and {Scanner, Dot matrix}, are discarded,

while three new frequent itemsets, {Desktop}, {PC, Printer}, and {PC, Non-

impact}, are added into Table 4, and two new rules PC  Printer and PC  Non-

impact are found.

Table 3. An incremental database (db).

TID Items Purchased
17 Desktop computer, Laser printer
18 Laser printer

3. Methods for updating frequent itemsets for multi-supported, gen-

eralized association rules

3.1 Preliminary

As stated in the pioneering work [4], the primary challenge of devising effective

association rules maintenance algorithm is how to reuse the original frequent itemsets

and avoid the possibility of re-scanning the original database DB.

Table 4. Frequent itemsets and association rules generated for Example 2.

Itemsets min ms (%) Support (%)
{Scanner} 15 25.0
{Desktop} 25 25.0
{Notebook} 25 25.0
{PC} 35 50.0
{Laser} 25 50.0
{PC, Printer} 35 37.5
{PC, Non-impact} 35 37.5

9

{Laser, PC} 25 37.5
{Notebook, Printer} 25 25.0
{Notebook, Non-impact} 25 25.0
{Notebook, Laser} 25 25.0

Rules
PC  Printer (sup 37.5%, conf 75%)

PC  Non-impact (sup 37.5%, conf 75%)
PC  Laser (sup 37.5%, conf 75%)
Laser  PC (sup 37.5%, conf 75%)

Notebook  Printer (sup 25%, conf 100%)
Notebook  Non-impact (sup 25%, conf 100%)

Notebook  Laser (sup 25%, conf 100%)

Let |DB| denote the number of transaction records in the original database DB,

|db| be the number of transaction records in the incremental database db, and |UD| be

the number of transaction records in the whole updated database UD containing db

and DB. For a sorted k-itemset A = a1, a2, …, akwith ms(a1) ms(a2)  … ms(ak),

we define its support counts in db as A.countdb, in DB as A.countDB and in UD as

A.countUD. Note that |UD| = |db| + |DB| and A.countUD = A.countdb + A.countDB. After

scanning the incremental database db, we have A.countdb(A) and can proceed further

according to the following conditions.

(1) If A is a frequent itemset both in db and DB, i.e., countdb(A)ms(a1) × |db|

and countDB(A)ms(a1) × |DB|, then A is a frequent itemset in UD. There

is no need to compute because countUD(A)ms(a1) × |UD|.

(2) If A is not a frequent itemset in db but is frequent in DB, then a simple cal-

culation can determine whether A is frequent or not in UD.

(3) If A is a frequent itemset in db but not frequent in DB, then A is an unde-

termined itemset in UD. Since countDB(A) is not available, we must re-scan

DB to compute countUD(A) to decide whether A is frequent or not in UD.

10

(4) If A is neither a frequent itemset in db nor in DB, then A is not frequent in

UD. There is no need for further computation.

These four cases are depicted in Figure 2. Note that only case 3 yields the essence

of re-scanning the original database DB.

Min.
Support

Min.
Support

Infrequent Itemset

Infrequent Itemset Frequent Itemset

Case 1Case 4
Case 2Case 3

Frequent Itemset

Incremental
Database

Original Database

Figure 2. Four cases in the incremental frequent itemset maintenance [8].

Let k-itemset denote an itemset with k items. The basic process of updating gen-

eralized association rules with multiple minimum supports is similar to previous work

[4, 6] on updating association rules with uniform support and follows the level-wise

approach widely used in most efficient algorithms to generate all frequent k-itemsets.

First, count all 1-itemsets in db and then determine whether to re-scan the original da-

tabase DB from these itemsets and finally create frequent 1-itemsets L1. From frequent

1-itemsets, generate candidate 2-itemsets C2 and repeat the above procedure until no

frequent k-itemsets Lk are created.

The above paradigm, however, has to be modified to incorporate taxonomy in-

formation and multiple minimum supports. First, note that in the presence of taxon-

omy an itemset can be composed of items, primitive or generalized, in the taxonomy.

To calculate the occurrence of each itemset, the current scanned transaction t is ex-

tended to include the generalized items of all its component items.

11

Secondly, note that the well-known apriori pruning technique based on the con-

cept of downward closure does not work for multiple support specification. For ex-

ample, consider four items a, b, c, and d that have minimum supports specified as

ms(a) = 15%, ms(b) = 20%, ms(c) = 4%, and ms(d) = 6%. Clearly, a 2-itemset {a, b}

with 10% of support is discarded for 10% < min{ms(a), ms(b)}. According to the

downward closure, the 3-itemsets {a, b, c} and {a, b, d} will be pruned even though

their supports may be larger than ms(c) and ms(d), respectively. To solve this problem,

we have adopted the sorted closure property [9] in our previous work for mining gen-

eralized association rules with multiple minimum supports. Hereafter, to distinguish

from the traditional itemset, a sorted k-itemset denoted as a1, a2, …, akis used.

Lemma 1. If a sorted k-itemset a1, a2, …, ak, for k 2 and ms(a1) ms(a2)  …

ms(ak), is frequent, then all of its sorted subsets with k1 items are frequent, except

the subset a2, a3, …, ak.

Again, let Lk and Ck represent the set of frequent k-itemsets and candidate k-

itemsets, respectively. We assume that any itemset in Lk or Ck is sorted in increasing

order of the minimum item supports. The result in Lemma 1 reveals the obstacle in

using the apriori-gen in generating frequent itemsets.

Lemma 2. For k = 2, the procedure apriori-gen(L1) fails to generate all candidate

2-itemsets in C2.

For example, consider a sorted candidate 2-itemset a, b. It is easy to find if we

want to generate this itemset from L1, both items a and b should be included in L1;

that is, each one should be occurring more frequently than the corresponding mini-

mum support ms(a) and ms(b). Clearly, the case ms(a) sup(b) < ms(b) fails to gener-

ate a, bin C2 even sup(a, b) ms(a).

For the above reason, all items within an itemset are sorted in the increasing order

of their minimum supports, and a sorted itemset, called frontier set, F = aj, aj1, aj2, …,

ajl, is facilitated to generate the set of candidate 2-itemsets, where aj = min ai IJ {ai|

sup(ai) ms(ai)}, ms(aj) ms(aj1) ms(aj2)  … ms(ajl), sup(aji) ms(aj), 1 i l.

12

Example 3. Continuing with Example 1, we change ms(Scanner) from 15% to

20%. The resulting F is shown in Table 5. From Table 5, we observe that

ms(Scanner) is the smallest of all items, and Scanner could join with any item who-

se support is greater than or equal to ms(Scanner) 20% to become a C2 candidate

without losing any 2-itemsets. The 2-itemsets Scanner, Desktopand Scanner,

Ink-jetcould not become candidates because sup(Desktop) or sup(Ink-jet) is less

than ms(Scanner), and the supports of Scanner, Desktopand Scanner, Ink-jet

could not be greater than sup(Desktop) and sup(Ink-jet), respectively, according to

the downward closure property. Therefore, we keep items whose support is greater

than or equal to ms(Scanner) in F, and discard Desktop and Ink-jet.

For Ck, k 3, the candidate generation is not changed. Please refer to [16] for de-

tails on the mining of multi-support, generalized association rules.

3.2 Algorithm UD_Cumulate

The basic process of UD_Cumulate algorithm is proceeded as follows. First,

count all 1-itemsets in db including generalized items. Second, combine the itemset

counts in db and DB, and create the frequent 1-itemsets L1 according to the four cases.

Next, create the frontier set FUD and use it to generate candidate 2-itemsets C2. Then,

generate the frequent 2-itemsets L2 following the same procedure for L1. Finally, for k

3, repeat the above procedure until no frequent k-itemsets Lk are created, except that

the candidate k-itemsets Ck are generated from Lk1. In each iteration k for Ck genera-

tion, an additional pruning technique as described below is performed.

Table 5. Generating frontier set F.

Item Sorted ms % Support % F

Scanner 20 33.3 Scanner

13

Laser
Desktop
Notebook
PC
Ink-jet
Non-impact
Dot-matrix
Printer

25
25
25
35
60
65
70
80

33.3
16.7
33.3
50.0
16.7
50.0
50.0
66.7

Laser
Notebook
PC
Non-impact
Dot-matrix
Printer

Lemma 3. For any sorted k-itemset A a1, a2, …, ak, if k 2, A can be pruned

if A is not a frequent itemset in DB and there exists a subset of A, say ai1, ai2, …,

aik1, such that supdb(ai1, ai2, …, aik1) ms(a1) in db, and ai1 a1 or ms(a1) 

ms(a2).

Proof. Note that if A is not frequent in DB and db, then A will not be frequent in

UD. Since we know that A is not frequent in DB, all we have to do is to make sure A

is not frequent in db. If we can find A is not frequent in db, then we sure A is not fre-

quent in UD. ■

Example 4. Assume that ms(Scanner) 30%, ms(Notebook) 30%, ms(Ink-jet)

50%, |DB| 1000, |db| 100, Scanner, Notebook, Ink-jetis not frequent in DB.

Let us consider the three subsets of Scanner, Notebook, Ink-jet, and assume that

supdb(Scanner, Notebook), supdb(Scanner, Ink-jet) or supdb(Notebook, Ink-

jet) is not frequent in db. Since Scanner, Notebook, Ink-jetis infrequent in DB,

countDB(Scanner, Notebook, Ink-jet)30% × 1000 300. Now, if Scanner,

Notebookor Scanner, Ink-jetis not frequent in db, then supdb(Scanner, Note-

book, Ink-jet) supdb(Scanner, Notebook) ms(Scanner), or supdb(Scanner,

Notebook, Ink-jet) supdb(Scanner, Ink-jet) ms(Scanner) in db according to

the downward closure property, and so countdb(Scanner, Notebook, Ink-jet) 100

14

× 30% 30. Hence, countUD(Scanner, Notebook, Ink-jet) countdb(Scanner,

Notebook, Ink-jet) + countDB(Scanner, Notebook, Ink-jet) 30 + 300 330. It

follows that supUD(Scanner, Notebook, Ink-jet) countUD(Scanner, Notebook,

Ink-jet)/|UD|  330/(1000+100)  30% ms(Scanner). Therefore, Scanner,

Notebook, Ink-jetis not a frequent 3-itemset in UD. On the other hand, if Note-

book, Ink-jetis not frequent in db, then it is true that supdb(Scanner, Notebook,

Ink-jet)  supdb(Notebook, Ink-jet) ms(Notebook) 30% ms(Scanner).

Hence, Scanner, Notebook, Ink-jetis not frequent in db. Finally, we can derive

that Scanner, Notebook, Ink-jetis not a frequent 3-itemset in UD.

The procedure for generating FUD is described in Figure 3.

Example 5. Let us continue with Example 2. Tables 6 and 7 show the progressing

results for generating FUD. First, scan db to find the counts of all 1-itemsets in db, then

scan DB to find the counts of all 1-itemsets that are not in DBL1 . The result is shown in

Table 6. Next, calculate and combine the counts of items calculated in the first two

steps and finally generate FUD, and the result is shown in Table 7.

1. for each transaction t db do /* Scan db and calculate countdb(a) */
2. for each item a t do
3. Add all ancestors of a in IA into t;
4. Remove any duplicates from t;
5. for each item a t do
6. countdb(a)++;
7. end for
8. for each item a DBL1 do /* Cases 1 & 2 */
9. countUD(a) countDB(a) + countdb(a);
10. if supUD(a)ms(a) then
11. UDL1 = UDL1 {a};
12. end for
13. for each transaction t DB do /* Scan DB and calculate countDB(a)
14. for a DBL1 */
15. for each item a t do

15

16. Add all ancestors of a in IA into t;
17. Remove any duplicates from t;
18. for each item a t and a DBL1 do
19. countDB(a)++;
20. end for
21. for each item a DBL1 do /* Cases 3 & 4 */
22. countUD(a) countDB(a) + countdb(a);
23. if supUD(a) ms(a) then
24. UDL1 = UDL1 {a};
25. end for
26. for each item a in SMS in the same order do
27. if a  UDL1 then
28. Insert a into FUD;
29. break;
30. end if
31. for each item b in SMS that is after a in the same order do
32. if supUD(b) ms(a) then
33. Insert b into FUD;

Figure 3. Procedure FUD-gen(SMS, DB, db, DBL1 , IA).

Table 6. The result for scanning db and DB.
DBL1

Scan db Scan DB not in DBL1

1-itemset Count Sup % 1-itemset Count Sup % 1-itemset Count Sup %
Scanner 2 33.3 Laser 2 100 Desktop 1 16.7
Laser 2 33.3 Desktop 1 50.0 Dot-matrix 3 50.0
Notebook 2 33.3 PC 1 50.0 Non-impact 3 50.0
PC 3 50.0 Non-impact 2 100 Ink-jet 1 16.7

Printer 2 100 Printer 4 66.7

Table 7. Generating frontier set FUD.

C1 Count Sorted ms% Sup % FUD

Scanner 2 15 25.0 Scanner
Laser 4 25 50.0 Laser
Desktop 2 25 25.0 Desktop
Notebook 2 25 25.0 Notebook
PC 4 35 50.0 PC
Ink-jet 1 60 12.5 Non-impact
Non-impact 5 65 62.5 Dot-matrix
Dot-matrix 3 70 37.5 Printer
Printer 6 80 75.0

16

Figure 4 shows an overview of the UD_Cumulate algorithm. As an illustration,

let us consider the example shown in Figure 5. For convenience, all the itemsets and

frequent itemsets in DB, db and UD are first shown in Tables 8 to 13. A simple pic-

ture of running the UD_Cumulate algorithm on the example in Figure 5 is shown in

Figure 6. First, scan db and sort all the items in db. Second, load DBL1 , and check

whether those items in db are in DBL1 , if so, we can calculate their supports straightfor-

ward. Otherwise, we must re-scan the original database DB to determine whether can-

didate 1-itemsets are frequent or not. At the same time, we generate the frontier set

FUD and use it to generate candidate 2-itemsets C2. After that, the process is almost the

same as that for generating L1, except that, if candidate 2-itemsets are not frequent in

DB, we can use countdb(C1) to prune C2, and determine whether candidate 2-itemsets

C2 are frequent or not in db.

1. Create IMS; /* The table of user-defined minimum support */
2. Create IA; / * The table of each item and its ancestors from taxonomy T */
3. SMS sort(IMS); /* Ascending sort according to ms(a) stored in IMS */
4. FUD FUD-gen(SMS, DB, db, DBL1 , IA);
5. L1 {a FUD | sup(a) ms(a)};
6. for (k 2; Lk1; k) do
7. if k 2 then C2 C2-gen(FUD);
8. else Ck apriori-gen(Lk1);
9. Delete any candidate in Ck that consists of an item and its ancestor;
10. Delete any candidate in Ck that satisfies Lemma 3;
11. Delete any ancestor in IA that is not present in any of the candidates in
12. Ck;
13. Delete any item in FUD that is not present in any of the candidates in Ck;
14. Cal-count(db, FUD, Ck); /* Scan db and calculate counts of Ck */
15. for each candidate A DB

kL do /* Cases 1 & 2 */
16. countUD(A) countDB(A) + countdb(A);
17. if countUD(A)ms(A[1]) × |UD| then /* A[1] denotes the first item

with the smallest minimum support in sorted A */
18. UD

kL = UD
kL {A};

19. end for
20. for each candidate ACk DB

kL do /* Cases 3 & 4 */

17

21. if countdb(A)ms(A[1]) × |db| then
22. Delete any candidate in Ck DB

kL ;
23. Cal-count(DB, FUD, Ck DB

kL); /* Scan DB and calculate counts of

Ck DB
kL */

24. for each candidate ACk DB
kL do

25. countUD(A) countDB(A) + countdb(A);
26. if countUD(A)ms(A[1]) × |UD| then
27. UD

kL = UD
kL {A};

28. end for
29. Result k

UD
kL ;

Figure 4. Algorithm UD_Cumulate.

Original Database (DB) Hierarchy Table (HI)

TID Items Purchased Item Level_No. Group SubLevel
11 H, C A 3 1 1
12 I, D B 3 1 2
13 D, E C 3 1 3
14 H, D, C D 3 1 2
15 I E 3 1 3
16 G F 2 2 1

G 2 2 2
Incremental Database (db) H 2 2 2
TID Items Purchased I 1 3 1
17 G, C
18 C

Minimum Item Support Table (MIS) Item Ancestor Table (IA)

Item minsup % Item Ancestor_1 Ancestor_2
A 80 A

Taxonomy
IA

B D

C E

F

G H

18

B 65 B A
C 25 C A B
D 70 D A
E 60 E A B
F 35 F
G 25 G F
H 25 H F
I 15 I

Figure 5. An example of updating generalized association rules.

19

in2C DBL2 2C not in DBL2

)(2Cdbcount

ID,IA,CH,CF,HB,HA CG,GB,GA,FB,FA

ID

0

IA

0

CH

0

CF

1

HB

0

HA

0

CG

1

GB

1

GA

1

FB

1

FA

1

IA 12.5 %
ID 12.5 %

CH 25.0 %
CF 37.5 %
HB 25.0 %
HA 25.0 %

GB 12.5 %
CG 12.5 %

GA 12.5 %
FB 37.5 %
FA 37.5 %

CH,CF,HB,HA,FB,FA

Scan db

Cal. support

Generate

Generate 3C
3C

Scan DB & cal. support
CG,GB,GA,FB,FA

 ms(a1)|db|)(2Cdbcount

UDL2

UDL2

)(1Cdbcount

A, B, C, D, E, F, G, H, I

Scan db & sort

A
2

I
0

C
2

G
1

H
0

F
1

E
0

B
2

D
0

I, C, G, H, F, B, D, A

I, C, G, H, F

Scan DB & cal. supportCal. support

FUD

Generate FUD

Generate

IC,IG,IH,IF,IB,ID,IA,CG,CH,CF,CD,GH,
GB,GD,GA,HB,HD,HA,FB,FD,FA2C

in1C DBL1 Load DBL1 1C not in DBL1

Generate 2C

D 37.5 %
A 75.0 %

B 62.5 %
E 12.5 %
G 25.0 %

UDL1

UDL1

1C

I 25.0 %

F
H
C 50.0 %

25.0 %
50.0 %

Load DBL2 &
)(1Cdbcountuse to prune 2C

Figure 6. An example of UD_Cumulate.

20

Table 8. Summary for candidates, counts and supports of DB in Figure 5.

C1 Count Sup % C2 Count Sup % C3 Count Sup %
I 2 33.3 I, D 1 16.7 C, H, D 1 16.7
C 2 33.3 I, A 1 16.7 C, F, D 1 16.7
G 1 16.7 C, H 2 33.3 H, B, D 1 16.7
H 2 33.3 C, F 2 33.3 F, B, D 1 16.7
F 3 50.0 C, D 1 16.7
E 1 16.7 H, B 2 33.3
B 3 50.0 H, D 1 16.7
D 3 50.0 H, A 2 33.3
A 4 66.7 F, B 2 33.3

F, D 1 16.7
F, A 2 33.3
E, D 1 16.7
B, D 2 33.3

Table 9. Summary for candidates, counts and supports of db in
Figure 5.

C1 Count Sup % C2 Count Sup %
C 2 100 C, G 1 50.0
G 1 50.0 C, F 1 50.0
F 1 50.0 G, B 1 50.0
B 2 100 G, A 1 50.0
A 2 100 F, B 1 50.0

F, A 1 50.0

Table 10. Frontier set FUD in Figure 5.

C1 Count Sorted ms% Sup % FUD

I 2 15 25.0 I
C 4 25 50.0 C
G 2 25 25.0 G
H 2 25 25.0 H
F 4 35 50.0 F
E 1 60 12.5 B
B 5 65 62.5 D
D 3 70 37.5 A
A 6 80 75.0

21

Table 11. Summary for candidates, counts and supports of UD in Figure 5.

C1 Count Sup % C2 Count Sup % C3 Count Sup %
I 2 25.0 I, D 1 12.5 C, H, D 1 12.5
C 4 50.0 I, A 1 12.5 C, F, D 1 12.5
G 2 25.0 C, G 1 12.5 H, B, D 1 12.5
H 2 25.0 C, H 2 25.0 F, B, D 1 12.5
F 4 50.0 C, F 3 37.5
E 1 12.5 C, D 1 12.5
B 5 62.5 G, B 1 12.5
D 3 37.5 G, A 1 12.5
A 6 75.0 H, B 2 25.0

H, D 1 12.5
H, A 2 25.0
F, B 3 37.5
F, D 1 12.5
F, A 3 37.5
E, D 1 12.5
B, D 2 25.0

Table 12. Frequent itemsets summary of DB in Figure 5.
DBL1

DBL2
DBL3

1-itemset Count Sup % 2-itemset Count Sup % 3-itemset
I
C
H
F

2
2
2
3

33.3
33.3
33.3
50.0

I, D
I, A
C, H
C, F
H, B
H, A

1
1
2
2
2
2

16.7
16.7
33.3
33.3
33.3
33.3



Table 13. Frequent itemsets summary of UD in Figure 5.
UDL1

UDL2
UDL3

1-itemset Count Sup % 2-itemset Count Sup % 3-itemset

I
C
G
H
F

2
4
2
2
4

25.0
50.0
25.0
25.0
50.0

C, H
C, F
H, B
H, A
F, B
F, A

2
3
2
2
3
3

25.0
37.5
25.0
25.0
37.5
37.5



22

3.3 Algorithm UD_Stratify

The UD_Stratify algorithm is based on the concept of stratification introduced in

[14], which refers to a level-wise counting strategy from the top level of the taxonomy

down to the lowest level, hoping that those candidates containing items at higher lev-

els will not have minimum support, yielding no need to count candidates which in-

clude items at lower levels. However, this counting strategy may fail in the case of

non-uniform minimum supports.

Example 6. Let {Printer, PC}, {Printer, Desktop}, and {Printer, Notebook}

are the candidate itemsets to be counted. The taxonomy and minimum supports are

defined as Example 1. Using the level-wise strategy, we first count {Printer, PC} and

assume that it is not frequent, i.e., sup({Printer, PC}) < 0.35. Since the minimum

supports of {Printer, Desktop}, 0.25, and {Printer, Notebook}, also 0.25, are less

than {Printer, PC}, we cannot assure that the occurrences of {Printer, Desktop} and

{Printer, Notebook}, though less than {Printer, PC}, are also less than their mini-

mum supports. In this case, we still have to count {Printer, Desktop} and {Printer,

Notebook} even though {Printer, PC} does not have minimum support.

The following observation inspires us to the deployment of the UD_Stratify algo-

rithm.

Lemma 4. Consider the two k-itemsets a1, a2, …, akand a1, a2, …,kâ , where

kâ is an ancestor of ak. If a1, a2, …, kâ is not frequent, then neither is a1, a2, …, ak.

Lemma 4 implies that if a sorted candidate itemset in higher level of the taxon-

omy is not frequent, then neither are all of its descendants that differ from the itemset

only in the last item. We thus first divide Ck, according to the ancestor-descendant re-

23

lationship claimed in Lemma 4, into two disjoint subsets, called top candidate set TCk

and residual candidate set RCk, as defined below.

Definition 7. Consider a set, Sk, of candidates in Ck induced by the schema a1,

a2, …, ak1, , where ''denotes don't care. A candidate k-itemset A a1, a2, …, ak1,

akis a top candidate if none of the candidates in Sk is an ancestor of A. That is,

TCk {A | A Ck, (A Ck and A[i] A i[] , 1 i k1, A k[] is an ancestor of

A[k])},

and

RCk = Ck TCk, if every itemset in TCk is a frequent itemset.

Example 7. Assume that the candidate 2-itemset C2 in Example 1 consists of

Scanner, PC, Scanner, Desktop, Scanner, Notebook, Notebook, Laser,

Notebook, Non-impact, and Notebook, Dot matrix, and the supports of the

items in higher levels are larger than those in lower levels. Then TC2 = {Scanner,

PC, Notebook, Non-impact, Notebook, Dot matrix} and RC2 = {Scanner,

Desktop, Scanner, Notebook, Notebook, Laser}. If the support of the top

level candidate does not pass its minimum support ms(Scanner), we do not need to

count the remaining descendant candidates Scanner, Desktop, Scanner, Note-

book. On the contrary, if Scanner, Desktopis a frequent itemset, we should per-

form another pass over DB to count Scanner, Desktopand Scanner, Notebook

to determine whether they are frequent or not.

Our approach is that, for k 2, rather than counting all candidates in Ck as in

UD_Cumulate algorithm, we count the supports of candidates in TCk, deleting as well

as their descendants in RCk the candidates that do not have minimum support. If RCk

is not empty, we then perform an extra scanning over the transaction database DB to

24

count the remaining candidates in RCk. Again, the less frequent candidates are elimi-

nated. The resulting TCk and RCk, called TLk and RLk, respectively, form the set of

frequent k-itemsets Lk. An overview of the UD_Stratify algorithm is described in Fig-

ure 7. The procedures for generating TCk and RCk are given in Figure 8 and Figure 9,

respectively.

Figure 10 shows a picture of running the UD_Stratify algorithm on the example

in Figure 5. The procedure for generating frontier set FUD and UDL1 is the same as that

in the UD_Cumulate algorithm. After that, first, we sort C2 to find the top candidate

set TC2, like UD_Cumulate algorithm doing, and generate TL2. We then use TL2 to

prune C2 and generate RC2. Since RC2 is not empty, we must do the same procedure

as generating TL2, and generate RL2 and UD
kL lastly.

25

1. Create IMS; /* The table of user-defined minimum support */
2. Create HI; /* The table of each item with Hierarchy Level, Sublevel,

and Group */
3. Create IA; /* The table of each item and its ancestors from taxonomy T */
4. SMS sort(IMS); /* Ascending sort according to ms(a) stored in IMS */
5. FUD FUD-gen(SMS, DB, db, DBL1 , IA);
6. L1 {a FUD | sup(a) ms(a)};
7. for (k 2; Lk1; k++) do
8. if k 2 then C2 C2-gen(F)
9. else Ck Ck-gen(Lk1);
10. Delete any candidate in Ck that consists of an item and its ancestor;
11. Delete any candidate in Ck that satisfies Lemma 3;
12. TCk TCk-gen(Ck , HI); /* Using Ck, HI to find top Ck */
13. Delete any ancestor in IA that is not present in any of the candidates in

TCk;
14. Delete any item in FUD that is not present in any of the candidates in Ck;
15. Cal-count(db, FUD, TCk); /* Scan db and calculate counts of TCk */
16. for each candidate A DB

kL do /* Cases 1 & 2 */
17. countUD(A) countDB(A) + countdb(A);
18. if countUD(A)ms(A[1]) × |UD| then /* A[1] denotes the first item

with the smallest minimum support in sorted A */
19. TLk = TLk {A};
20. end for
21. for each candidate ATCk DB

kL do /* Cases 3 & 4 */
22. if countdb(A)ms(A[1]) × |db| then
23. Delete any candidate in TCk DB

kL ;
24. Cal-count(DB, FUD, TCk DB

kL); /* Scan DB and calculate counts of

TCk DB
kL */

25. for each candidate ATCk DB
kL do

26. countUD(A) countDB(A) + countdb(A);
27. if countUD(A)ms(A[1]) × |UD| then
28. TLk = TLk {A};
29. end for
30. RCk RCk-gen(Ck , TCk, TLk); /* Use Ck, TLk to find residual Ck */
31. If RCk then
32. Delete any ancestor in IA that is not present in any of the candidates

in RCk;
33. Delete any item in FUD that is not present in any of the candidates in

RCk;
34. Cal-count(db, FUD, RCk); /* Scan db and calculate counts of RCk */
35. for each candidate A DB

kL do /* Cases 1 & 2 */
36. countUD(A) countDB(A) + countdb(A);
37. if countUD(A)ms(A[1]) × |UD| then
38. RLk = RLk {A};
39. end for

26

40. for each candidate ARCk DB
kL do /* Cases 3 & 4 */

41. if countdb(A)ms(A[1]) × |db| then
42. Delete any candidate in RCk DB

kL ;
43. Cal-count(DB, FUD, RCk DB

kL); /* Scan DB and calculate counts of
44. RCk DB

kL */
45. for each candidate ARCk DB

kL do /* Cases 3 & 4 */
46. countUD(A) countDB(A) + countdb(A);
47. if countUD(A)ms(A[1]) × |UD| then
48. RLk = RLk {A};
49. end for
50. end if
51. UD

kL TLk RLk;
52. end for
53. Result k

UD
kL ;

Figure 7. Algorithm UD_Stratify.

1.
2.

3.
4.
5.

6.
7.
8.
9.

for each itemset A Ck do
Sort Ck according to HI of A[k] preserving the ordering of
A[1]A[2]…A[k-1];

for itemset A Ck in the same order do
Sk = { A | A Ck and A[i] A i[] , 1 i k1};
if A is not marked and none of the candidates in Sk is an ancestor of

A[k] then
insert A into TCk;
mark A and all of its descendants in Sk;

end if
end for

Figure 8. Procedure TCk -gen(Ck, HI).

1.
2.
3.
4.
5.

for each itemset A TCk do
if A TLk then

Sk = { A | A Ck and A[i] A i[] , 1 i k1};
Insert all of its descendants in Sk into RCk;

end if
Figure 9. Procedure RCk-gen(Ck , TCk, TLk).

27

IC,IG,IH,IF,IB,ID,IA,CG,CH,CF,CD,GH,
GB,GD,GA,HB,HD,HA,FB,FD,FA2C

IA,ID,CF,CG,CH,GA,GB,HA,HB,FA,FB2CSorted

CG,CH,HB,FB

CG,FBCH,HB

IA,CF,GA,HA,FA

CF,HA,FA2TL

IA,CF,HA GA,FA

GA,FA

IA 12.5 %
CF 37.5 %
HA 25.0 %

GA 12.5 %
FA 37.5 %

IA

0

CF

1

HA

0

CG,FB

in2C DBL2 2C not in DBL2

2TC 2RC

Scan db

ms(a1)|db|

Scan DB & cal. support

Cal. support

Generate 2TL

in2C DBL2 2C not in DBL2

Scan db

Scan DB & cal. support

Cal. support

2RL CH,HB,FB

Generate 2RL

CH,CF,HB,HA,FB,FA

Generate 3C


CG 12.5%CH 25.0%
HB 25.0%

Use to prune2TL 2C
Generate

dbcountC .2

CH
0

HB

0

UDL2

UDL2

)(2Cdbcount)(2Cdbcount ms(a1)|db|

3C

GA
1

FA

1

Scan db & sort

A
2

I
0

C
2

G
1

H
0

F
1

E
0

B
2

D
0

I, C, G, H, F, B, D, A

I, C, G, H, F

Scan DB & cal. supportCal. support

Generate

Generate

Load DBL1 1C not in DBL1

Generate 2C

G 25.0 %

A 75.0 %

E 12.5 %
B 62.5 %
D 37.5 %

A, B, C, D, E, F, G, H, I

in1C DBL1

1C

)(1Cdbcount

FUD

FUD

UDL1

UDL1

CG
1

FB

1

FB 37.5%

Load DBL2 & use to prune 2C)(1Cdbcount

I 25.0 %

F
H 25.0 %
C 50.0 %

50.0 %

Generate 2TC Generate 2RC

Figure 10. An example of UD_Stratify.

28

4. Experiments

In this section, we evaluate the performance of the two algorithms, UD_Cumulate and

UD_Stratify, using the synthetic dataset generated by the IBM data generator [2]. We performed

four experiments, changing a different parameter in each experiment. All the parameters except

the one being varied were set to their default values, as shown in Table 14. All experiments were

performed on an Intel Pentium-II 350 with 64MB RAM, running on Windows

Table 14. Default parameter settings for synthetic data generation.

Parameter Default value

|DB| Number of original transactions 100,000

|db| Number of incremental transactions 10,000

|t| Average size of transactions 5

N Number of items 200

R Number of groups 30

L Number of levels 3

F Fanout 5

Minimum Support: We use the following formula [9] to generate multiple minimum sup-

ports for each item a:

ms(a) =


 

otherwise0.1
0.1)()(

,

, aDBsupaDBsup 

where 0.6 0.1 and supDB(a) denotes the support of item a in the original database DB. The

result is depicted in Figure 11. As shown in the figure, UD_Cumulate and UD_Stratify perform

29

significantly better than MMS_Stratify and MMS_Cumulate; the improvement ranges from 3 to 6

times and increases as decreases. Besides, algorithm MMS_Stratify performs better than

MMS_Cumulate for  0.2, and algorithm UD_Cumulate performs slightly better than

UD_Stratify.

0

500

1000

1500

2000

2500

3000

3500

4000

0.10.20.30.40.50.6


T
im

e
(s

ec
)

MMS_Cumulate
MMS_Stratify
UD_Cumulate
UD_Stratify

Figure 11. Performance comparison of MMS_Cumulate, MMS_Stratify, UD_Cumulate, and

UD_Stratify for different values.

Number of Incremental Transactions: We then compared the efficiency of these four algo-

rithms under various sizes of incremental database. The number of transactions was varied from

10,000 to 85,000, and the minimum supports were specified with = 0.6. As shown in Figure 12,

UD_Cumulate and UD_Stratify outperform MMS_Stratify and MMS_Cumulate, and algorithm

UD_Cumulate performs better than UD_Stratify. The performance gap between UD_Stratify and

MMS_Cumulate decreases as the incremental size increases. The reason is that at high values,

i.e., high minimum supports, the percentage of top candidates with generalized items becomes

very small, and so UD_Stratify cannot prune significantly larger number of descendant itemsets

to compensate for the cost of another database scan.

30

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9

Number of Incremental Transactions (x 10,000)

T
im

e
(s

ec
)

MMS_Cumulate
MMS_Stratify
UD_Cumulate
UD_Stratify

Figure 12. Performance comparison of MMS_Cumulate, MMS_Stratify, UD_Cumulate, and

UD_Stratify for various sizes of incremental transactions.

Fanout: We changed the fanout from 3 to 9. Note that this corresponded to decreasing the

number of levels. The results are shown in Figure 13. All algorithms performed faster as the fan-

out increased. This is because the cardinality as well as the number of generalized itemsets de-

creased upon increasing the number of levels. Also note that the performance gap between

UD_Cumulate, UD_Stratify and MMS_Cumulate, MMS_Stratify decreased at high fanout since

there were fewer candidate itemsets.

Number of Groups: We varied the number of groups from 5 to 20. As shown in Figure 14,

the effect of increasing the number of groups is similar to that of increasing the fanout. The rea-

son is that the number of items within a specific group decreases as the number of groups in-

creases, so the probability of a generalized item decreases.

31

0

1000

2000

3000

4000

5000

6000

7000

8000

3 5 7 9Fanout

T
im

e
(s

ec
)

MMS_Cumulate
MMS_Stratify
UD_Cumulate
UD_Stratify

Figure 13. Performance comparison of MMS_Cumulate, MMS_Stratify, UD_Cumulate, and

UD_Stratify for varying fanout.

0

1000

2000

3000

4000

5000

5 10 15 20
Number of Groups

T
im

e
(s

ec
)

MMS_Cumulate
MMS_Stratify
UD_Cumulate
UD_Stratify

Figure 14. Performance comparison of MMS_Cumulate, MMS_Stratify, UD_Cumulate, and

UD_Stratify for varying number of groups.

32

5. Related Work

The problem of incremental updating association rules was first addressed by Cheung et al.

[4]. They coined the essence of updating the discovered association rules when new transaction

records are added into the incremental database over time and proposed an algorithm called FUP

(Fast UPdate). By making use of the discovered frequent itemsets, the proposed algorithm can

dramatically reduce the efforts for computing the frequent itemsets in the updated database. They

further examined the maintenance of multi-level association rules [5], and extended the model to

incorporate the situations of deletion and modification [6]. All their approaches, however, did not

recognize the varied support requirement inherent in items at different hierarchy levels.

Since then, a number of techniques have been proposed to improve the efficiency of incre-

mental mining algorithm [8, 10, 12, 15]. In [12, 15], the authors proposed an incremental updat-

ing technique mainly based on the concept of negative borders. Empirical results showed that the

approach could significantly save I/O access time for the maintenance of association rules.

In [10], Ng and Lam proposed an alternative incremental updating algorithm that incorpo-

rated the dynamic counting technique. Similar to its batch counterpart IDC [3], this algorithm can

significantly reduce the number of database scans.

In [8], Hong et al. developed an incremental mining algorithm that was based on a novel

concept of pre-large itemsets. According to two user-specified upper and lower support thresh-

olds, their approach facilitated the pre-large itemsets (those itemsets having support larger than

the lower support threshold) to refrain from rescanning the original database until the accumu-

lated amount of inserted transactions exceeds a safety bound derived by pre-large concept. Their

work, however, did not exploit association rules with generalized items, and did not consider

multiple minimum supports.

To sum up, all previous works for incremental maintenance of association rules addressed in

part the aspects discussed in this paper; no work, to our knowledge, has considered simultane-

33

ously both issues of taxonomy and non-uniform support specification. A summary of these works

is described in Table 15.

Table 15. A summary of related work for incremental maintenance of association rules

Model of incremental maintenance of association rules
Contributors

Support specification Exploiting taxonomy Type of update

Cheung et al. [4] uniform no insertion

Cheung et al. [5] uniform yes insertion

Cheung et al. [6] uniform no insertion, deletion and
modification

Hong et al. [8] uniform no insertion

Ng and Lam [10] uniform no insertion

Sarda and Srinivas [12] uniform no insertion

Thomas et al. [15] uniform no insertion

6. Conclusions

In this paper, we have investigated the problem of maintaining association rules in the pres-

ence of taxonomy and multiple minimum supports. We presented two novel algorithms,

UD_Cumulate and UD_Stratify, for maintaining multi-supported, generalized frequent itemsets.

The proposed algorithms can incrementally update the discovered generalized association rules

with non-uniform support specification and effectively reduce the number of candidate itemsets

and database re-scanning. Empirical evaluation showed that these two algorithms not only were

2-6 times faster than running MMS_Cumulate or MMS_Stratify on the updated database afresh

but also had good linear scale-up characteristic.

In the future, we will extend the maintenance of generalized association rules to a more gen-

eral model that incorporates the situations of deletion and modification, and fuzzy taxonomic

structures. We will also investigate the problem of on-line discovery and maintenance of multi-

dimensional association rules from data warehouse data.

34

References

[1] R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets of items in

large databases, in: Proc. of 1993 ACM-SIGMOD International Conference on Management

of Data, 1993, pp. 207-216.

[2] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, in: Proc. of the 20th

International Conference on Very Large Data Bases, 1994, pp. 487-499.

[3] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, Dynamic Itemset Counting and Implication

Rules for Market-Basket Data, in: Proc. of 1997 ACM-SIGMOD International Conference

on Management of Data, pp. 207-216, 1997.

[4] D.W. Cheung, J. Han, V.T. Ng, and C.Y. Wong. Maintenance of discovered association

rules in large databases: An incremental update technique, in: Proc. of the 12th 1996 Inter-

national Conference on Data Engineering, 1996, pp.106-114.

[5] D.W. Cheung, V.T. Ng, B.W. Tam, Maintenance of discovered knowledge: a case in multi-

level association rules, in: Proc. of the 2nd International Conference on Knowledge Discov-

ery and Data Mining, 1996, pp. 307-310.

[6] D.W. Cheung, S.D. Lee, and B. Kao, A general incremental technique for maintaining dis-

covered association rules, in: Proc. of the 5th International Conference on Database Systems

for Advanced Applications (DASFAA'97), 1997, pp. 185-194.

[7] J. Han and Y. Fu, Discovery of multiple-level association rules from large databases, in:

Proc. of the 21st International Conference on Very Large Data Bases, 1995, pp. 420-431.

[8] T.P. Hong, C.Y. Wang, Y.H. Tao, Incremental data mining based on two support thresholds,

in: Proc. of the 4th International Conference on Knowledge-Based Intelligent Engineering

Systems and Allied Technologies, 2000, pp.436-439.

35

[9] B. Liu, W. Hsu, and Y. Ma, Mining association rules with multiple minimum supports, in:

Proc. of the 5th International Conference Knowledge on Discovery and Data Mining, 1999,

pp. 337-341.

[10] K.K. Ng and W. Lam, Updating of association rules dynamically, in: Proc. of 1999 Interna-

tional Symposium on Database Applications in Non-Traditional Environments (DANTE'99),

2000, pp. 84-91.

[11] J.S. Park, M.S. Chen, and P.S. Yu, An effective hash-based algorithm for mining association

rules, in: Proc. of 1995 ACM-SIGMOD International Conference on Management of Data,

1995, pp.175-186.

[12] N.L. Sarda and N.V. Srinivas, An adaptive algorithm for incremental mining of association

rules, in: Proc. of the 9th International Workshop on Database and Expert Systems Applica-

tions (DEXA'98), 1998, pp. 240-245.

[13] A. Savasere, E. Omiecinski, and S. Navathe, An efficient algorithm for mining association

rules in large databases, in: Proc. of the 21st International Conference on Very Large Data

Bases, 1995, pp. 432-444.

[14] R. Srikant and R. Agrawal, Mining generalized association rules, in: Proc. of the 21st Inter-

national Conference on Very Large Data Bases, 1995, pp. 407-419.

[15] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka, An efficient algorithm for the incre-

mental updation of association rules in large databases, in: Proc. of the 3rd International

Conference on Knowledge Discovery and Data Mining, 1997, pp. 263-266.

[16] M.C. Tseng and W.Y. Lin, Mining generalized association rules with multiple minimum

supports, in: Proc. of the 3rd International Conference on Data Warehousing and Knowl-

edge Discovery, 2001, pp. 11-20.

