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Abstract: In this paper, the problem of constraint-based pattern discovery is 
investigated. By allowing more user-specified constraints other than traditional 
rule measurements, e.g., minimum support and minimum confidence, research 
work on this topic endeavoured to reflect real interest of analysts and relieve 
them from the overabundance of rules. Surprisingly, very little research has 
been conducted to deal with multiple types of constraints. In our previous work, 
we have studied this problem, specifically focusing on three different types of 
constraints, and an efficient Apriori-like algorithm, called MCFP, is proposed. 
In this paper, we propose a new algorithm called MCFPTree, which is based on 
a tree structure for keeping frequent patterns without suffering from the 
problem of candidate itemsets generation. Experimental results show that  
our MCFPTree algorithm is significantly faster than MCFP and an intuitive 
method FP-Growth+, i.e., post-processing the frequent patterns generated by 
FP-Growth, against user-specified constraints. 
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1 Introduction 

Mining association rules from a database or data warehouse has been one of the main 
data-mining techniques supported by business intelligence systems to help a decision-
maker acquire a better understanding of its commercial context. In the early stage of the 
development of association mining algorithms, most researches were devoted to 
designing efficient algorithms for generating frequent itemsets, ignoring the fact that lots 
of frequent patterns generated are not user-interested. This leads to the development of 
constraint-based association mining (Bayardo Jr. et al., 2000; Bonchi et al., 2003;  
Bonchi and Lucchese, 2007; Ceglar and Roddick, 2007; Cho et al., 2005; De Raedt and 
Zimmermann, 2007; Grahne et al., 2000; Lee et al., 2006; Lin et al., 2008; Lu et al., 
2005; Ng et al., 1998; Pei and Han, 2000; Pei et al., 2004; Song and Qin, 2005; Srikant  
et al., 1997). By allowing user-specified constraints other than minimum support and 
minimum confidence, the discovered patterns can reflect real interest of the analysts and, 
in this way, can relieve them from the overabundance of rules. 

So far, most work on constraint-based association mining has been single-constraint-
oriented, i.e., only one type of constraint is considered. Surprisingly, little research has 
been conducted to deal with multiple types of constraints. This motivates us to the study 
of multi-constraint-based frequent pattern mining. 

In our previous work (Lin et al., 2008), we have investigated this problem considering 
three different types of constraints, including item constraint, aggregation constraint and 
cardinality constraint. We also have proposed an efficient Apriori-like algorithm, called 
MCFP, for accomplishing this task. The proposed MCPF algorithm, however, has two 
significant weak points: First, its performance is heavily affected by the size of item 
constraint and the number of aggregation constraints, owing to the paradigm of candidate 



   

 

   

   
 

   

   

 

   

    MCFPTree: A FP-tree-based algorithm 3    
 

    
 
 

   

   
 

   

   

 

   

       
 

generation and pruning technique it adopts. Second, it cannot deal with item constraints 
containing negative items. 

In this regard, we proposed a new algorithm called MCFPTree. The main advantage 
of MCFPTree over MCFP is that MCFPTree is an FP-Growth-like algorithm. By 
adopting the FP-tree structure, it heavily eliminates the load of candidate generation. 
Besides, by incorporating a new approach for exploiting item constraint, MCFPTree can 
handle item constraints that contain negative items. 

An experiment on both synthetic data set and real data set show that our MCFPTree 
algorithm is significantly faster than MCFP and an intuitive method FP-Growth+, i.e., 
post-processing the frequent patterns generated by FP-Growth (Han et al., 2000), against 
user-specified constraints. 

The remainder of this paper is organised as follows. The background knowledge and 
related work is described in Section 2. Section 3 defines some terminologies, formalises 
the problem of constraint-based association rules mining, and describes the proposed 
algorithm, MCFTPree. Evaluations of our MCFPTree algorithm against MCFP and  
FP-Growth+ on both synthetic data set and real data set are described in Section 4.  
Finally, conclusions and future work are stated in Section 5. 

2 Background and related work 

Traditional techniques for mining association rules may generate thousands of rules or 
frequent patterns. Unfortunately, most of which are uninteresting to the users; only a 
relatively small subset of the complete frequent patterns and association rules is of 
interest to users. In light of these, constraint-based techniques have been developed for 
mining frequent patterns and association rules. 

The main purpose of constraint-based mining is to let users specify what kinds of 
knowledge or patterns that really are of interest to guide the mining methods to search for 
useful patterns, rather than spending much time on discovering patterns that the users 
have no interest. According to Han and Kamber (2004), there are five different categories 
of constraint. 

• Knowledge-type constraints: This refers to the type of knowledge to be mined, such 
as the association rules and classification. 

• Data constraints: This refers to the set of the task-relevant data, such as about the 
bookstore sales mining. 

• Dimensional/level constraints: This refers to the desired dimensions of data, or levels 
of the concept hierarchies. 

• Interestingness constraints: This refers to the measures of rule interestingness, such 
as minimum support and minimum confidence. 

• Rule constraints: This refers to the form of rules to be mined, such as aggregation 
constraints, meta-rule and item constraint. 

Our study in this paper is focused on the rule constraints. Specifically, three different 
types of rule constraints are considered, including item constraint, aggregation 
constraint and cardinality constraint. 
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2.1 Item constraint 

The concept of item constraint was first proposed by Srikant et al. (1997), which is 
expressed in the form of a Boolean expression, indicating the presence or absence of 
items that are interesting to the users. Specifically, an item constraint expressed as a 
Boolean expression is in disjunctive normal form D1 ∨  D2 ∨  … ∨  Dm, where each 
disjunct Di is of the form of the a1 ∧  a2 ∧  … ∧  an, and each element ai is either li 
or ∼li for some li ∈ I. For example, the Boolean expression (a ∧  b) ∨  (c ∧  ∼d) 
denotes that the user is interested to see any patterns containing both items a and b or any 
patterns containing items c but not d. In the context of business intelligence, the item 
constraint specification, for example, would help a sales manager focus only on 
association exploration involving new products to understand the effectiveness of sales 
strategy for promoting these products. 

Srikant et al. (1997) also proposed three algorithms to accomplish the task of mining 
frequent itemsets that satisfy a given item constraint, called Multiple Joins, Reorder and 
Direct. All of these methods are developed following the classical Apriori framework, 
i.e., a level-wise, bottom-up generation and inspection of candidate itemsets, but each 
differing in the procedure for generating next (k + 1)-level candidates from previous  
k-level frequent patterns. However, no implementation and empirical evaluation of the 
proposed algorithms were conducted. 

Lu et al. (2005) introduced an ECLAT-based algorithm, Eclat II, which is featured by 
pushing the Boolean expression item constraint into the ECLAT framework (Zaki, 2000). 
Their work also provided no algorithmic implementation and empirical evaluation. 

2.2 Aggregation constraint 

An aggregation constraint is a constraint defined on an aggregation function of itemsets, 
such as avg, sum and median. An aggregation constraint is of the form avg(S)θv, 
sum(S)θ v, or median(S)θv, where S is an  itemset, v a real value, and θ is a 
comparison operator, i.e., θ ∈ {≥, >, ≤, <}. For example, avg(S) ≥ 30 or sum(S) ≤ 20. In 
real applications, this type of constraint specification provides the facility to discover the 
patterns as a whole satisfying some characteristics. For example, suppose that a retailing 
manager wants to find associations containing expensive items from customer 
transactions. The manager may specify some constraints that involve an item with price 
more than $300, and the total amount of each pattern should be at least $1000. 

According to the study conducted by Ng et al. (1998), Pei and Han (2000), Pei  
et al. (2004) and Grahne et al. (2000), the aggregation constraints can be classified as 
anti-monotone, monotone and succinct. A constraint Cam is anti-monotone if and 
only if whenever an itemset S violates Cam, so does any superset of S. A constraint 
Cm is monotone if and only if whenever an itemset S satisfies Cm, so does any 
superset of S. A constraint Cs is succinct if given Ai, the set of items satisfying Cs, then 
any set S satisfying Cs is based on Ai, i.e., S contains a subset belonging to Ai. For 
example, avg(S) ≤ 20 is an anti-monotone aggregation constraint, sum(S) ≥ 20 is a 
monotone aggregation constraint, and min(S) ≥ 30 is a succinct aggregation constraint, 
supposed that some of items have non-negative values. Besides, an aggregation 
constraint can be convertible or inconvertible. An aggregation constraint Cag is 
convertible provided there is an order R (ascending or descending) on items such that 
constraint is convertible anti-monotone or convertible monotone; otherwise, we say 
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that aggregation constraint is inconvertible. Ng et al. (1998) first proposed an Apriori-
based mining algorithm CAP for handling anti-monotone and succinct constraints. Pei 
and Han (2000) then proposed a new constraint-based frequent pattern-mining algorithm 
called CFG. The method of mining association rules in large, dense databases by user-
defined constraints was studied by Bayardo Jr. et al. (2000). Constraint-based mining of 
correlations, by exploration of anti-monotone, succinct and monotone constraints, was 
developed in Grahne et al. (2000). Bonchi et al. (2003) proposed an Apriori-like 
algorithm that exploits anti-monotone and monotone constraints to reduce the problem 
dimensions. A more general framework then was developed by De Raedt and 
Zimmermann (2007), which accommodates other constraint functions, such as 
redundancy, representativeness and top-k mining. 

The technique of pushing convertible aggregation constraint into association mining 
algorithm was first studied by Pei and Han (2000), and later extended by Song and Qin 
(2005) into that can handle multiple convertible aggregation constraints. Then, Bonchi 
and Lucchese (2007) proposed data reduction technique and considered pushing tougher 
constraints in frequent pattern mining. Lee et al. (2006) proposed an approach to mine 
association rules with multiple aggregation constraints involving multi-dimensional 
attribute values. 

2.3 Cardinality constraint 

A cardinality constraint specifies requirement on the length of each pattern, which can 
also be referred to as the number of distinct items, or even the maximal number or 
minimal number of items per transactions. Such a requirement can be expressed in the 
form of Card(S)θ v, v ≥ 0. For example, Card(S) ≤ 7 specifies that the cardinality 
(length) of each itemset S should be at most 7. Note that the cardinality constraint can 
also be anti-monotone or monotone (De Raedt and Zimmermann, 2007). An example 
situation for specifying this type of constraint is on the task of mining associative 
classification (Liu et al., 1998; Cho et al., 2005), which derive classification rules from 
generated frequent patterns, and shorter patterns result in classification rules with more 
generality and better understandability. Thus, the analyst can specify a constraint on 
limiting the length of patterns. 

3 Mining frequent patterns with multiple constraints 

3.1 Problem statement 

Let I = {i1, i2, …, im} be a set of items, where each item is associated with a value 
attribute, such as cost, profit, or price. Let D be a transaction database consisting  
of a set of transactions, where a transaction T = 〈tid, It〉 is a set of items It with identifier 
tid and It ⊆ I. An itemset S, S ⊆ I, is contained in a transaction T if S ⊆ It. The support 
sup(S) of an itemset S in a transaction database D is the fraction of transactions in D 
containing S. Given a support threshold ξ (0 ≤ ξ ≤ 1), an itemset S is frequent provided 
sup(S) ≥ ξ. 
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A constraint C is a predicate on the powerset of I, C: P(I) → {True, False}.  
An itemset S satisfies C if and only if C(S) = True. The complete set of itemsets 
satisfying constraint C is SATC(I) = {S | S ⊆ I ∧  C(S) = True}. 

In this study, we consider three different kinds of constraints, including an item 
constraint CB, a set of aggregation constraints SC and a cardinality constraint CL. The 
problem of concern is to discover the set of itemsets F satisfying all constraints and 
minimum support threshold, i.e., 

F = {S | S ∈ SATCB ∩ SATSC ∩ SATCL ∧  sup(S) ≥ ξ}. (1) 

Example 1: Consider the transaction database in Table 1 and the profit of each item  
in Table 2. Suppose that the user-specified constraints and support threshold are as  
shown in Table 3. Then, the set of frequent itemsets that satisfy the specified constraints 
are {pd, pdo, pdb, pdob}. 

Table 1 A transaction database 

TID List of items 

10 b, c, d, o, p 
20 b, c, e 
30 b, d, o, p, r 
40 a, b, d, p 
50 b, d, e, o, p 

Table 2 Profit of each item in Table 1 

Item Profit 

a –20 
b 30 
c 0 
d 10 
e –10 
o 40 
p 50 
r –30 

Table 3 Settings of constraints 

Constraint  Value 

Aggregation avg(S) ≥ 30 and sum(S) ≥ 50 
Item p ∧  d  
Cardinality Card(S) ≤ 7 
Support  Support threshold ξ = 3 
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3.2 Algorithm MCFPTree 

In this subsection, we introduce the proposed algorithm, named Multi-Constrained 
Frequent Pattern Tree (MCFPTree) mining, which exploits the item constraint to 
construct the FP-tree and conditional FP-tree structures to discover satisfied frequent 
patterns. Compared with our previously proposed MCFP algorithm, MCFPTree is a 
relatively efficient method for mining constrained frequent patterns because by adopting 
the FP-tree structure MCFPTree does not have to generate candidate itemsets except the 
first phase for initial candidate generation. 

Our MCFPTree algorithm is composed of five main phases: 

1 initial candidate construction phase 

2 database reduction and item counting phase 

3 FP-Tree construction phase 

4 frequent pattern generation phase 

5 constraint checking phase. 

In what follows, we will first detail each phase of MCFPTree, and then give an example 
to illustrate its execution. 

3.2.1 Initial candidate construction phase 

The initial candidate generation phase is the most critical step. MCFPTree exploits the 
item constraint directly to construct an initial set of candidate itemsets, with the intention 
to lessen the overhead in generating lots of intermediate candidates. 

We consider two different cases: 

1 the item constraint CB does not contain any negative item 

2 CB contains some negative items. 

Case 1: CB constraint contains no negative item. In this case, we exploit the disjuncts 
of item constraint CB to generate an initial set of candidate itemsets. For example,  
if CB = (a ∧  b) ∨  (c ∧  d), then K = {ab, cd}. 

Case 2: CB contains some negative items. This case is far more complicated than the 
first case. The intuition is to avoid generating any candidate containing all positive 
items and part of the negative items in a disjunct Di in CB composed of negative items 
while not refrain the construction of cross-disjunct candidates that contain proper 
subsets of negative items in Di and all positive items of another Dj. 

In light of this, we first exploit the disjuncts of item constraint CB to generate an 
initial set of candidate itemsets K that is composed of only positive items and move 
all negative items to a negative set N. Then, we generate the powerset of N, i.e., P(N). 
Finally, we perform a cross union between K and P(N), and prune those new initial 
candidate itemsets that contradict item constraint CB. The detailed steps for 
accomplishing this procedure are described in Figure 1. 
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Figure 1 Procedure for generating initial itemsets from item constraint 

 

Example 2: Consider an item constraint 
CB = (a ∧  b) ∨  (b ∧  ∼d) ∨  (c ∧  ∼p ∧  ∼r). First, we decompose the item 
constraint CB to get the K = {ab, b, c} and N = {d, p, r}. Then, we find out the powerset 
of N, P(N) = {d, p, r, dp, dr, pr, dpr}. Finally, we perform a cross union between K and 
P(N), and prune those new initial candidates that do not satisfy CB, resulting in the initial 
set of candidate itemsets K = {ab, b, c, abp, abr, abpr, bp, br, bpr, cd}. 

3.2.2 Database reduction and item counting phase 

In this phase, we scan the database to count the support of each item, and during  
which we also reduce and trim the transaction database according to the following rules: 
A transaction is pruned if it does not contain any initial candidate itemset. Finally, we 
prune all infrequent items. 

3.2.3 FP-Tree construction phase 

The task of this phase is to construct the FP-tree by scanning the reduced transaction 
database. The FP-tree structure and the steps for building it follow those used  
in FP-Growth (Han et al., 2000). 
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3.2.4 Frequent pattern generation phase 

In this phase, we traverse the FP-tree to find out all frequent itemsets with support 
greater than or equal to ξ. Again, the approach used in FP-Growth is adopted. That is, 
we construct the conditional pattern base of each frequent 1-itemset, then construct 
its conditional FP-tree, and perform mining recursively on that tree to generate all of 
the frequent itemsets. 

3.2.5 Constraint checking phase 

In this phase, we check each of the frequent itemsets against the item constraint, 
aggregation constraints and the cardinality constraint to generate the set of satisfied 
frequent itemsets. 

3.3 An example 

Consider example 1 again. Here, we illustrate the process for executing MCFPTree on 
this example. 

• Phase 1: Exploit the item constraint CB to obtain initial candidate {pd}. 

• Phase 2: Scan the transaction database to find all frequent 1-itemsets, obtaining  
{b, d, o, p}, and perform transaction trimming and reduction when appropriately. 
The resulting database is shown in Table 4. 

Table 4 The reduced transaction database 

TID List of items 

10 b, c, d, o, p 
30 b, d, o, p, r 
40 a, b, d, p 
50 b, d, e, o, p 

• Phase 3: Scan the reduced database to construct the FP-tree; the resulting FP-tree  
is shown in Figure 2. 

Figure 2 Initial FP-tree 
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• Phase 4: This phase constructs the conditional FP-tree of each frequent 1-itemset  
to generate all frequent patterns, obtaining {bdpo, dpo, po, bdp, dp, bd}. 

• Phase 5: Finally, all frequent itemsets are checked against all constraints.  
The resulting set of satisfied frequent patterns is shown in Table 5. 

Table 5 The frequent itemsets that satisfy all sets of constraints 

Itemset Support sum avg Card 

dp 4 60 30 2 
bdp 4 90 30 3 
dpo 3 100 33.3 3 
bdpo 3 130 32.5 3 

4 Performance evaluations 

In this section, we evaluate the performance of the proposed algorithm MCFPTree for 
mining frequent patterns with multiple constraints. A synthetic data set, T40I10D100K, 
generated by IBM generator (Agrawal and Srikant, 1994) and a real data set about traffic 
accident (Geurts et al., 2003) are used in this evaluation. Table 6 shows the parameter 
settings for generating T10I4D100K and the characteristics of accidents. 

Table 6 Characteristics of T40I10D100K and accidents 

Parameters T10I4D100K Accidents 

|D| Number of original transactions 100 K 341 K 
|T| Average size of transactions 10 33.8 
|I| Average size of frequent itemsets  4 – 
|L| Average size of maximal frequent itemsets 5 – 
N Number of items 1000 469 

For comparison with our algorithms, we also implemented two methods: the MCFP 
algorithm and FP-Growth+ algorithm. Here, FP-Growth+ refers to the approach of 
applying the FP-Growth algorithm, followed by a post-processing of the frequent 
patterns. All experiments were performed on a two 1.8 GHz Intel Xeon CPUs ASUS 
server with 4 GB main memory and 450 GB hard disk running on Windows server 2003. 

All comparisons were investigated from three different aspects, including support 
threshold, size of item constraints and number of aggregation constraints. 

4.1 Performance on synthetic data 

The effectiveness and efficiency of the proposed algorithm were first evaluated over the 
synthetic data set T10I4D100K. Table 7 shows the default constraint settings in this 
performance study. 
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Table 7 Constraint settings in synthetic data set evaluation 

Constraint  Value 

Aggregation Avg(S) ≥ 500 and sum(S) ≥ 3000 
Item (900 ∩ 851) ∪ (701 ∩ 800) ∪ (800) ∪ (700 ∩ 9) ∪ (750 ∩ 9 ∩ 3) 

Cardinality Card(S) ≤ 7 

We first evaluate the performance from the aspect of various support thresholds, ranging 
from 0.1% to 1%. The other constraints consist of two aggregation constraints, one item 
constraint composed of five disjuncts, and a cardinality constraint, as shown in Table 7. 

The result in Figure 3 demonstrates that MCFPTree is significantly faster than MCFP 
and FP-Growth+, especially on relative small support thresholds. FP-Growth+ 
outperforms MCFP on small support thresholds but is defeated on larger thresholds. 

Figure 3 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying support 
thresholds on T10I4D100K (see online version for colours) 

 

Next, we inspect the effect of varying the size of item constraints. The support threshold 
is set to 0.002 and other constraint settings are the same as those in Table 7. 

From the result in Figure 4, we observe that MCFPTree surpasses both FP-Growth+ 
and MCFP. The superiority over FP-Growth+ diminishes as # of disjuncts increases but 
against MCFP it enlarges. Note that the size of item constraints has almost no effect on 
algorithm FP-Growth because it does not utilise this constraint until the end of frequent 
itemset generation. Besides, the performance of MCFP is more affected by the number of 
disjuncts than MCFPTree. This is because MCFP is an Apriori-like algorithm (Agrawal 
and Srikant, 1994), whose computation needs to generate candidate itemsets. The more 
the number of disjuncts is, the more the number of candidates will be generated. 

Finally, we consider the effect of varying the number of aggregation constraints, 
which is set from 1 to 6. Other parameter settings in this experiment are the same as 
before. 

The result in Figure 5 shows that the performance of MCFP is heavily affected by the 
number of aggregation constraints; the larger the number of aggregation constraints is, 
the worst the MCFP performs. On the contrary, our MCFPTree algorithm is not affected 
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by varying number of aggregation constraints. The reason is that the aggregation 
constraints are utilised only in the post-processing phase, whose cost is negligible. 

Figure 4 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying number 
of disjuncts on T10I4D100K (see online version for colours) 

 

Figure 5 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying number 
of aggregation constraints on T10I4D100K (see online version for colours) 

 

4.2 Performance on real data 

First, we consider the effect of varying support threshold, ranging from 10% to 35%.  
The other constraints consist of two aggregation constraints, one item constraint 
composed of five disjuncts, and a cardinality constraint. Table 8 shows the detailed 
settings. The result is depicted in Figure 6, which is very similar to that shown in Figure 3 
except that FP-Growth+ outperforms MCFP in all cases of support thresholds. 

Table 8 Constraint settings in real data set evaluation 

Constraint  Value 

Aggregation avg(S) ≥ 35 and sum(S) ≥ 150 
Item (183 ∧  34) ∨  (59 ∧  24) ∨  82 ∨  (12 ∧  36) ∨  173 
Cardinality Card(S) ≤7 
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Figure 6 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying support 
thresholds on accidents (see online version for colours) 

 

Next, we consider the effect of varying the size of item constraint, which is measured by 
the number of disjuncts ranging from 1 to 6. The other parameter settings are the same as 
before except that the support threshold is set to 0.25. 

Again, one can observe that the result in Figure 7 is very similar to that shown in 
Figure 4. But, MCFP can beat FP-Growth+ and MCFPTree when the number of disjuncts 
is less than 3 and 2, respectively. This is because smaller number of disjuncts means less 
number of candidate itemsets needed to be generated during the computation of MCFP. 

Figure 7 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying number 
of disjuncts on accidents (see online version for colours) 

 

Finally, we consider the effect of varying the number of aggregation constraints, which is 
set from 1 to 6. The other parameter settings in this experiment are the same as before. 

As the result shown in Figure 8, the number of aggregation constraints does not affect 
the performance of FP-Growth+ and MCFPTree because this constraint is inspected only 
in the post-processing phase. However, MCFP is heavily affected by the number of 
aggregation constraints; the more the number of constraints, the less its performance. 
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Figure 8 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying number 
of aggregation constraints on accidents (see online version for colours) 

 

5 Conclusions 

Recent work has highlighted the essence of allowing user-specified constraints into the 
model of association rules to facilitate an online, interactive mining environment of 
association rules. The key for realising such a mining system is the design of an efficient 
frequent pattern-mining algorithm that takes account of all user-specified constraints. 

In this paper, we have proposed a new algorithm MCFPTree for discovering patterns 
that satisfy three types of user-specified constraints, including item constraint, 
aggregation constraint and cardinality constraint. Experimental results show that our 
algorithm MCFPTree is significantly faster than our previously proposed Apriori-like 
algorithm MCFP and also outperform an intuitive approach, post-processing the frequent 
patterns generated by the leading algorithm FP-Growth against user-specified constraints. 

In real life, a transaction table may contain multiple attributes and users sometimes 
may need to select different attributes from the multi-dimensional data sets, i.e., data 
warehouse (Han and Kamber, 2004; Inmon and Kelley, 1993), to mine multi-dimensional 
association rules (Han et al., 1997; Perng et al., 2001; Tjioe and Taniar, 2005).  
So, a promising avenue of extending our work is to discover constrained rules from  
multi-dimensional data rather than single-dimensional data. 
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