

 Int. J. Business Intelligence and Data Mining, Vol. x, No. x, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

MCFPTree: An FP-tree-based algorithm
for multi-constraint patterns discovery

Wen-Yang Lin*
Department of Computer Science and Information Engineering,
National University of Kaohsiung,
Kaohsiung 811, Taiwan, ROC
E-mail: wylin@nuk.edu.tw
*Corresponding author

Ko-Wei Huang
Institute of Computer and Communication Engineering,
National Cheng Kung University,
Tainan 701, Taiwan, ROC
E-mail: elone530@gmail.com

Chin-Ang Wu
Institute of Information Engineering,
I-Shou University,
Kaohsiung 840, Taiwan, ROC
E-mail: cwu@csu.edu.tw

Abstract: In this paper, the problem of constraint-based pattern discovery is
investigated. By allowing more user-specified constraints other than traditional
rule measurements, e.g., minimum support and minimum confidence, research
work on this topic endeavoured to reflect real interest of analysts and relieve
them from the overabundance of rules. Surprisingly, very little research has
been conducted to deal with multiple types of constraints. In our previous work,
we have studied this problem, specifically focusing on three different types of
constraints, and an efficient Apriori-like algorithm, called MCFP, is proposed.
In this paper, we propose a new algorithm called MCFPTree, which is based on
a tree structure for keeping frequent patterns without suffering from the
problem of candidate itemsets generation. Experimental results show that
our MCFPTree algorithm is significantly faster than MCFP and an intuitive
method FP-Growth+, i.e., post-processing the frequent patterns generated by
FP-Growth, against user-specified constraints.

Keywords: multi-constraint pattern mining; item constraint; aggregation
constraint; FP-tree.

Reference to this paper should be made as follows: Lin, W-Y., Huang, K-W.
and Wu, C-A. (xxxx) ‘MCFPTree: An FP-Tree-based algorithm for
multi-constraint patterns discovery’, Int. J. Business Intelligence and Data
Mining, Vol. x, No. x, pp.xxx–xxx.

 2 W-Y. Lin et al.

Biographical notes: Wen-Yang Lin is a Professor in the Department of
Computer Science and Information Engineering, National University
of Kaohsiung. He is also the Director of Library and Information Center of the
University. His research interests include data warehousing, data mining and
evolutionary computation. He is also interested in the area of sparse matrix
technology and large-scale supercomputing. He is regular reviewer for major
journals and conferences, and has co-edited several special issues of renowned
international journals, (co-)authored more than 120 refereed publications,
served as co-chair, a member of programme committees and organised special
sessions for many international conferences.

Ko-Wei Huang received an MS in Computer Science and Information
Engineering from National University of Kaohsiung in 2008. Currently, he is
a PhD student of Institute of Computer and Communication Engineering,
National Cheng Kung University. His research interests include data mining,
knowledge engineering and web intelligence.

Chin-Ang Wu is a PhD student in the Department of Information Engineering
at the I-Shou University, Taiwan. She is also a Lecturer in Cheng Shiu
University, Taiwan. She received her MS in Computer Science from George
Washington University, Washington DC, USA, in 1988. Her research interests
include data mining, data warehousing and database systems.

1 Introduction

Mining association rules from a database or data warehouse has been one of the main
data-mining techniques supported by business intelligence systems to help a decision-
maker acquire a better understanding of its commercial context. In the early stage of the
development of association mining algorithms, most researches were devoted to
designing efficient algorithms for generating frequent itemsets, ignoring the fact that lots
of frequent patterns generated are not user-interested. This leads to the development of
constraint-based association mining (Bayardo Jr. et al., 2000; Bonchi et al., 2003;
Bonchi and Lucchese, 2007; Ceglar and Roddick, 2007; Cho et al., 2005; De Raedt and
Zimmermann, 2007; Grahne et al., 2000; Lee et al., 2006; Lin et al., 2008; Lu et al.,
2005; Ng et al., 1998; Pei and Han, 2000; Pei et al., 2004; Song and Qin, 2005; Srikant
et al., 1997). By allowing user-specified constraints other than minimum support and
minimum confidence, the discovered patterns can reflect real interest of the analysts and,
in this way, can relieve them from the overabundance of rules.

So far, most work on constraint-based association mining has been single-constraint-
oriented, i.e., only one type of constraint is considered. Surprisingly, little research has
been conducted to deal with multiple types of constraints. This motivates us to the study
of multi-constraint-based frequent pattern mining.

In our previous work (Lin et al., 2008), we have investigated this problem considering
three different types of constraints, including item constraint, aggregation constraint and
cardinality constraint. We also have proposed an efficient Apriori-like algorithm, called
MCFP, for accomplishing this task. The proposed MCPF algorithm, however, has two
significant weak points: First, its performance is heavily affected by the size of item
constraint and the number of aggregation constraints, owing to the paradigm of candidate

 MCFPTree: A FP-tree-based algorithm 3

generation and pruning technique it adopts. Second, it cannot deal with item constraints
containing negative items.

In this regard, we proposed a new algorithm called MCFPTree. The main advantage
of MCFPTree over MCFP is that MCFPTree is an FP-Growth-like algorithm. By
adopting the FP-tree structure, it heavily eliminates the load of candidate generation.
Besides, by incorporating a new approach for exploiting item constraint, MCFPTree can
handle item constraints that contain negative items.

An experiment on both synthetic data set and real data set show that our MCFPTree
algorithm is significantly faster than MCFP and an intuitive method FP-Growth+, i.e.,
post-processing the frequent patterns generated by FP-Growth (Han et al., 2000), against
user-specified constraints.

The remainder of this paper is organised as follows. The background knowledge and
related work is described in Section 2. Section 3 defines some terminologies, formalises
the problem of constraint-based association rules mining, and describes the proposed
algorithm, MCFTPree. Evaluations of our MCFPTree algorithm against MCFP and
FP-Growth+ on both synthetic data set and real data set are described in Section 4.
Finally, conclusions and future work are stated in Section 5.

2 Background and related work

Traditional techniques for mining association rules may generate thousands of rules or
frequent patterns. Unfortunately, most of which are uninteresting to the users; only a
relatively small subset of the complete frequent patterns and association rules is of
interest to users. In light of these, constraint-based techniques have been developed for
mining frequent patterns and association rules.

The main purpose of constraint-based mining is to let users specify what kinds of
knowledge or patterns that really are of interest to guide the mining methods to search for
useful patterns, rather than spending much time on discovering patterns that the users
have no interest. According to Han and Kamber (2004), there are five different categories
of constraint.

• Knowledge-type constraints: This refers to the type of knowledge to be mined, such
as the association rules and classification.

• Data constraints: This refers to the set of the task-relevant data, such as about the
bookstore sales mining.

• Dimensional/level constraints: This refers to the desired dimensions of data, or levels
of the concept hierarchies.

• Interestingness constraints: This refers to the measures of rule interestingness, such
as minimum support and minimum confidence.

• Rule constraints: This refers to the form of rules to be mined, such as aggregation
constraints, meta-rule and item constraint.

Our study in this paper is focused on the rule constraints. Specifically, three different
types of rule constraints are considered, including item constraint, aggregation
constraint and cardinality constraint.

 4 W-Y. Lin et al.

2.1 Item constraint

The concept of item constraint was first proposed by Srikant et al. (1997), which is
expressed in the form of a Boolean expression, indicating the presence or absence of
items that are interesting to the users. Specifically, an item constraint expressed as a
Boolean expression is in disjunctive normal form D1 ∨ D2 ∨ … ∨ Dm, where each
disjunct Di is of the form of the a1 ∧ a2 ∧ … ∧ an, and each element ai is either li
or ∼li for some li ∈ I. For example, the Boolean expression (a ∧ b) ∨ (c ∧ ∼d)
denotes that the user is interested to see any patterns containing both items a and b or any
patterns containing items c but not d. In the context of business intelligence, the item
constraint specification, for example, would help a sales manager focus only on
association exploration involving new products to understand the effectiveness of sales
strategy for promoting these products.

Srikant et al. (1997) also proposed three algorithms to accomplish the task of mining
frequent itemsets that satisfy a given item constraint, called Multiple Joins, Reorder and
Direct. All of these methods are developed following the classical Apriori framework,
i.e., a level-wise, bottom-up generation and inspection of candidate itemsets, but each
differing in the procedure for generating next (k + 1)-level candidates from previous
k-level frequent patterns. However, no implementation and empirical evaluation of the
proposed algorithms were conducted.

Lu et al. (2005) introduced an ECLAT-based algorithm, Eclat II, which is featured by
pushing the Boolean expression item constraint into the ECLAT framework (Zaki, 2000).
Their work also provided no algorithmic implementation and empirical evaluation.

2.2 Aggregation constraint

An aggregation constraint is a constraint defined on an aggregation function of itemsets,
such as avg, sum and median. An aggregation constraint is of the form avg(S)θv,
sum(S)θ v, or median(S)θv, where S is an itemset, v a real value, and θ is a
comparison operator, i.e., θ ∈ {≥, >, ≤, <}. For example, avg(S) ≥ 30 or sum(S) ≤ 20. In
real applications, this type of constraint specification provides the facility to discover the
patterns as a whole satisfying some characteristics. For example, suppose that a retailing
manager wants to find associations containing expensive items from customer
transactions. The manager may specify some constraints that involve an item with price
more than $300, and the total amount of each pattern should be at least $1000.

According to the study conducted by Ng et al. (1998), Pei and Han (2000), Pei
et al. (2004) and Grahne et al. (2000), the aggregation constraints can be classified as
anti-monotone, monotone and succinct. A constraint Cam is anti-monotone if and
only if whenever an itemset S violates Cam, so does any superset of S. A constraint
Cm is monotone if and only if whenever an itemset S satisfies Cm, so does any
superset of S. A constraint Cs is succinct if given Ai, the set of items satisfying Cs, then
any set S satisfying Cs is based on Ai, i.e., S contains a subset belonging to Ai. For
example, avg(S) ≤ 20 is an anti-monotone aggregation constraint, sum(S) ≥ 20 is a
monotone aggregation constraint, and min(S) ≥ 30 is a succinct aggregation constraint,
supposed that some of items have non-negative values. Besides, an aggregation
constraint can be convertible or inconvertible. An aggregation constraint Cag is
convertible provided there is an order R (ascending or descending) on items such that
constraint is convertible anti-monotone or convertible monotone; otherwise, we say

 MCFPTree: A FP-tree-based algorithm 5

that aggregation constraint is inconvertible. Ng et al. (1998) first proposed an Apriori-
based mining algorithm CAP for handling anti-monotone and succinct constraints. Pei
and Han (2000) then proposed a new constraint-based frequent pattern-mining algorithm
called CFG. The method of mining association rules in large, dense databases by user-
defined constraints was studied by Bayardo Jr. et al. (2000). Constraint-based mining of
correlations, by exploration of anti-monotone, succinct and monotone constraints, was
developed in Grahne et al. (2000). Bonchi et al. (2003) proposed an Apriori-like
algorithm that exploits anti-monotone and monotone constraints to reduce the problem
dimensions. A more general framework then was developed by De Raedt and
Zimmermann (2007), which accommodates other constraint functions, such as
redundancy, representativeness and top-k mining.

The technique of pushing convertible aggregation constraint into association mining
algorithm was first studied by Pei and Han (2000), and later extended by Song and Qin
(2005) into that can handle multiple convertible aggregation constraints. Then, Bonchi
and Lucchese (2007) proposed data reduction technique and considered pushing tougher
constraints in frequent pattern mining. Lee et al. (2006) proposed an approach to mine
association rules with multiple aggregation constraints involving multi-dimensional
attribute values.

2.3 Cardinality constraint

A cardinality constraint specifies requirement on the length of each pattern, which can
also be referred to as the number of distinct items, or even the maximal number or
minimal number of items per transactions. Such a requirement can be expressed in the
form of Card(S)θ v, v ≥ 0. For example, Card(S) ≤ 7 specifies that the cardinality
(length) of each itemset S should be at most 7. Note that the cardinality constraint can
also be anti-monotone or monotone (De Raedt and Zimmermann, 2007). An example
situation for specifying this type of constraint is on the task of mining associative
classification (Liu et al., 1998; Cho et al., 2005), which derive classification rules from
generated frequent patterns, and shorter patterns result in classification rules with more
generality and better understandability. Thus, the analyst can specify a constraint on
limiting the length of patterns.

3 Mining frequent patterns with multiple constraints

3.1 Problem statement

Let I = {i1, i2, …, im} be a set of items, where each item is associated with a value
attribute, such as cost, profit, or price. Let D be a transaction database consisting
of a set of transactions, where a transaction T = 〈tid, It〉 is a set of items It with identifier
tid and It ⊆ I. An itemset S, S ⊆ I, is contained in a transaction T if S ⊆ It. The support
sup(S) of an itemset S in a transaction database D is the fraction of transactions in D
containing S. Given a support threshold ξ (0 ≤ ξ ≤ 1), an itemset S is frequent provided
sup(S) ≥ ξ.

 6 W-Y. Lin et al.

A constraint C is a predicate on the powerset of I, C: P(I) → {True, False}.
An itemset S satisfies C if and only if C(S) = True. The complete set of itemsets
satisfying constraint C is SATC(I) = {S | S ⊆ I ∧ C(S) = True}.

In this study, we consider three different kinds of constraints, including an item
constraint CB, a set of aggregation constraints SC and a cardinality constraint CL. The
problem of concern is to discover the set of itemsets F satisfying all constraints and
minimum support threshold, i.e.,

F = {S | S ∈ SATCB ∩ SATSC ∩ SATCL ∧ sup(S) ≥ ξ}. (1)

Example 1: Consider the transaction database in Table 1 and the profit of each item
in Table 2. Suppose that the user-specified constraints and support threshold are as
shown in Table 3. Then, the set of frequent itemsets that satisfy the specified constraints
are {pd, pdo, pdb, pdob}.

Table 1 A transaction database

TID List of items

10 b, c, d, o, p
20 b, c, e
30 b, d, o, p, r
40 a, b, d, p
50 b, d, e, o, p

Table 2 Profit of each item in Table 1

Item Profit

a –20
b 30
c 0
d 10
e –10
o 40
p 50
r –30

Table 3 Settings of constraints

Constraint Value

Aggregation avg(S) ≥ 30 and sum(S) ≥ 50
Item p ∧ d
Cardinality Card(S) ≤ 7
Support Support threshold ξ = 3

 MCFPTree: A FP-tree-based algorithm 7

3.2 Algorithm MCFPTree

In this subsection, we introduce the proposed algorithm, named Multi-Constrained
Frequent Pattern Tree (MCFPTree) mining, which exploits the item constraint to
construct the FP-tree and conditional FP-tree structures to discover satisfied frequent
patterns. Compared with our previously proposed MCFP algorithm, MCFPTree is a
relatively efficient method for mining constrained frequent patterns because by adopting
the FP-tree structure MCFPTree does not have to generate candidate itemsets except the
first phase for initial candidate generation.

Our MCFPTree algorithm is composed of five main phases:

1 initial candidate construction phase

2 database reduction and item counting phase

3 FP-Tree construction phase

4 frequent pattern generation phase

5 constraint checking phase.

In what follows, we will first detail each phase of MCFPTree, and then give an example
to illustrate its execution.

3.2.1 Initial candidate construction phase

The initial candidate generation phase is the most critical step. MCFPTree exploits the
item constraint directly to construct an initial set of candidate itemsets, with the intention
to lessen the overhead in generating lots of intermediate candidates.

We consider two different cases:

1 the item constraint CB does not contain any negative item

2 CB contains some negative items.

Case 1: CB constraint contains no negative item. In this case, we exploit the disjuncts
of item constraint CB to generate an initial set of candidate itemsets. For example,
if CB = (a ∧ b) ∨ (c ∧ d), then K = {ab, cd}.

Case 2: CB contains some negative items. This case is far more complicated than the
first case. The intuition is to avoid generating any candidate containing all positive
items and part of the negative items in a disjunct Di in CB composed of negative items
while not refrain the construction of cross-disjunct candidates that contain proper
subsets of negative items in Di and all positive items of another Dj.

In light of this, we first exploit the disjuncts of item constraint CB to generate an
initial set of candidate itemsets K that is composed of only positive items and move
all negative items to a negative set N. Then, we generate the powerset of N, i.e., P(N).
Finally, we perform a cross union between K and P(N), and prune those new initial
candidate itemsets that contradict item constraint CB. The detailed steps for
accomplishing this procedure are described in Figure 1.

 8 W-Y. Lin et al.

Figure 1 Procedure for generating initial itemsets from item constraint

Example 2: Consider an item constraint
CB = (a ∧ b) ∨ (b ∧ ∼d) ∨ (c ∧ ∼p ∧ ∼r). First, we decompose the item
constraint CB to get the K = {ab, b, c} and N = {d, p, r}. Then, we find out the powerset
of N, P(N) = {d, p, r, dp, dr, pr, dpr}. Finally, we perform a cross union between K and
P(N), and prune those new initial candidates that do not satisfy CB, resulting in the initial
set of candidate itemsets K = {ab, b, c, abp, abr, abpr, bp, br, bpr, cd}.

3.2.2 Database reduction and item counting phase

In this phase, we scan the database to count the support of each item, and during
which we also reduce and trim the transaction database according to the following rules:
A transaction is pruned if it does not contain any initial candidate itemset. Finally, we
prune all infrequent items.

3.2.3 FP-Tree construction phase

The task of this phase is to construct the FP-tree by scanning the reduced transaction
database. The FP-tree structure and the steps for building it follow those used
in FP-Growth (Han et al., 2000).

 MCFPTree: A FP-tree-based algorithm 9

3.2.4 Frequent pattern generation phase

In this phase, we traverse the FP-tree to find out all frequent itemsets with support
greater than or equal to ξ. Again, the approach used in FP-Growth is adopted. That is,
we construct the conditional pattern base of each frequent 1-itemset, then construct
its conditional FP-tree, and perform mining recursively on that tree to generate all of
the frequent itemsets.

3.2.5 Constraint checking phase

In this phase, we check each of the frequent itemsets against the item constraint,
aggregation constraints and the cardinality constraint to generate the set of satisfied
frequent itemsets.

3.3 An example

Consider example 1 again. Here, we illustrate the process for executing MCFPTree on
this example.

• Phase 1: Exploit the item constraint CB to obtain initial candidate {pd}.

• Phase 2: Scan the transaction database to find all frequent 1-itemsets, obtaining
{b, d, o, p}, and perform transaction trimming and reduction when appropriately.
The resulting database is shown in Table 4.

Table 4 The reduced transaction database

TID List of items

10 b, c, d, o, p
30 b, d, o, p, r
40 a, b, d, p
50 b, d, e, o, p

• Phase 3: Scan the reduced database to construct the FP-tree; the resulting FP-tree
is shown in Figure 2.

Figure 2 Initial FP-tree

 10 W-Y. Lin et al.

• Phase 4: This phase constructs the conditional FP-tree of each frequent 1-itemset
to generate all frequent patterns, obtaining {bdpo, dpo, po, bdp, dp, bd}.

• Phase 5: Finally, all frequent itemsets are checked against all constraints.
The resulting set of satisfied frequent patterns is shown in Table 5.

Table 5 The frequent itemsets that satisfy all sets of constraints

Itemset Support sum avg Card

dp 4 60 30 2
bdp 4 90 30 3
dpo 3 100 33.3 3
bdpo 3 130 32.5 3

4 Performance evaluations

In this section, we evaluate the performance of the proposed algorithm MCFPTree for
mining frequent patterns with multiple constraints. A synthetic data set, T40I10D100K,
generated by IBM generator (Agrawal and Srikant, 1994) and a real data set about traffic
accident (Geurts et al., 2003) are used in this evaluation. Table 6 shows the parameter
settings for generating T10I4D100K and the characteristics of accidents.

Table 6 Characteristics of T40I10D100K and accidents

Parameters T10I4D100K Accidents

|D| Number of original transactions 100 K 341 K
|T| Average size of transactions 10 33.8
|I| Average size of frequent itemsets 4 –
|L| Average size of maximal frequent itemsets 5 –
N Number of items 1000 469

For comparison with our algorithms, we also implemented two methods: the MCFP
algorithm and FP-Growth+ algorithm. Here, FP-Growth+ refers to the approach of
applying the FP-Growth algorithm, followed by a post-processing of the frequent
patterns. All experiments were performed on a two 1.8 GHz Intel Xeon CPUs ASUS
server with 4 GB main memory and 450 GB hard disk running on Windows server 2003.

All comparisons were investigated from three different aspects, including support
threshold, size of item constraints and number of aggregation constraints.

4.1 Performance on synthetic data

The effectiveness and efficiency of the proposed algorithm were first evaluated over the
synthetic data set T10I4D100K. Table 7 shows the default constraint settings in this
performance study.

 MCFPTree: A FP-tree-based algorithm 11

Table 7 Constraint settings in synthetic data set evaluation

Constraint Value

Aggregation Avg(S) ≥ 500 and sum(S) ≥ 3000
Item (900 ∩ 851) ∪ (701 ∩ 800) ∪ (800) ∪ (700 ∩ 9) ∪ (750 ∩ 9 ∩ 3)

Cardinality Card(S) ≤ 7

We first evaluate the performance from the aspect of various support thresholds, ranging
from 0.1% to 1%. The other constraints consist of two aggregation constraints, one item
constraint composed of five disjuncts, and a cardinality constraint, as shown in Table 7.

The result in Figure 3 demonstrates that MCFPTree is significantly faster than MCFP
and FP-Growth+, especially on relative small support thresholds. FP-Growth+
outperforms MCFP on small support thresholds but is defeated on larger thresholds.

Figure 3 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying support
thresholds on T10I4D100K (see online version for colours)

Next, we inspect the effect of varying the size of item constraints. The support threshold
is set to 0.002 and other constraint settings are the same as those in Table 7.

From the result in Figure 4, we observe that MCFPTree surpasses both FP-Growth+
and MCFP. The superiority over FP-Growth+ diminishes as # of disjuncts increases but
against MCFP it enlarges. Note that the size of item constraints has almost no effect on
algorithm FP-Growth because it does not utilise this constraint until the end of frequent
itemset generation. Besides, the performance of MCFP is more affected by the number of
disjuncts than MCFPTree. This is because MCFP is an Apriori-like algorithm (Agrawal
and Srikant, 1994), whose computation needs to generate candidate itemsets. The more
the number of disjuncts is, the more the number of candidates will be generated.

Finally, we consider the effect of varying the number of aggregation constraints,
which is set from 1 to 6. Other parameter settings in this experiment are the same as
before.

The result in Figure 5 shows that the performance of MCFP is heavily affected by the
number of aggregation constraints; the larger the number of aggregation constraints is,
the worst the MCFP performs. On the contrary, our MCFPTree algorithm is not affected

 12 W-Y. Lin et al.

by varying number of aggregation constraints. The reason is that the aggregation
constraints are utilised only in the post-processing phase, whose cost is negligible.

Figure 4 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying number
of disjuncts on T10I4D100K (see online version for colours)

Figure 5 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying number
of aggregation constraints on T10I4D100K (see online version for colours)

4.2 Performance on real data

First, we consider the effect of varying support threshold, ranging from 10% to 35%.
The other constraints consist of two aggregation constraints, one item constraint
composed of five disjuncts, and a cardinality constraint. Table 8 shows the detailed
settings. The result is depicted in Figure 6, which is very similar to that shown in Figure 3
except that FP-Growth+ outperforms MCFP in all cases of support thresholds.

Table 8 Constraint settings in real data set evaluation

Constraint Value

Aggregation avg(S) ≥ 35 and sum(S) ≥ 150
Item (183 ∧ 34) ∨ (59 ∧ 24) ∨ 82 ∨ (12 ∧ 36) ∨ 173
Cardinality Card(S) ≤7

 MCFPTree: A FP-tree-based algorithm 13

Figure 6 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying support
thresholds on accidents (see online version for colours)

Next, we consider the effect of varying the size of item constraint, which is measured by
the number of disjuncts ranging from 1 to 6. The other parameter settings are the same as
before except that the support threshold is set to 0.25.

Again, one can observe that the result in Figure 7 is very similar to that shown in
Figure 4. But, MCFP can beat FP-Growth+ and MCFPTree when the number of disjuncts
is less than 3 and 2, respectively. This is because smaller number of disjuncts means less
number of candidate itemsets needed to be generated during the computation of MCFP.

Figure 7 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying number
of disjuncts on accidents (see online version for colours)

Finally, we consider the effect of varying the number of aggregation constraints, which is
set from 1 to 6. The other parameter settings in this experiment are the same as before.

As the result shown in Figure 8, the number of aggregation constraints does not affect
the performance of FP-Growth+ and MCFPTree because this constraint is inspected only
in the post-processing phase. However, MCFP is heavily affected by the number of
aggregation constraints; the more the number of constraints, the less its performance.

 14 W-Y. Lin et al.

Figure 8 Performance comparison of FP-Growth+, MCFP and MCFPTree with varying number
of aggregation constraints on accidents (see online version for colours)

5 Conclusions

Recent work has highlighted the essence of allowing user-specified constraints into the
model of association rules to facilitate an online, interactive mining environment of
association rules. The key for realising such a mining system is the design of an efficient
frequent pattern-mining algorithm that takes account of all user-specified constraints.

In this paper, we have proposed a new algorithm MCFPTree for discovering patterns
that satisfy three types of user-specified constraints, including item constraint,
aggregation constraint and cardinality constraint. Experimental results show that our
algorithm MCFPTree is significantly faster than our previously proposed Apriori-like
algorithm MCFP and also outperform an intuitive approach, post-processing the frequent
patterns generated by the leading algorithm FP-Growth against user-specified constraints.

In real life, a transaction table may contain multiple attributes and users sometimes
may need to select different attributes from the multi-dimensional data sets, i.e., data
warehouse (Han and Kamber, 2004; Inmon and Kelley, 1993), to mine multi-dimensional
association rules (Han et al., 1997; Perng et al., 2001; Tjioe and Taniar, 2005).
So, a promising avenue of extending our work is to discover constrained rules from
multi-dimensional data rather than single-dimensional data.

Acknowledgement

This work is partially supported by National Science Council of Taiwan with grant
No. 95-2221-E-390-024.

References
Agrawal, R. and Srikant, R. (1994) ‘Fast algorithms for mining association rules in large

databases’, Proc. 20th International Conference on Very Large Data Bases, Santiago de Chile,
Chile, pp.487–499.

 MCFPTree: A FP-tree-based algorithm 15

Bayardo Jr., R.J., Agrawal, R. and Gunopulos, D. (2000) ‘Constraint-based rule mining in large,
dense databases’, Data Mining and Knowledge Discovery, Vol. 4, pp.217–240.

Bonchi, F. and Lucchese, C. (2007) ‘Extending the state-of-the-art of constraint-based pattern
discovery’, Data and Knowledge Engineering, Vol. 60, No. 2, pp.377–399.

Bonchi, F., Giannotti, F., Mazzanti, A. and Pedreschi, D. (2003) ‘ExAMiner: Optimized level-wise
frequent pattern mining with monotone constraint’, Proc. IEEE International Conference on
Data Mining, Melbourne, Florida, pp.11–18.

Ceglar, A. and Roddick, J.F. (2007) ‘GAM: A guidance enabled association mining environment’,
International Journal of Business Intelligence and Data Mining, Vol. 2, No. 1, pp.3–28.

Cho, M., Pei, J., Wang, H. and Wang, W. (2005) ‘Preference-based frequent pattern mining’,
International Journal of Data Warehousing and Mining, Vol. 1, No. 4, pp.56–77.

De Raedt, L. and Zimmermann, A. (2007) ‘Constraint-based pattern set mining’, Proc. SIAM
International Conference on Data Mining, Minneapolis, Minnesota, pp.237–248.

Geurts, K., Wets, G., Brijs, T. and Vanhoof, K. (2003) ‘Profiling high frequency accident locations
using association rules’, Proc. 82nd Annual Transportation Research Board Annual Meeting,
Washington, DC, pp.123–130.

Grahne, G., Lakshmanan, L.V.S. and Wang, X. (2000) ‘Efficient mining of constrained
correlated sets’, Proc. 16th International Conference on Data Engineering, San Diego,
California, pp.512–521.

Han, J. and Kamber, M. (2004) Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers, San Francisco, California.

Han, J., Kamber, M. and Chiang, J. (1997) ‘Metarule-guided mining of multi-dimensional
association rules using data cubes’, Proc. 3rd International Conference on Knowledge
Discovery and Data Mining, Newport Beach, California, pp.207–210.

Han, J., Pei, J. and Yin, Y. (2000) ‘Mining frequent patterns without candidate generation’,
Proc. 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas,
pp.1–12.

Inmon, W. and Kelley, C. (1993) Developing the Data Warehouse, QED Publishing Group,
Boston, Massachussetts.

Lee, A.J.T., Lin, W.C. and Wang, C.S. (2006) ‘Mining association rules with multi-dimensional
constraints’, Journal of Systems and Software, Vol. 79, No. 1, pp.79–92.

Lin, W.Y., Huang, K.W., Li, H.Y. and Jiang, C.L. (2008) ‘Mining frequent patterns with item,
aggregation, and cardinality constraints’, Proc. 3rd International Conference on
Innovative Computing, Information and Control, Dalian, China, pp.325–328.

Liu, B., Hsu, W. and Ma, Y. (1998) ‘Integrating classification and association rule mining’,
Proc. International Conference on Knowledge Discovery and Data Mining, New York,
pp.80–86.

Lu, N., Zhe, W., Zhou, C.G. and Zhou, J.Z. (2005) ‘Research on association rules mining algorithm
with item constraints’, Proc. 2005 International Conference on Cyberworlds, Singapore,
pp.325–329.

Ng, R.T., Lakshmanan, L.V.S., Han, J. and Pang, A. (1998) ‘Exploratory mining and pruning
optimizations of constrained association rules’, Proc. 1998 ACM SIGMOD International
Conference on Management of Data, Seattle, Washington, pp.13–24.

Pei, J. and Han, J. (2000) ‘Can we push more constraints into frequent pattern mining?’,
Proc. 6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Boston, Massachusetts, pp.350–354.

Pei, J., Han, J. and Lakshmanan, L.V.S. (2004) ‘Pushing convertible constraints in frequent itemset
mining’, Data Mining and Knowledge Discovery, Vol. 8, No. 3, pp.227–252.

Perng, C.S., Wang, H., Ma, S. and Hellerstein, J.L. (2001) ‘Farm: A framework for exploring
mining spaces with multiple attributes’, Proc. 2001 IEEE International Conference on Data
Mining, San Jose, California, pp.449–456.

 16 W-Y. Lin et al.

Song, B.L. and Qin, Z. (2005) ‘Efficient mining for frequent itemsets with multiple convertible
constraints’, Proc. of 4th International Conference on Machine Learning and Cybernetics,
Guangzhou, China, pp.1503–1508.

Srikant, R., Vu, Q. and Agrawal, R. (1997) ‘Mining association rules with item constraints’,
Proc. of 3rd International Conference on Knowledge Discovery and Data Mining, Newport
Beach, California, pp.67–73.

Tjioe, H.C. and Taniar, D. (2005) ‘Mining association rules in data warehouses’, International
Journal of Data Warehousing and Mining, Vol. 1, No. 3, pp.28–62.

Zaki, M.J. (2000) ‘Scalable algorithms for association mining’, IEEE Transactions on Knowledge
and Data Engineering, Vol. 12, No. 3, pp.372–390.

