ON EVALUATING ELIMINATION TREE BASED
PARALLEL SPARSE CHOLESKY
FACTORIZATIONS

WEN-YANG LIN' and CHUEN-LIANG CHEN?

! Department of Information Management
I-Shou University, Kaohsiung, Taiwan, ROC.
email: wylin@Qcsa500.kpi.edu.tw

2 Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan, ROC.

email: clchen@csie.ntu.edu.tw

Abstract.

Though a variety of parallel sparse Cholesky factorizations have been developed
and diverse experiments on various machines have been reported, it is still lack of
theoretical evaluation because of the irregular structure of sparse matrices. This paper
is an effort to such research. On the basis of elimination tree model, we compare the
computation and communication perspective of four widely adopted parallel Cholesky
factorization methods, including column-Cholesky, row-Cholesky, submatrix-Cholesky
and multifrontal. The results show that the multifrontal method is superior to the

others.
AMS subject classification: 05C50, 65F50, 65Y05.

Key words: Communication cost, distributed-memory multiprocessor, sparse matrix,

parallel factorization, equivalent reordering, elimination tree.

1 Introduction.

In the direct solution of a sparse symmetric and positive definite linear system
Axz = b, Cholesky factorization refers to the processing of decomposing A into
LLT, for L alower triangular. As the time-consuming characteristic of Cholesky
factorization and the advance of parallel computer architectures, a demand for
efficient parallel sparse Cholesky factorization algorithms has emerged.

Though a variety of parallel sparse Cholesky factorizations have been proposed
and are usually accompanied with some experimental results [5], [7], [13], [15],
it is still lack of theoretical evaluation due to the irregularity of sparse matrices.
The evaluation not only predicts the potential performance, but also exploits

the possible limitation of a Cholesky factorization, and thus helps in choosing
the appropriate method for a particular machine. This paper is an effort to such
study. On the basis of elimination tree model, we compare the computation and
communication persepctive of four widely adopted parallel Cholesky factoriza-
tion methods, including column—Cholesky, row—Cholesky, submatriz—Cholesky,
and multifrontal, on distributed—memory multiprocessors. With some graph-—
theoretic techniques we have succeed in the evaluation and found that multi-
frontal method is superior to the others, which is conformed with the current
trend in the development of parallel Cholesky factorzations [13], [15].

The remaining of this paper is organized as follows. In Section 2, we review the
graph notion used in matrix computation and the four Cholesky factorizations.
In Section 3, we define the parallel completion time criterion, and formulate it
in terms of graph notation. In Section 4, we evaluate and compare the perfor-
mance of the four Cholesky factorizations. Experiments on some practical sparse
matrices are also illustrated. Section 5 gives the conclusions.

2 Background.

2.1 Graph model for Cholesky factorizations.

In this subsection, we briefly review the combinatorial aspect of the elimination
process as formulated by Rose [14] and then confine it to a more specific graph
model on which later derivations are based. Let A = (a;;) be an n x n sparse
symmetric positive definite matrix. The associated graph of A, G4 = (Va, E4),

can be constructed as below:

Va = {v;| vicorresponds to column/rowiofd,1 <i < n},
Ea = {(vi,v5) [aiy; #0,1<j <i<n}.

The symmetric Gaussian elimination of A is described as follows. Letting

d T
r H |’

where d is a positive scalar, r is an (n —1) x 1 and H is an (n — 1) x (n — 1)

A=A0 =

matrix, the first step of symmetric elimination is the factorization

(.) A«n:lﬂ 0 Hl 0 Hﬂ TT].

S L || 0 H- 0 I

Let AM = H — rrl'/d. The factorization is then completed by recursively
applying the basic step in (2.1) to A, A®) and so on. Since A is sparse, some

initially zero entries in A may become nonzero in L during factoring A into LL”,
which are called fills or fill-ins.
As observed by Rose, symmetric Gaussian elimination can be interpreted by

a sequence of elimination graphs
Ga = GA(O) — GA(]) — = GA(n—l) — GA(n) = @,

where graph G 4 is obtained from G 4:-1) by deleting v; and its incident edges,
and adding edges to G 4:-1) such that the nodes adjacent to v; are pairwise
adjacent in G 4.

For our purpose we restrict the above graph model to a more specific one. Let
Gr be the filled graph of G 4, where F' = L + L™ denotes the filled matrix of A,
ie.,

n
Gr=|JGan-
i=0
This description is meaningful since the filled matrix of A has to be determined
before the numerical factorization proceeds. So we refer the factoring process
of A as a sequence of elimination graphs of Gy such that from Gpu-1 to Gpem
only v; and its incident edges are eliminated, and all nodes adjacent to v; are

pairwise connected.

2.2 Parallel sparse Cholesky factorization and computation model.

As apparent from the algorithmic form, a Cholesky factorization of A can be

viewed as a triple nested loop containing the following statement [2]
aij < aij — lirljk

where L = (I;;) is the Cholesky factor. Depending on which of the three indices
is placed at the outmost loop there are three basic forms [5] :column-Cholesky,
row-Cholesky and submatriz-Cholesky. In the literature column-Cholesky and
submatrix-Cholesky are also known as fan-in and fan-out respectively. Recently,
a sophisticated variant of the submatrix-Cholesky factorization, called multi-
frontal method [3], has been proposed and soon became a competitor to the
other Cholesky factorizations. This paper is devoted to these four algorithms.
To exploit the potential parallelism existing in sparse matrix factorization, a
commonly used structure is elimination tree [16]. Duff [4] showed that the elim-
ination tree also can be acted as an assembly tree for multifrontal method. An
elimination tree T4 associated with the Cholesky factor L of matrix A is a tree
containing the same nodes as the filled graph of A and for each vy with k < n

its parent node is v, = parent(vy), where p = min{j | j > k and l;; # 0}. A
related definition of parent is child, where child(vy) = {v. | parent(v.) = vy }.
On the basis of elimination tree model, we describe in Algorithms 1 to 4 respec-
tively the parallel sparse column-, row-, submatrix-Cholesky and multifrontal
methods, which are considered on a distributed-memory multiprocessor with

the following assumptions:

(1) There is an unlimited number of processors as well as unlimited number of
memory modules connected via an interconnection network of sufficiently
wide bandwidth.

(2) The column-oriented distribution is used for column-, submatrix-Cholesky
and multifrontal; row-oriented distribution is used for row-Cholesky. Each
processor is solely responsible for the task of maintaining and updating its
column or row.

(3) For simplicity, we ignore the underlying interconnecting and routing topol-

ogy.

In order to keep the Cholesky methods consistent in generic form, we assume
the communication is invoked implicitly by the computation. The multifrontal
method, however, is rather complicated, and so we give only an informal descrip-
tion. Readers should refer the original paper by Duff and Reid [3] for details.

In Algorithm 3, notation tgf)

denotes an intermediate update that is generated
in the factorization of column £ and is accumulated to entry a;; when factoring
column j, for j > k. In Algorithm 4, F®*) represents the frontal matrix associ-
ated with column k£ and .T(k) the remaining frontal matrix after the removal of

the first column; A,y and L.y simply denote column k of A and L respectively.

Algorithm 1. Column-Cholesky factorization.
for j:=1 to n do in parallel
while v; is not a leaf node do waiting;
for k:=1to j—1andlj #0do
for i := j ton and l;;, # 0 do
aij < az; — lirlje;
lij < V/ajj
fori:=j+1tonanda;; #0do
lij = aij /15
eliminate node v; from the elimination tree;

endfor

Algorithm 2. Row-Cholesky factorization.
for i := 1 to n do in parallel
while v; is not a leaf node do waiting;
for k:=1toi—1 and a;; # 0 do
Lik, < @i [lgk;
for j:=k+1toiandl; #0do
aij < aij — lirlje;
lii < /ais;
eliminate node v; from the elimination tree;

endfor

Algorithm 3. Submatriz-Cholesky factorization.
for k :=1 to n do in parallel
while node vy is not a leaf node do waiting;
for j:=k ton and t;; # 0 do
Ajk = Ak + Dicknly£0 t§25
ler < arg;
for j:=k+1tonandaj, #0do
Lik < aji/lex;
for j:=k+1tonandlj; #0do
for i :=k+1ton and l;;, # 0 do
t%c) — —linljk;
eliminate node vy from the elimination tree;

endfor

Algorithm 4. Multifrontal method.
for k :=1 to n do in parallel
while node vy is not a leaf node do waiting;

create the frontal matrix F*) « A, + ZUCEChild(vk) .T(C);

apply a sequential dense Cholesky to factor the first column .7-",511“) of Fk);
L.y < F, ,Elf);

FY e po _ g®),

eliminate node vy from the elimination tree;

endfor

3 The evaluation criterion.
3.1 Definitions.

On the basis of elimination tree model, we will evaluate the four Cholesky
factorizations from two aspects: the computation spent and the communication
overhead, including both message count and message volume. For this specific
purpose, we adopt the time required to complete the whole factorization, the
parallel completion time, as the basic criterion [11]. It, indeed, can be viewed as a
critical path length of the elimination tree using the execution time (computation
or communication) of each node as the cost.

For v;, 1< i < n, let mip(v;) denote the number of multiplicative opera-
tions (square root, multiplication, and division), msc(v;) the message (column
or row) counts, and msv(v;) the message volumes acquired by v;. The parallel
computation and communication cost to complete node v; can be formulated as

Cplvs) = { mitp(v;), ifv,is le.af,
(vi) + Cp(v;), otherwise.

Crme(v)) = msc(v;), - if v; is leaf,
msc(v;) + Cme(v;), otherwise.

Cmv(vy) = { msv(vg), - if v; is leaf,
msv(v;) + Cmo(v;), otherwise.

where

/@(vi) = max{Cp(z) | z € child(v;)},
C/n\zc(vi) = max{Cmc(z) | « € child(v;)},
Cmu(v;) = max{Cmu(z) | z € child(v;)}.

Then the parallel computation time and communication time required to com-
plete the factorization, denoted as Cp, Crmc or Cmu, are equal to Cp(v,),
Cme(vy) or Cmw(vy,), respectively. Moreover, we introduce subscripts C, R,
S and M into the corresponding functions to distinguish different Cholesky fac-
torizations, e.g., mips(v) represents the number of multiplicative operations
associated with node v under submatrix-Cholesky factorization.

3.2 Formulation of the node cost.

The parallel completion time criterion defined previously expresses exactly
the cost spent on computation and communication. To study the behavior of
and to distinguish the superiority among various Cholesky factorizations, we
need a well-defined formulation of the cost spent on each node with respect to

computation or communication. It has been shown well in the literature that the
graphic notation is more concise and sensible. Thus, instead of presenting the
formulations directly from the matrix notation, we will devise the corresponding
graphic representation.

Consider the filled graph Gg of matrix A. For each node in Gp, we denote
its adjacent set as adjg, (v) and its degree as degq, (v), where degg,(v) =
ladjc, (v)|. The prior (monotone) adjacent set Padjg, (v) (Madja, (v)) is a
set of all nodes adjacent to and numbered lower (higher) than v; Pdegg, (v)
(Mdegg,(v)) denote the size of Padjg,(v) (Madjg,(v)). Since all discussions
hereafter are related to G, we omit the subscript Gy for simplicity.

A clique is a set of nodes with property that all its members are pairwise
adjacent; moreover, if no other node can be added while preserving the pairwise
adjacent property, then the clique is called maximal. Assume Gy comprises of
Ky, K, ..., K, maximal cliques. A maximal clique K, 1 < j < ¢, might change

~1)

as the elimination proceeds and so similar to G% we denote the residual clique

[9] of K; after the ith elimination step as K](z) More precisely,

J

KW —
K(z 1) otherwise.

1 . i—1
{ I((z) {Ui}, 1fvi€KJ(.Z),
J
Note that a residual clique is not necessarily maximal. For node v; (remember
it is corresponding to column/row i of A and is eliminated in the ith step) we
define Q(v;) as the identity of the maximal residual clique that contains v; when

v; is eliminated. In other words, Kg(; 1)) is the only maximal residual clique

containing v; in Gg_l) ,which indeed consists of the set of nodes adjacent to and
ordered after v; plus v, i.e., Kg(vl)) = Madj(v;) U {v;} and thus |K91(vl)| =
Mdeg(v;) + 1. The notion Kéj()vi), for i < j < n, then represents the residual
clique of Kg(y,)-

The following equalities are useful for our derivations.

(3.1) Padj(vj) = {vr | 1<k <j—1and L # 0}
(3.2) > 1=K fork <1
jgign,lik;éo
(i)
(3.3) ‘KQZ ‘ ‘K -1

LEMMA 3.1. The number of multiplicative operations associated with node v;
in T4 for column-, row-, submatriz-Cholesky, and multifrontal factorizations can

be individually formulated as

1
mitpc(vi) = ZvJePad](vz)U{vl} (ZvJ;
1
mitpr(v;) = ZvjEPadj(vi)U{vi} (‘K(J)‘_‘KQ(W)
1
mips(vi) = mipp(vi) = X, e Madj(vi)ofv} Kg(zj(v,))

PRrooOF. We prove the case of mtpc(v;) only; the other cases can be proved
by similar derivations.

For each iteration of for j loop in Algorithm 1, there are

2. >, !

1<k<j—1,l.#0 j<i<n,lip#0
multiplications, one square root, and
> 1
JH1<i<n,li; #0

divisions. Totally, the number of multiplicative operations is

_ (4-1) (4)
SJDSRTSEED SIEURIND S ot PP I DS
1<k<j—1 j<i<n j+1<i<n 1<k<i—1
LA 1370 1;;#0 1R #0
_ (4-1) (4-1)
- K |+ [5G by (31 33)
vkEPadj(v,)
_ (4-1)
- Z ‘KQJ(vk) ’
vk €Padj(v;)U{v;}

The lemma then follows by simple index substitutions. 0O
For submatrix-Cholesky and multifrontal factorizations, the involved compu-
tations are the same so we denote that as mtpsas(v;). Furthermore, note that

Madj(vi) U{vi} = Kg(;(:)ll)) and thus
(45— 1)
Z ‘I{Q(vI ‘K)
vjEMadj(vi)J{v; } vJng(vl))

whose structure indeed corresponds to a dense lower triangular matrix. Hence-
forth, we can rewrite the formula as

mipsy(vi) = ‘ng(vll) (‘ng(vl)‘-l-)
= 3(Mdeg(v;) + 1)(Mdeg(vi) + 2).

LEmMMA 3.2. The number of messages (column or row), or message count,

acquired to update node v; in Ta for column-, row-, submatriz-Cholesky and

multifrontal factorizations can be individually formulated as

msco(v;)) = mscgr(vi) = mscs(v;) = Pdeg(v;),
msey(vi) = ZvjEChild(vi) Mdeg(v;)-

PRrOOF. The derivation is similar to Lemma 3.1 by inspecting the remote ac-
cessing data in Algorithms 1 to 4 and applying the corresponding graph notation.
a

For column-, row-, and submatrix-Cholesky factorizations, the message count
acquired is the same so we denote that as mscoprs(v;)-

LEMMA 3.3. The message volume acquired to update node v; in T4 for column-
, row-, submatriz-Cholesky and multifrontal factorizations can be individually

formulated as

Jeln 1)

msvc (vi) = msvs(v;) = Z’uJEPad] (v:) Q(v ;
mS'UR(vi) = vJGPad] v;) (‘ Q(v ‘ o ‘K(l Q(vy))
1 1)
mS'UM(vi) = Zvjechzld(vl) % ‘K(z(ng (‘K(z)‘ + 1)

ProoF. The derivation is again similar to Lemma 3.1 by inspecting the re-
mote accessing data in Algorithms 1 to 4 and applying the corresponding graph
notation. 0O

Note in Lemma 3.3 the message volume of column- and submatrix-Cholesky

factorizations is the same so we denote that as msveg(v;).

4 Evaluation.
4.1 Theoretical results.

In this subsection, we derive the evaluation of the four Cholesky factorization
algorithms. A useful property quoted from Schreiber [16] is stated first.

LeMMA 4.1. (Schreiber [16]) For each node v;, 1 < j < n. Madj(v;) is a
subset of nodes on the path from v; to the root v, of Ta.

THEOREM 4.2. On solving a given sparse matriz, the computation time of
submatriz- Cholesky (multifrontal) factorization is no more than that of column-
Cholesky factorization.

PRoOOF. This theorem can be proven if we can show that for any path, say p,

from a leaf to the root on an elimination tree

Z mtpc(v;) > Z mitps s (v;).

v;EP viEp

10

By Lemmas 3.1, 4.1 and the definitions of Madj and Padj, we have the following
derivations:

Z mipc(vj) = Z Z ‘Ks()j(;l))

v; Ep v; €p v;€Padj(v;)U{v; }
_ j=1) } : } :
- Z Z ‘KQ(vz Q(vi)
viEp
! v EPadJ(”])U{”]} v ePa.d](vJ)U{vJ}
(j-1)
> Z > |
v; Ep

vy EPa,d](v])

=2

viEp vj€p
vj €Madj(v;)U{v;}

- Z Z ‘Kg(vl Z mtpsn (vi).

vi€p v;EMadj(vi)U{vi} vi€p

Q(vi)

a

The idea behind the above proof is that the execution time of v; under
submatrix-Cholesky would be dispersed to the execution times of its ancestors
when solving via column-Cholesky; thus increases the total completion time on
the path. Similar phenomena can be observed on other forms of factorization
transfer.

THEOREM 4.3. On solving a given sparse matriz, the computation time of
submatriz-Cholesky (multifrontal) factorization is no more than that of row-
Cholesky factorization.

PRoOOF. This theorem can be proven if we can show that for any path, say p,
from a leaf to the root on any elimination tree,

Z mitpr(v;) > Z mitpsn (V).
viEp viEp

By Lemmas 3.1, 4.1 and the definitions of M adj and Padj, we have the following
derivations:

Sy = Y2 (K] [k,

vj€p viEp

)+
v GPad](vJ)U{vJ}
i—1)
PN DR (vt BV e
v;EP i ¢

Q(v;)
v;€Padj(v;)

11

v

DD DR (e

v;EpP
IR GPad](v)u{«;]}

DD DI (o

vi€Ep

)

vj GMad](v yu{v;}

YY) X mwsaw).

vi€p v;eEMadj(v;)U{v; } viEp

O

Note that in the last step of the above derivations, the summation

PR (i R L)

vjEMadj(vi)U{v; }

is counted from 1 to Mdeg(v;) + 1 while

Z ‘ Kéj(;il))

v €EMadj(vi)U{vi}

is counted from Mdeg(v;) + 1 to 1; both yield the same result.

THEOREM 4.4. On solving a given sparse matriz, the computation time of
column-Cholesky factorization is no more than that of row-Cholesky factoriza-
tion.

PROOF. Similar to the proofs in Theorems 4.2 and 4.3, this theorem will be
true if we can show that

J—1) i—1))
Z Z ‘KQ("H - (‘KQ(U a ‘KQ("H '
viEp vi¢p
v;€Padj(v;) v; ePad](v

The above inequality follows by some careful derivations, . O

Now it remains to evaluate the communication case.

THEOREM 4.5. On solving a given sparse matriz, the communication cost
of multifrontal method is no more than that of column-, row-, and submatriz-
Cholesky factorization.

PROOF. This theorem can be proven if we can show that for any path, say p,
from a leaf to the root on an elimination tree,

E msgcrs v] E msgn (vi)-
v; €p vi€p

By Lemmas 3.2, 4.1, the definitions of Madj, Padj, Mdeg, Pdeg and some
properties of elimination tree, we have the following derivations:

12

ZmSQCRS(Uj) = Z Z 1

vj€p v €p vp €Padj(vj)
PP IR LD DD D
V;EP vp€EPadj(vy) V;EP vipE€EPadj(vy)
parent(vy)€p parent(vy)¢p

>) 1

V;EP vp€EPadj(vy)
parent(vy)€p

= > >

parent(vy)Ep vjEMadj(vy)
vj€p

- Y >

parent(vy)€p viEMadj(vy)

= Z Z Z 1= Z msgar(v;).
v €p vy, Echild(v;) v; € Madj(vy) vi€p
a

For the similarity between the functions for message volume and the compu-
tation counterparts, the following theorems are stated without proving.

THEOREM 4.6. On solving a given sparse matriz, the message volume of
multifrontal method is mo more than that of column- and submatriz-Cholesky
factorization.

THEOREM 4.7. On solving a given sparse matriz, the message volume of
column- and submatriz-Cholesky factorizations is no more than that of row-
Cholesky factorization.

THEOREM 4.8. On solving a given sparse matriz, the message volume of
multifrontal method is no more than that of row-Cholesky factorization.

We conclude the following as a summary of this subsection:

(1) Submatrix-Cholesky (multifrontal) consumes the least parallel computa-
tion cost, then the column-Cholesky and last the row-Cholesky.

(2) Multifrontal method suffers less message count than the other three meth-
ods, which suffer the same amount.

(3) Multifrontal method suffers the least message volume, then the column-
and submatrix-Cholesky, and last the row-Cholesky.

(4) To conclude, the multifrontal method is superior to the other three Cholesky
factorization methods.

13

4.2 An example problem.

We illustrate the above evaluation with a simple problem whose Cholesky
factor is shown in Figure 4.1. Figure 4.2 shows the (mitpc, mtpr, mtpsa),
[msccrs, mscy] and {msvcs, msvg, msvy } for each node of the corresponding
elimination tree. A simple accumulating yields Cpc : Cpg : Cpsy = 48 : 62 :
30, Cmcors : Cmepyr = 19 : 15 and Cmues : Cmog : Cmuopy = 34 : 38 @ 28.

This example reveals that even a simple problem would yield a great variation
in the performance of different Cholesky factoring methods. Since most real
problems have large sizes and sophisticated structures, we expect a tremendous
variation and conjecture that may be infinite to the extreme.

Moreover, no matter which form of Cholesky factorizations is used, the total
number of multiplicative operations as well as the message transfer is the same.
It seems to reveal that the multifrontal (and submatrix-Cholesky) leads to the
best load-balancing, then the column-Cholesky, and last the row-Cholesky. But
research has shown that column-Cholesky usually achieves better load-balancing
than the other methods [1],[8]. The clue to the superiority of submatrix-Cholesky
lies in the granularity of tasks in each level of the elimination tree. For submatrix-
Cholesky, the node cost tends to decrease toward the root of the elimination tree,
which is propotional to the degree of parallelism in each tree level. This implies
more computations can be performed in parallel when we have more processors
activated; thus shortens the completion time to finish the factorization.

4.8 Experimental Results.

We make an experiment on a set of test matrices from the well-known Harwell-
Boeing sparse matrices collection; the choice follows the study in [9]. All matrices
were ordered by the minimum degree ordering [6] to reduce the number of fill-ins
and followed by the Jess and Kees algorithm [10] to enrich the parallelism. The
critical cost of each matrix with respect to computation or communication under
different Cholesky factorization methods is reported in Table 4.1 and Table 4.2.
The result apparently assents to the theoretical evaluation in Section 4.1 and
there seems to be a limitation on the ratio between different methods. But
whether it is true and what the variation would be remains unknown and needs
further study.

5 Conclusions.

In this paper, we have utilized the parallel completion time criterion to evaluate
the performance of column-, row- and submatrix-Cholesky, and the multifrontal

14

method. In the theoretical study, we have observed that the well load-balancing
feature of multifrontal makes it the supreme of the four methods.

However, the evaluation in this paper has some limitations. First, we only con-
sider the coarse-grained task granularity (as exploited by elimination tree). In
most practical implementations of parallel sparse Cholesky factorizations, they
exploit the so called medium-grained granularity [12], and even fine-grained gran-
ularity [7]. Both cases are more complicated and deserved an advanced study.
In addition, to reflect some subtle but influential overhead such as synchroniza-
tion, indirect addressing and memory traffic, we also need a more sophisticated

evaluation model.

REFERENCES

1. C. Ashcraft, The fan-both family of column-based distributed Cholesky factorization
algorithms, in A. George, ed., Graph Theory and Sparse Matriz Computation, The
IMA Volumns in Mathematics and its Applications, Vol. 56, Springer-Verlag, New
York, 1993, 159-190.

2. J. J. Dongarra, F. G. Gustavson and A. Karp, Implementing linear algebra algo-
rithms for dense matrices on a vector pipeline machine, SIAM Review, 26 (1984),
99-112.

3. 1. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric
linear equations, ACM Trans. Math. Software, 9 (1983), 302-325.

4. 1. S. Duft, Parallel smplementation of multifrontal schemes, Parallel Computing, 3
(1986), 193-204.

5. A. George, M.T. Heath and J.W.-H. Liu, Parallel Cholesky factorization on a
shared-memory multiprocessor, Lin. Alg. Appl., 77 (1986), 165—187.

6. A. George and J.W.-H. Liu, Computer Solution of Large Sparse Positive Definite
Systems, Prentice Hall, Englewood Cliffs; NJ, 1981.

7. J. R. Gilbert and R. Schreiber, Highly parallel sparse Cholesky factorization, STAM
J. Sci. Stat. Comput., 13 (1992), 1151-1172.

8. M. T. Heath, E. Ng and B. W. Peyton, Parallel algorithms for sparse linear systems,
SIAM Review, 33 (1991), 420-460.

9. J. G. Lewis, B. W. Peyton and A. Pothen, A fast algorithm for reordering sparse
matrices for parallel factorization, STAM J. Sci. Stat. Comput., 10 (1989), 1146—
1173.

10. J. A. G. Jess and H. G. M. Kees, A data structure for parallel L/U decomposition,
IEEE Trans. Comput., C-31 (1982), 231-239.
11. W.-Y. Lin and C. -L. Chen, Minimum completion time criterion for parallel sparse

Cholesky factorization, in Proc. International Conference on Parallel Processing,
I1I (1993), St. Charles, IL, USA, 107-114.

12

13

14.

15.

16.

17.

15

X
X
X
X
X X X
X X X
X X X X X
X X X X X X X X
X X X X X X X

Figure 5.1: An example Cholesky factor.

. J. W. -H. Liu, Computational models and task scheduling for parallel sparse
Cholesky factorization, Parallel Computing, 3 (1986), 327-342.

. R. Gupta and V. Kumar, Optimally scalable parallel sparse Cholesky factorization,
in Proc. the Seventh SIAM Conference on Parallel Processing for Scientific Com-
puting (1995), STAM, 442-447.

D. J. Rose, A graph-theoretic study of the numerical solution of sparse positive def-
inite systems of linear equations, in R.C. Read, ed., Graph Theory and Computing,
Academic Press, New York, 1972, 183-217.

E. Rothberg, Performance of panel and block approaches to sparse Cholesky factor-
ization on the iPSC/860 and Paragon multicomputers, STAM J. Sci. Comput., 17
(1996), 699-713.

R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Trans.
Math. Software, 8 (1982), 256-276.

R. Schreiber, Scalability of sparse direct solvers, in A. George, ed., Graph The-

ory and Sparse Matriz Computation, The IMA Volumns in Mathematics and its
Applications, Vol. 56, Springer-Verlag, New York, 1993, 191-209.

16

(7,22,1) [6,1]{6,15,1}

(14,23.3) [7.2]{12,15,3}

(13,11,6 [4,6]{10,6,12}
(10,5,10)

[2,6]{6,2,12}

(10,5,10)
[2,6]{6,2,12}

(4,1,00) (4,1,10) (4,1,10) (4,1,10)

[0,0] [0,0] [0,0] [0,0]
{0,0,0} {0,0,03 {0,0,0} {0,0,0}
Figure 5.2: (mtpc, mtpr, mtpsy) , [mscors, msep],

{msvcs, msvg, msvy }.

Table 5.1: Computation statistics of the test matrices.

| Key | Order | T(A) | Cpc | Cpr | Cpsm
BCSPWRO09 1723 2394 3664 5817 2140
BCSPWRI10 5300 8271 43971 62156 28632
BCSSTKO08 1074 5943 611554 768217 439262
BCSSTK13 2003 | 40940 | 3970126 | 7169318 | 8366244

BCSSTM13 2003 9970 | 1801953 | 2012053 | 1335285
BLCKHOLE 2132 6370 762742 | 1022696 476237

CAN 1072 1072 5686 151533 205136 103412
DW'T 2680 2680 | 11173 363680 448920 261665
LSHP3466 3466 | 10215 921041 | 1332781 573938

GR 3030 900 4322 106525 157406 62549

and

Table 5.2: Communication statistics o

f the test matrices.

17

Key | Order | T(A) | Cmccrs | Cmey | Cmues | Cmug Cmuy
BCSPWRO09 1723 2394 1023 482 3284 4787 2166
BCSPWRI10 5300 8271 5152 2303 41818 56903 28540
BCSSTKO08 1074 5943 21556 12315 599788 746463 443033
BCSSTK13 2003 | 40940 215812 | 140111 | 3830847 | 6952866 | 8378914
BCSSTM13 2003 9970 35912 23078 | 1779168 | 1975898 | 1336984
BLCKHOLE 2132 6370 27025 12630 750321 995493 475183
CAN 1072 1072 5686 9762 4992 146770 195241 103186
DWT 2680 2680 11173 21231 11257 352844 427431 261582
LSHP3466 3466 | 10215 34608 15453 905871 | 1297879 571038
GR 3030 900 4322 7830 3469 103165 149459 62320

