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Abstract.

In recent years, the weakness of the canonical support-confidence framework for associations mining has
been widely studied. One of the difficulties in applying association rules mining is the setting of support
constraint. A high-support constraint avoids the combinatorial explosion in discovering frequent itemsets,
but at the expense of missing interesting patterns of low support. Instead of seeking the way for setting the
appropriate support constraint, all current approaches leave the users to be in charge of the support
setting, which, however, puts the users in a dilemma. This paper is an effort to answer this long-standing
open question. According to the notion of confidence and lift measures, we propose an automatic support
specification for efficiently mining high-confidence and positive lift associations without consulting the
users. Experimental results show that the proposed method not only is good at discovering high-confidence
and positive lift associations, but also is effective in reducing the spurious frequent itemsets.
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1. Introduction

Mining association rules from a large database of business data, such as transaction records, has been a hot topic
within the area of data mining. This problem is motivated by applications known as market basket analysis in
finding relationships between items purchased by customers, that is, what kinds of products tend to be purchased
together [1]. An association rule is an expression of the form A  B, where A, B are sets of items. Such a rule
reveals that transactions in the database containing items in A tend to contain items in B, and the conditional
probability, measured as the fraction of transactions containing A also containing B, i.e., P(B|A) = P(A B) /
P(A), is called the confidence (conf) of the rule. The support (sup) of the rule is the fraction of the transactions
that contain all items both in A and B, i.e., sup(A  B) = P(A B). For an association rule to hold, the support
and the confidence of the rule should satisfy a user-specified minimum support called minsup and minimum
confidence called minconf, respectively.

One of the difficulties in applying association rules mining is the setting of support constraint. A high-support
constraint avoids the combinatorial explosion in discovering frequent itemsets, but at the expense of missing
interesting patterns of low support. However, most rules with high support are obvious and well-known, and it is
the rules with low support that provide interesting new insight, such as deviations or exceptions.

Instead of seeking the way for setting the appropriate support constraint, all current approaches leave the users to
be in charge of the support setting, which, however, puts the users in a dilemma: how to specify the most
appropriate support constraint, either uniform or non-uniform, to discover interesting patterns without suffering
from combinatorial explosion and missing some low-support but perceptive rules. The best one can do is either
setting the support at the lowest value ever specified or performing a consecutive sequence of mining processes
with various constraints to extract the right patterns.

Our intent is to seek as could as possible the rules of high confidence without the need for user specified support
constraint. To this end, we proposed an automatic support specification without consulting the users. The idea is
taken from the notion of lift measure [2] (also called interest [3]) and confidence measure. Experimental results
show that this specification is good at discovering low-support, but high-confidence and positive lift associations,
and is effective in reducing the spurious frequent itemsets.

The remaining of this paper is organized as follows. The problem of support-confidence framework for
associations mining and related work are presented in Section 2. In Section 3, we provide a modified association
framework and explain the support specification and mining process for this model. An evaluation of the
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proposed specification on IBM synthetic data and real census data is described in Section 4. Finally, our
conclusions are stated in Section 5.

2. Problem specification and related work

In the past few years, there has been work on challenging the canonical support-confidence framework for
associations mining. These efforts can be categorized into two paradigms: extending the constant support
constraint and/or seeking substitutes for confidence measure.

The uniform support constraint was first argued in [4] while generalizing the association model into mutiple-level
associations on account of item hierarchy. In [4], Han and Fu extended the uniform support constraint to a form
of level-by-level, decreasing assignment. That is, items at the same level receive the same minimum support, and
higher level items have larger support constraint. This level-wise support specification accounts for their
progressive mining approach: An Apriori-like algorithm is performed progressively from the top level to the
bottom, and stops at the very level when no frequent itemset is generated.

Another form of association rules mining with non-uniform minimum supports was proposed by Liu et al [5].
Their method allows the users to specify different minimum supports to different items, and the support
constraint of an itemset is defined as the lowest minimum item support among the items in the itemset. The
motivation is that the supports of items are non-uniform by nature, and high profit items (e.g., TV) usually occur
less frequently than low value items (e.g., toothpaste). The multi-supported model was then extended to
generalized associations with taxonomy information in [6]. The problem remains tangling.

Wang et al. [7] proposed a bin-oriented, non-uniform support constraint: Items are grouped into disjoint sets,
called bins, and items within the same bin are regarded as non-distinguished with respect to the specification of
minimum support. In particular, each support constraint specifies a set of bins B1, B2, …, Bs of the form SCi(B1,
B2, …, Bs) i, where s 0 and i is a minimum support. The end-user still needs to determine the appropriate
bins and i prior to the mining.

In general, the support of an itemset decreases when its length increases. The uniform support constraint may
thus hinder the discovery of frequent long itemsets. In some applications, however, it may be interesting to
discover associations between long itemsets. To solve this problem, Seno and Karypis [8] used a support
constraint that decreases with the length of the itemset, which helps to find long itemsets without generating lots
of spurious short itemsets.

There is also work on mining high confidence associations without support constraints [9]. The proposed method,
however, is restricted to discover all top rules (conf = 100%) with the consequence being given.
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As pointed out by many researchers [6][10][11], the primary deficiency of confidence-based associations is the
poor predictive ability, i.e., the confidence measure is unable to capture the real implication. For illustration,
consider the example transaction database in Table 1. For a minimum support of 30% and minimum confidence
of 60%, the following association rule is discovered:

Scanner  Printer (sup = 44.4%, conf = 66.7%).

One may conclude that this rule is interesting because of its high support and high confidence. However, note
that the support of Printer is 77.8%. This means that a customer who is known to purchase Scanner is less likely
to buy Printer (by 11%) than a customer about whom we have no information. The rule is misleading as it does
not conform to what the direct association means: When people buy Scanner, they are also likely to buy Printer.
Instead, buying Scanner and purchasing Printer are negatively associated.

Table 1. A transaction database (D)

TID Items Purchased
11 PC, Printer, PDA
12 Printer, Notebook
13 Printer, Scanner
14 PC, Printer, Notebook
15 PC, Scanner
16 Printer, Scanner
17 PC, Scanner
18 PC, Printer, Scanner, PDA
19 PC, Printer, Scanner

To remedy the above deficiency, two alternative measures have been proposed. They are lift [2] (also known as
interest [3]) and conviction [3]. For an association rule A  B, the lift is defined as

lift (A  B) 
)()(
)(

BPAP
BAP 


)()(

)(
BsupAsup

BAsup 


)(
)(

Bsup
BAonfc 

.

Lift measures the deviation of the rule from independence. The farther the value is from 1, the higher the
dependence will be. Lift values above 1 indicate positive dependence, while those below 1 express negative
dependence. The conviction is
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which measures the implication strength of the rule from statistical independence. The conviction value of a rule
is between 0 and . A larger than 1 value indicates that it is greater than the expected presence.

Conviction appears to be preferable to lift in capturing the natural semantics of directed associations because it is
directed, i.e., conv(A  B) conv(B  A), whereas lift is not. Furthermore, conviction has better discrimination
power. To see this, let us consider a rule A  B. Assume sup(A) = 10%, sup(B) = 90% and sup(AB) = 10%.
We get lift(A  B) = 0.1/(0.1×0.9) = 1.11 which is only slightly above 1. But this rule has the highest possible
conviction value of , which conforms to its 100% confidence.

There is also work on investigating alternatives to the association model for attribute set mining [10][11][12].
Brin et al. [11] first proposed the correlation framework, aiming at mining strongly correlated attribute sets. They
adopted the well-known chi-squared test from classical statistics to measure the correlation. However, this
measure, though statistically precise, is prohibitively expensive in constructing the contingency table for each
itemset. Another criterion for measuring correlation called collective strength (cs) was thus proposed in [10],
which is defined as follows:

cs (A) 
)(
)]([

)]([1
)(1

Av
AvE

AvE
Av





,

where v(A) denotes the violation rate of an itemset A, i.e., the fraction of transactions which contain a proper non-
null subset of A, and E[v(A)] the expected number of violations of itemset A. However, we like to point out one
important aspect: Although in theory the correlation framework would discover strongly correlated items without
the support constraint, in practice the support threshold is still of essence. Without a support threshold, the
computation cost will be prohibitively expensive and many unqualified itemsets would be generated [10][11]. As
such, users still confront the problem of appropriate support specification.

In [12], instead of searching for high confidence associations, they focus on identifying similar itemsets (column
pairs) without any support threshold. To this end, they introduced a new measure, called similarity, whose
symmetric property enables the elimination of support constraint. Although the idea of removing support
requirement is somewhat similar inspirit to ours, their approach is not feasible for applications that adhere to the
traditional asymmetric confidence measure.
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3. Interesting association rules and support specification

3.1. Interesting association rules

As concluded from the previous discussion, the primary problems of support-confidence framework are poor
predictive ability and uniform support constraint. Although substantial work has provided various methods to
alleviate these problems, such as adding the lift or conviction measure, and using non-uniform support constraint,
there is still no guideline for users in the support specification. Either the user has to, at the cost of computational
efficiency, set the support constraint low enough so as not to lose any interesting rules or risk missing new insight
patterns.

Our view for solving this problem is to discharge the end-users from specifying the support constraint. Besides,
in light of the previous researches, we adopt the lift measure and non-uniform support constraint to eliminate the
deficiency of support-confidence framework. That is, we confine ourselves to seek association rules with high-
confidence and positive lift, without the need of user-specified support constraint.

As in [1][13], we consider a given transaction database D = {t1, t2,…, tn}, where each transaction ti, 1 i n, is a
set of items taken from a fixed universe set I of items, i.e., ti I. We refine the canonical association rule model
as follows:

Definition 1. Let ms(a) denote the minimum support of an item a, a I. An itemset A = {a1, a2,…, ak}, where ai

I, is frequent if the support of A is larger than the lowest value of minimum support of items in A, i.e., sup(A) 
minaiA sup(ai).

Definition 2. An association rule A  B is strong if

sup(A  B) 
BAai 

min ms(ai)

and conf(A  B) minconf.

Definition 3. An association rule A  B is interesting if it is strong and lift(A  B) > 1.

Note that the lift measure can be replaced by conviction; indeed, lift(A  B) > 1 if and only if conv(A  B) > 1.
That is, the specification derived from conviction is the same as that from lift. We use lift instead of conviction
because it is a more general term in business applications [2].

3.2. The confidence-lift-based support specification

However, as long as support is still the primary determining factor in the initial itemset generation, either the user
has to set the initial support parameter low enough so as to not lose interesting rules in the output or risk losing
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some important rules. The basic idea of our approach is to "push" the confidence and lift measure into the support
constraint to prune the spurious frequent itemsets that fail in generating interesting associations as early as
possible. First, let us show how to specify the constraint to reduce the frequent itemsets that fail in generating
strong associations.

Lemma 1. Let A B be a frequent itemset, A B = , and without loss of generality, a A and a be the one
with the smallest support over all items in A B, i.e., sup(a) = minaiAB sup(ai). The association rule A  B is

strong if ms(a) sup(a) × minconf.

Proof. According to Definition 1, sup(AB) ms(a). Furthermore, since a A, we have

sup(A) sup(a). Now if ms(a) sup(a) × minconf, it follows that

)(
)(

Asup
BAsup 


)(
)(

Asup
asm


)(
)(

asup
asm

minconf. ■

Note that any item would become the smallest supported member of some frequent itemset. Thus, the minimum
support of an item a, for a I, according to Lemma 1, can be specified as follows:

ms(a) sup(a) × minconf. (1)

Note that Lemma 1 does not imply that the rule B  A is strong. This is because the confidence measure is not
symmetric over the antecedence and consequence. Therefore, Eq. 1 does not guarantee that all rules generated
from the frequent itemsets are strong.

Example 1. Consider Table 1. Let minconf = 50% and the minimum supports of items be set according to Eq. 1.
Then we have ms(PC) = 6/9 1/2 = 33%, ms(Printer) = 7/9 1/2 = 39%, and ms(Notebook) = 2/9 1/2 = 11%.
It can be verified that {PC, Printer, Notebook} is a frequent itemset. Consider the following two rules generated
from this itemset

r1 : Printer  PC, Notebook (sup = 11%, conf = 14%),

r2 : PC, Notebook  Printer (sup = 11%, conf = 100%).

Clearly, rule r1 is not strong while r2 is.

Now that we have known how to specify the support constraint to obtain strong associations, our next step is to
consider how to specify the constraint to generate interesting associations.

Consider any association rule derived from a frequent 2-itemset, say r: a  b. Assume that r is strong. Rule r is
interesting if
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)()(
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basup
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Since {a, b} is frequent, it is true that

sup({a, b}) min{ms(a), ms(b)}.

Without loss of generality, let min{ms(a), ms(b)} = ms(a). To make r an interesting association rule, the
minimum support of a should be set to at least of the value sup(a) × sup(b), i.e., ms(a) > sup(a) × sup(b). Since
our intent is to make all generated rules interesting to the users, the minimum support for any item ai I can be
set as

ms(ai) sup(ai) ×
}{

max
ij aIa 

sup(aj). (2)

Although Eq. 2 is derived from rules consisting of only two items, the following lemma shows that this setting
suffices for all strong association rules.

Lemma 2. Let I be a set of items and the minimum support of each item is specified according to Eq. 2. Then any
strong association rule A  B, for A, B I and A B , is interesting, i.e.,

)()(
)(
BsupAsup

BAsup



1.

Proof. Since A  B is strong, sup(AB) minaiAB ms(ai). Specifically, let a ai. It follows that

sup(AB) ms(ai) sup(ai) ×
}{

max
ij aIa 

sup(aj).

Since A B , ai belongs to either A or B. Without loss of generality, let ai A. It is easy to show that

sup(A) sup(ai) and sup(B) 
}{

max
ij aIa 

sup(aj).

The lemma then follows. ■

Note that the support constraint specified in Eq. 2 only provides a sufficient condition for obtaining interesting
association rules from frequent itemsets. That is, it is an upper bound in guaranteeing that all frequent itemsets
will not generate associations having negative lift (lift < 1). There may exist some itemsets that are infrequent
with respect to this constraint but can generate positive lift associations.

Example 2. Let us consider Table 1 again. The minimum supports of items PC, Printer, and Notebook,
according to Eq. 2, will be set as ms(PC) = 6/9 7/9 = 52%, ms(Printer) = 7/9 6/9 = 52%, and ms(Notebook) =
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2/9 7/9 = 17%, respectively. Clearly, the itemset {PC, Printer, Notebook} is not frequent for sup({PC, Printer,
Notebook}) = 11% < ms(Notebook) and so rule r1 will not be generated. But it can be verified that lift(r1) > 1.

Now, if our purpose is to construct all associations without missing any interesting rules, we should seek other
form of support specification. The intuition is to set the minimum support of an item a as for accommodating all
frequent itemsets that consist of a as the smallest supported item capable of generating at least one nonnegative
lift association rule.

Consider the association rule A  B derived from a frequent itemset A B. Without loss of generality, let a and
b be the smallest supported items in itemsets A B and B, respectively, i.e., sup(a) = minaiAB sup(ai), sup(b) =

minaiB sup(ai), and sup(a) sup(b). The following conditions hold

sup(AB) ms(a), sup(A) sup(a), and sup(B) sup(b).

Thus, to make lift(A  B) 1, we should specify ms(a) sup(a) sup(b). Note that b can be any item in the item
set I except a, and sup(b) sup(a). What we need is the smallest qualified item, i.e., b min{ai | ai I {a} and
sup(ai) sup(a)}. Let I = {a1, a2, ..., an} and sup(ai) sup(ai+1), 1 i n 1. The minimum item support with
respect to nonnegative lift (LS) can be specified as follows:

ms(ai) 





 

ni
ni

asup
asupasup

i

ii

if
1-1if

),(
),()( 1

(3)

Now we have two separate support settings. One is based on the confidence measure and the other is on lift. To
prune the spurious frequent itemsets to make most of the generated rules interesting, we combine these two
specifications as shown below, which we call the confidence-lift support constraint (CLS).

ms(ai) 





 

ni
ni

asup
asupconfminasup

i

ii

if
1-1if

),(
)},(,max{)( 1

(4)

Example 3. Let minconf = 50% and the sorted set of items in Table 1 be {Notebook, PDA, PC, Scanner,
Printer}. The minimum item supports will be ms(Notebook) 2/9 1/2 = 11%, ms(PDA) = 2/9 6/9 15%,
ms(PC) = 6/9 6/9 = 44%, ms(Scanner) = 6/9 7/9 = 52%, and ms(Printer) = 7/9 = 78%.

3.3. Methods for mining interesting associations using CLS

With Eq. 4, the traditional associations mining process can be refined as follows. The users specify the minimum
confidence (minconf) and wait for the results; they no longer have to specify the minimum support. The only
focus is on how strong the rules they expect to see and whether these rules are interesting.
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The task of associations mining remains the same. First, the set of frequent itemsets are generated and from
which the interesting association rules are constructed. For the itemset generation subtask, one might expect to
adopt the well-known Apriori algorithm [13]. However, the downward closure property on which the Apriori
algorithm heavily relies may fail in the case of multiple minimum supports. For example, consider four items a, b,
c, and d that have minimum supports specified as ms(a) = 15%, ms(b) = 20%, ms(c) = 4%, and ms(d) = 6%.
Clearly, a 2-itemset {a, b} with 10% support is discarded for 10% < min {ms(a), ms(b)}. According to the
downward closure, the 3-itemsets {a, b, c} and {a, b, d} will be pruned even though their supports may be larger
than ms(c) and ms(d), respectively. To solve this problem, Liu et al. [5] proposed a concept called sorted closure
property, which requires that all items within an itemset are sorted in increasing order of their minimum supports.
In the following, we detail the theories behind the concept of sorted closure property and how it is useful in
itemset pruning. Since no proof is provided in [5], we provide the proofs for completeness.

Lemma 3 (Sorted closure). If a sorted k-itemset a1, a2, …, ak, for k 2 and ms(a1) ms(a2)  … ms(ak), is
frequent, then all of its sorted subsets with k1 items are frequent, except for the subset a2, a3, …, ak.

Proof. A k-itemset a1, a2, …, akhas k subsets with k 1 items, which can be divided into two groups according
to the inclusion of item a1 or not, i.e.,

group 1: a1, a2, …, ak1, a1, a2, …, ak2, ak, , a1, a3, …, ak,

group 2: a2, a3, …, ak.

Note that all of the itemsets in Group 1 have the same lowest minimum item support as that of a1, a2, …, ak, i.e.,
ms(a1), while a2, a3, …, akdoes not, which is ms(a2). Since ms(a2) ms(a1), thelemma follows. ■

Example 4. Consider four items a, b, c and d with ms(a) = 3%, ms(b) = 5%, ms(c) = 8%, and ms(d) = 10%,
respectively. Let a, b, c, dbe a sorted 4-itemset. Then, of all its 3-subsets, a, b, c, a, b, d, and a, c, dhave
the same minimum support ms(a) = 3%, while b, c, dhas ms(b) = 5%. The fact that a, b, c, dis infrequent
implies that a, b, c, a, b, d, a, c, drather than b, c, dare infrequent.

The following lemma derived from the sorted closure provides the intuition for performing an Apriori-like
itemset pruning.

Lemma 4. For k 3, any k-itemset A a1, a2, …, akgenerated by procedure apriori-gen(Lk1) [13] can be
pruned if there exists one (k1) subset of A, say ai1, ai2, …, aik1, such that ai1, ai2, …, aik1Lk1, for ai1 a1 or

ms(a1) ms(a2).

Proof. It is straightforward from the contrapositive statement in Lemma 3. ■

Example 5. Consider a candidate 4-itemset a, b, c, d. Note that a, b, c, a, b, d, and a, c, dhave the same
minimum support ms(a) as that of a, b, c, d. Therefore, if one of them is not frequent, a, b, c, dis not frequent
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as well. On the other hand, consider the other 3-subset b, c, d. If it is not frequent, then sup(b, c, d) < ms(b).

Under this condition if we further know ms(a) = ms(b), we can be sure that a, b, c, dis infrequent due to sup(a,
b, c, d)sup(b, c, d) < ms(b) = ms(a).

Figure 1 shows Ck-gen(Lk-1), the procedure for generating all candidate k-itemsets with k 3, which consists of
two steps: First call apriori-gen to produce candidate itemsets and then prune from Ck those itemsets that satisfy
Lemma 4.

In [5], Liu et al. also proposed an algorithm, called MSapriori, for generating frequent itemsets with multiple
minimum supports. Since our CLS specification is a form of multiple minimum supports, one might expect to use
the MSapriori algorithm to accomplish the first subtask. The specific procedure for generating candidate 2-
itemsets in MSapriori, however, is not effective in this case. The reason is that under the CLS specification, all
items are frequent 1-itemsets and so the downward closure still holds. The simple apriori-gen procedure indeed is
more effective in generating the candidate 2-itemsets. In general, most effective Apriori-like algorithms can be
adapted to fit the CLS specification with the following modifications:

procedure Ck -gen(Lk-1)
Ck = apriori-gen(Lk-1); /* Joins Lk1 with Lk1 */
for each itemset A a1, a2, …, akCk do

for each (k-1)-subset A’ai1, ai2, …, aik1of A do
if a1 ai1 or ms(a1) ms(a2) then

if A’Lk-1 then delete A from Ck;

Fig. 1. Procedure Ck-gen(Lk-1)

1. Scan the database D to obtain the support of each item and set the minimum item supports according to Eq.
4. Set L1 as the sorted list of items in ascending order of their minimum item supports.

2. Apply apriori-gen in the subsequent candidate generation step to generate candidate 2-itemsets, while
invoke Ck-gen for the other candidate k-itemsets, for k 3.

A modified Apriori algorithm that adopts the CLS specification, called CLS_Apriori, is described in Figure 2.
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Algorithm: CLS_Apriori
Input: Database D, and minimum confidence minconf
Output: L, frequent itemsets in D
Method:

Compute ms(a) for all a I; /* compute the minimum support for all items */
L1 = sort(I); /* ascending sort according to ms(a) */
for (k 2; Lk1 ; k) do

if k = 2 then C2 = apriori-gen(L1);
else Ck = Ck -gen(Lk-1);
for each transaction t D do

Ct = subset(Ck, t);
for each candidate A Ct do

Increase the count of A;
end for
Lk = {A Ck |sup(A) ms(A[1])}; /* A[1] denote the first item in A */

end for
return L = k Lk;

Fig. 2. Algorithm CLS_Apriori

Finally, for the second subtask, all proposed methods for constructing associations from the frequent itemsets can
be used. Figure 3 shows a general description for generating association rules from the frequent itemsets.

Algorithm: Assoc_gen
Input: L, the set of frequent itemsets, and minimum confidence, minconf
Output: R, the set of association rules
Method:

for each frequent itemset l L do
for each nonempty subset s of l do

if sup(l)/sup(s) minconf then
output the rule“s  (ls)”;

Fig. 3. Algorithm Assoc_gen

Example 6. Let minconf = 50%. Figure 4 shows the process of performing CLS_Apriori for the example dataset
in Table 1.
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L1 C2 L2 C3 L3

Itemset sup (%) ms (%) Itemset sup (%) Itemset Itemset sup (%) Itemset
{NB} 22 11 {NB, PDA} 0 {NB, PC} {NB, PC, PR} 11  {NB, PC, PR}
{PDA} 22 15 {NB, PC} 11 {NB, PR}  {PDA, PC, PR} 22 {PDA, PC, PR}
{PC} 67 44  {NB, SC} 0  {PDA, PC} {PC, SC, PR} 22
{SC} 67 52 {NB, PR} 22 {PDA, PR}
{PR} 78 78 {PDA, PC} 22 {PC, SC}

{PDA, SC} 11 {PC, PR}
{PDA, PR} 22
{PC, SC} 44
{PC, PR} 44
{SC, PR} 44

Fig. 4. An illustration of CLS_Apriori

4. Experiments

In this section, we evaluate the proposed confidence-lift support specification as opposed to standard uniform
specification (US, set to 1%), random support specification (RS, randomly set between 1% and 10%), and the
varied item support specification (VIS, = 0.6) [5]. For uniform specification, the well-known Apriori algorithm
is used, while for multiple support specifications, i.e., RS and VIS, the MSapriori algorithm is adopted. The
evaluation is examined from three aspects: the number of candidate itemsets, the ratio of frequent itemsets that
are effective in generating interesting rules, and the execution time. All experiments are performed on an Intel
Pentium-II 350 with 192MB RAM, running Windows 98. Both synthetic data and real census data are considered.

4.1. Synthetic data

We use two synthetic data sets generated from IBM synthetic data generator [1]: T5.I2.D100K and
T10.I4.D100K. Characteristics of these two data sets are shown in Table 2.

First, we compare the ratio of effective frequent itemsets, denoted as |Fe|/|F|. As shown in Figure 5, almost all
frequent itemsets generated by CLS are effective; the ratio reaches 1 when minconf 30%. The effective ratio for
the other specifications, however, decreases when the minconf increases. This means that the ratio of spurious
frequent itemsets increases when the minconf becomes higher, and more uninteresting rules will be generated.
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Table 2. Characteristics of synthetic data sets

Parameter T5.I2.100K T10.I4.100K

|D| Number of transactions 85,792 98,272

N Number of items 94 156

fmin Minimum item frequency 0.27% 0.09%

fmax Maximum item frequency 20.71% 27.97%

favg Average item frequency 5.43% 6.40%

fstv Standard deviation of item frequencies 4.42% 5.50%

We then compare the number of candidates vs different minconfs for each specification. The result is depicted in
Figure 6. Note that only our CLS specification is affected by minconf; all the other minimum support
specifications remain the same. For CLS, the value of minimum item support increases when the minconf
increases, and so the number of candidates decreases. The number of candidates for other specifications remains
constant through all different minconfs. This phenomenon asserts the primary advantage of CLS over other
specifications: it can adapt itself to appropriate item support in response to different confidence thresholds. On
the one hand, it explores more hidden but effective frequent itemsets than other ways of specification in finding
low-confidence rules. On the other hand, it refrains from generating a large amount of spurious candidates that
cannot lead to high-confidence rules.

Figure 7 shows the execution time of the Apriori-like algorithms running under different support specifications.
Intuitionally, the execution time of an Apriori-like algorithm is proportional to the number of candidates. The
results conform approximately to this rule of thumb.

Finally, we compare the average running time spent on discovering each effective frequent itemsets, denoted as
T/|Fe|, using different support specifications. We adopt this criterion instead of the total cost for finding all
effective frequent itemsets because this can alleviate the bias that different minimum support thresholds would
lead to different sets of frequent itemsets. As the results shown in Figure 8, our method performs better than the
others, especially for higher minconfs. Further, the execution time for all specifications except our CLS increases
as the minconf increases; with our CLS, the cost increases for T5.I2.D100K while decreases dramatically for
T10.I4.D100K as minconf 50%.
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Fig. 5. Synthetic data: Comparison of ratios of effective frequent itemsets
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Fig. 6. Synthetic data: Comparison of number of candidates
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Fig. 7. Synthetic data: Comparison of execution time
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Fig. 8. Synthetic data: Comparison of average execution time for effective frequent
itemset

4.2. Census data

We chose two sets of real data from the census of United States 1990 [14]. One is a small database (tiny.dat) with
171 items and 3,649 tuples, another set is a large database (small.dat) with 175 items and 36,305 tuples. Each
entry has 11 attributes, each of which is represented as a decimal number. Characteristics of these two data sets
are listed in Table 3. The most important difference of these synthetic data is item frequency: The smallest
frequency is less than 0.03% while the largest is over 86%, leading to over 10% of standard deviation.

Table 3. Characteristics of census data sets

Parameter Tiny Small

|D| Number of transactions 3,649 36,305
N Number of items 171 175

fmin Minimum item frequency 0.03% 0.02%
fmax Maximum item frequency 87.28% 86.74%

favg Average item frequency 4.09% 4.00%

fstv Standard deviation of item frequencies 11.07% 10.95%

The comparison of the ratio of effective itemsets is shown in Figure 9. Note that the result for Tiny is analogous
to that for Small because these two data sets have similar statistics in item distribution. Comparing this to Figure
5, we observe that: (1) Although CLS exhibits less effective ratio, it maintains at a high value; and (2) the
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effective ratio for all other specifications decreases dramatically when the confidence setting increases. This
phenomenon is mainly due to large variance in item frequency. The larger the variance is the more difficult is it
to determine an appropriate minimum support.

Like the comparison of effective ratio, both census data exhibit the same picture in the number of candidates in
Figure 10. The performance evaluation in Figure 11, however, shows different pictures. With CLS, run time
reduction for the Small data set is more significant than that for Tiny. Ranks of the other three specifications are
different as well.

The results for evaluating T/|Fe| are shown in Figure 12. Both census data exhibit similar performance.
Comparing this to Figure 8, although our method outperforms the others in most cases, the gain is less significant.
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Fig. 9. Census data: Comparison of ratios of effective frequent itemsets
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Fig. 10. Census data: Comparison of number of candidates
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Fig. 11. Census data: Comparison of execution time
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Fig. 12. Census data: Comparison of average execution time for effective frequent
itemset

5. Conclusions

We have investigated in this paper the problem of mining interesting association rules without the user-specified
support constraint. We proposed a confidence-lift-based support constraint which can be automatically derived
from the item support. Empirical evaluation showed that the proposed support specification is good at
discovering the high-confidence and positive lift associations, and is effective in reducing the spurious frequent
itemsets.

Finally, we should point out that the proposed support specification still cannot find all interesting association
rules. In fact, it may miss some interesting rules composed of more than two items because the specification is
derived from frequent 2-itemsets. We conjecture that in general there is no way to set automatically minimum
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item support without missing any interesting association rules. Currently, we are endeavoring to unveil the facet
of this problem.
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