
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 19, xxx-xxx (2003)

Adapting Crossover and Mutation Rates*

in Genetic Algorithms

WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG**
Department of Information Management

I-Shou University
Kaohsiung, 840 Taiwan

E-mail: wylin@isu.edu.tw
＋R&D Department

TransAsia Telecommunications Inc.
Kaohsiung, 806 Taiwan

E-mail: anttyl@tat.com.tw
**Department of Electrical Engineering

National University of Kaohsiung
Kaohsiung, 811 Taiwan

E-mail: tphong@nuk.edu.tw

It is well known that a judicious choice of crossover and/or mutation rates is critical

to the success of genetic algorithms. Most earlier researches focused on finding optimal
crossover or mutation rates, which vary for different problems, and even for different
stages of the genetic process in a problem. In this paper, a generic scheme for adapting
the crossover and mutation probabilities is proposed. The crossover and mutation rates
are adapted in response to the evaluation results of the respective offspring in the next
generation. Experimental results show that the proposed scheme significantly improves
the performance of genetic algorithms and outperforms previous work.

Keywords: genetic algorithms, self-adaptation, progressive value, crossover rate, muta-
tion rate

1. INTRODUCTION

Genetic Algorithms (GAs) are robust search and optimization techniques that were
developed based on ideas and techniques from genetic and evolutionary theory [9, 19].
Beginning with a random population of chromosomes, a genetic algorithm chooses par-
ents from which to generate offspring using operations analogous to biological processes,
usually crossover and mutation. All chromosomes are evaluated using a fitness function
to determine their “fitness.” These fitness values are then used to decide whether the
chromosomes are eliminated or retained. According to the principle of survival of the

Received January 11, 2002; revised August 26, 2002; accepted January 24, 2003.
Communicated by Hsu-Chun Yen.
*A preliminary version of this paper was presented at the Sixth Conference on Artificial Intelligence and
Applications, Kaohsiung, Taiwan, in November 9, 2001, sponsored by the Taiwanese Association for Artifi-
cial Intelligence.

1

WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG 2

fittest, the more adaptive chromosomes are kept, and the less adaptive ones are discarded
in the course of generating a new population. The new population replaces the old one,
and the whole process is repeated until specific termination conditions are satisfied. Fig.
1 depicts a typical genetic process.

There is evidence showing that the probabilities of crossover and mutation are criti-
cal to the success of genetic algorithms [3-6, 12, 20]. Traditionally, determining what
probabilities of crossover and mutation should be used is usually done by means of
trial-and-error. The optimal crossover or mutation rates, however, vary along with the
problem of concern, even within different stages of the genetic process in a problem. In
the past few years, though some researchers have investigated schemes for automating
the parameter settings for GAs, the problem of making GAs self-adaptive in choosing the
optimal parameters remains an unexplored area.

New population

Population

Mutation

 Selection
Crossover

Fig. 1. A typical genetic process.

In this paper, a generic scheme for adapting the crossover and mutation probabilities
is proposed. The crossover and mutation rates are adapted in response to the evaluation
results of the respective offspring in the next generation. Experimental results show that
the proposed scheme significantly improves the performance of genetic algorithms and
outperforms previous proposed methods.

The content of this paper is organized as follows. A brief review of operator rate
adaptation in genetic algorithms and related works is given in section 2. Our scheme for
adapting the crossover and mutation rates is proposed in section 3. There we also discuss
its convergence property. Section 4 describes our experiments. Conclusion and future
work are given in section 5.

ADAPTING CROSSOVER AND MUTATION RATES 3

2. OPERATOR RATE CONTROL IN GENETIC
ALGORITHMS AND RELATED WORK

When genetic algorithms are applied to solve a problem, the first step is to define a
representation that describes the problem states. The most commonly used representation
is the bit string. An initial population is then defined, and three genetic operations
(crossover, mutation, and selection) are performed to generate the next generation. This
procedure is repeated until the termination criterion is satisfied. This so-called Simple
Genetic Algorithm (SGA) [9] is described in Algorithm 1.

Algorithm 1. A simple Genetic Algorithm.
Initialize the parameters;
Generate a population P randomly;
generation ← 1;
while generation ≤ max_gen do

Clear the new population P’;
Use a fitness function f(·) to evaluate each individual in P;
while |P’| ≤ N do

Select two parents from P;
Perform crossover with rate pc;
Perform mutation with rate pm;
Insert the offspring to P’;

endwhile
P ← P’;
generation ← generation + 1;

 endwhile

The power of genetic algorithms arises primarily from crossover and mutation. The

crossover operation is used to generate offspring by exchanging bits in a pair of indi-
viduals (parents) chosen from the population, with the possibility that good solutions can
generate better ones. Crossover occurs only with a probability pc (the crossover rate or
crossover probability). When individuals are not subjected to crossover, they remain
unmodified. The mutation operator is used to change some elements in selected individu-
als with a probability pm (the mutation rate or mutation probability), leading to additional
genetic diversity to help the search process escape from local optimal traps.

The choice of pc and pm is known to critically affect the behavior and performance
of GAs. The crossover rate controls the capability of GAs in exploiting a located hill to
reach the local optima. The higher the crossover rate, the quicker exploitation proceeds.
A pc that is too large would disrupt individuals faster than they could be exploited. The
mutation rate controls the speed of GAs in exploring a new area. Small pm values are
commonly adopted in GAs. A number of guidelines exist in the literature for setting the
values for pc and pm [3, 6, 9, 23]. Typical values of pc are in the range 0.5~1.0, while
typical values of pm are in the range 0.001~0.05. These general guidelines were drawn
from empirical studies on a fixed set of test problems, and were inadequate because the
optimal use of pc and pm is specific to the problem under consideration. Some studies
focused particularly on finding optimal crossover or mutation rates [3, 11, 12, 22]. These

WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG 4

heralded the need for self-adaption in the crossover or mutation rates [7].
Fogarty [8], to our knowledge, was the first to use a varying mutation rate. He

concluded that a mutation rate that decreased exponentially over generations had superior
performance. His idea is quite similar to simulated annealing, where the mutation rate
takes on a role analogous to that of temperature. Indeed, a mutation-only GA that
evolves at a constant mutation rate is analygous to simulated annealing at a constant
temperature [22] (which corresponds to the Metropolis process). Bäck [2] followed
Fogarty’s investigation and devised a deterministic formula for adjusting the mutation
rate to dynamically approach the optimal value. An analogous way of cyclically varying
the mutation rate reported in [13] exhibited a similar effect.

In [24], Srinivas and Patnaik proposed a mechanism for adapting operator
probabilities in a generational GA. Each chromosome has its own crossover probability
pc and mutation probability pm necessary for it to undergo crossover and mutation,
respectively. During the execution of GAs, both pc and pm are adapted in proportion to
the population maximum and mean fitness, with probabilities being larger when the mean
fitness is near the maximum, and smaller for particular chromosomes with larger
fitnesses. Similar concepts were adopted and further explored in [16, 25].

3. SCHEME FOR ADAPTING CROSSOVER AND MUTATION RATES

In the classic genetic algorithm, the involved genetic operators, such as crossover
and mutation, work at an a priori, constant probability. Different crossover and mutation
rates can, however, traverse different search directions in the state space, thus affecting
the performance of the applied genetic algorithm. In fact, the overall performance of a
genetic algorithm depends on it maintaining an acceptable level of productivity through-
out the process of evolution. It is, thus, essential to design a genetic algorithm that adapts
itself to the appropriate crossover and mutation rates. Our intuition is to dynamically ad-
just the operator’s applied probability according to its “contribution” (or productivity);
thus, there is the potential to produce children of improved fitness. In this section, we
propose a rate-adapting scheme to achieve this goal.

The rationale behind this approach is as follows: It may be advantageous to employ
a method that dynamically adjusts the genetic algorithm’s settings according to a measure
of the performance of each operator. To measure the performance of an operator, we de-
velop a scheme involving the ability of an operator to produce new, preferably fitter,
children. The purpose of the dynamic operator adapting methods is to exploit information
gained regarding the current ability of each operator to produce children of improved
fitness.

3. 1 Description

The first step in our approach is determining an initial pc and pm pair. For classic ge-
netic algorithms, the general rule is to use a high crossover rate and a low mutation
probability. However, inspired by previous works [3, 8], a large initial mutation rate is
employed to help explore more local hills and locate a prospective area quickly. During
this time, crossover should occur with a small probability to retain diversity. For these

ADAPTING CROSSOVER AND MUTATION RATES 5

reasons, we set the initial crossover rate and mutation rate at 0.5 and 0.5, respectively,
and adjust them using the progress-value concept [15] described in the following.

Consider the offspring generated from two parents after a crossover operation is per-
formed. Let f_sumS be the fitness sum of the two offspring, and let f_sumP denote the
fitness sum of the parent individuals. We define the progress value of crossover CP as
the gain obtained by

CP = f_sumS − f_sumP. (1)

~
CP

For a generation that undergoes nc crossover operations, the average crossover pro-
gress
value is

∑= CP
n

CP
c

1~
 (2)

Thus, measures the overall performance of the crossover operator within a genera-
tion run.

~
CP

Similarly, consider the resulting offspring after a mutation operation is performed;
the progress value of the mutation MP is

MP = fnew − fold, (3)

where fnew is the fitness of the new offspring and fold the fitness of the original individual.
For a generation that undergoes nm mutation operations, the average mutation progress ~
value MP is

∑= MP
n

MP
m

1~
 (4)

Before the end of each generation, the crossover and mutation rates are adjusted us-
ing these average progress values. The operator that performs better in the previous run
(with a larger average progress value) should participate more frequently (increase its
probability) in the next generation run, and vice versa. The adjustment is executed as
shown below:

pc = pc + θ1 if >
~ ~

CP MP ,
~

CP
~

MPpc = pc − θ1 if < ,

and
pm = pm + θ2 if <

~ ~
CP MP ,
~ ~

MPpm = pm − θ2 if CP > ,

where θ1 and θ2 represent the amount of adjustment of pc and pm, respectively. Now we

WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG 6

are confronted with another problem: What values of θ1 and θ2 should be chosen? Should
θ1 and θ2 be identical or different? And, should they be constant values or adapting func-
tions? We will examine these aspects later through experiments.

Notice that after each adjustment, we should make sure that the crossover and muta-
tion operations have the chance to work continuously. For this reason, we set the mini-
mum crossover and mutation rates to 0.001. If the crossover or mutation rate is less than
or equal to 0.001, the adjustment operation stops decreasing the probability.

The refined genetic algorithm incorporating this adaptation approach (called the
progress rate genetic algorithm, or PRGA) is described in Algorithm 2.

Algorithm 2. Progress Rate Genetic Algorithm.
Initialize the parameters;
Generate a population P randomly;
generation ← 1;
while generation ≤ max_gen do

Clear the new population P’;
Use a fitness function f(·) to evaluate each individual in P;
while |P’| ≤ N do

Select two parents from P;
Perform crossover and accumulate the crossover progress value CP;
Perform mutation and accumulate the mutation progress value MP;
Insert the offspring to P’;

endwhile

Compute and
~

CP
~

MP , and adjust the crossover rate pc and mutation rate pm;
P ← P’;
generation ← generation + 1;

 endwhile

Let us illustrate this approach using a single generation run with the following func-
tion:

f(t) = t4 |sin(5πt)|, t ∈[0.000, 1.024], find the max.

Let the value of t be represented by a bit string with length = 10. For example, the
genetic representation for t = 0.738 is 1011100010. Let N = 8. An example of the initial
population is shown in Table 1.

Assume that the crossover and mutation rates are initially set to pc = 0.5 and pm = 0.5.
The chosen parents for crossover and the resulting offspring are shown in Table 2. Here,
we assume that one-point crossover is employed, and that for pc = 0.5, only the pairs (4, 8)
and (1, 8) are subjected to crossover. The crossover point is underlined.

The average crossover progress value is calculated as follows. Say parents 4 and 8
are chosen to produce two offspring, N3 and N4. According to Equation 1, the progress
value of the crossover operation is (0.0004 + 0.0021) ─ (0.0149 + 0.0004) = −0.0128,
and the progress value for offspring N7 and N8 is (0.0010 + 0.1562) − (0.2453 + 0.0004)
= −0.0885. The average crossover progress value is −0.0506.

ADAPTING CROSSOVER AND MUTATION RATES 7

Table 1. An example initial population.

No Old string t f(t)

1 1011100010 0.738 0.2453

2 1100001100 0.78 0.1144

3 1100101010 0.81 0.0673

4 0110101101 0.429 0.0149

5 0110100111 0.423 0.0113

6 0100100111 0.295 0.0076

7 0011111001 0.249 0.0027

8 0010010101 0.149 0.0004

Table 2. Eight offspring generated by the crossover operator.

No Parents Offspring t f(t)

N1 (7, 8) 0011111001 0.249 0.0027

N2 (7, 8) 0010010101 0.149 0.0004

N3 (4, 8) 0110010101 0.405 0.0021

N4 (4, 8) 0010101101 0.173 0.0004

N5 (4, 6) 0110101101 0.429 0.0149

N6 (4, 6) 0100100111 0.295 0.0076

N7 (1, 8) 1010010101 0.661 0.1562

N8 (1, 8) 0011100010 0.226 0.0010

Next, the offspring are mutated with probability pm. Here, we assume that bit-flip

mutation is employed, and that individuals N2, N5, N6 and N8 in Table 2 are chosen to
undergo mutation. The results are shown in Table 3, where the values in bold denote the
positions at which mutation occurs. According to Equation 2, the mutation progress value
for N2 is 0.1562 ─ 0.0004 = 0.1558, and the mutation progress values are −0.0137,
0.0024, 0.0005 for N5, N6 and N8, respectively. The average mutation progress value is
0.0362.

Table 3. Offspring that undergo mutation.

No Offspring t f(t)

N2’ 1010010101 0.661 0.1562

N5’ 0110001101 0.397 0.0012

N6’ 0101100111 0.359 0.0100

N8’ 0011101010 0.234 0.0015

WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG 8

~
Since MP = 0.0362 > CP = −0.0506, the mutation rate obtains an increment, while

the crossover rate decreases.

~

y.

3.2 Convergence Property of PRGA

Since genetic algorithms are stochastic search processes, there is no convincing the-
ory that can completely deduce the convergence rate for GAs to reach the optimal
solution. Nevertheless, we can examine a sort of convergence in probabilit

Let N be the population size, and let n be the length of each individual. Given a
probability α, we may ask what the smallest number of generations g(α) required to ob-
tain an optimal solution is. Aytug and Koehler [1] modeled genetic algorithms with the
Markov chain and derived the following bound:













−−
−

≤

≤
























−
−

}),)1min{(1ln(
)1ln(INT

)(
))(ln(

)1ln(maxINT

nN
m

nN
m

T
Jj

j

pP

g
uQuQ

α

α
δ

α

, (5)

where INT[x] denotes the smallest integer greater than or equal to x, for x ≥ 0; Q is the
Markov chain transition matrix; uj is the jth unit vector; δ(A) is the spectral radius of a
matrix A; and pm is the mutation probability. The lower bound is difficult to evaluate be-
cause the maximum is taken over all states of the Markov chain. Greenhalgh and Mar-
shall [10] showed that the upper bound can be improved further as

,
}),)1(min{1(n1

)1(n1INT)(
1 












−−
−

≤
− n

m
n

mm PPPN
g αα , (6)

and that the bound holds independent of the crossover and selection schemes.
The above result can be further refined in the case where the mutation rate is

adapted. Note that the mutation rate pm under the proposed adaptation scheme is always
bounded between 0 and 1. Without loss of generality, let p1 ≤ pm ≤ p2 for p1 < 1 and p2 >
0. Then, it is easy to show that, following the derivation in [10],

,
}),)1(min{1(n1

)1(n1INT)(
2

1
11 












−−
−

≤
− nn PPPN

g αα . (7)

Note that the above derivation is based on the simple GAs, without taking into ac-
count the effect of repairing chromosomes. Because the degree of population diversity is
reduced after repairing is performed, we can expect that the population will converge
more quickly. The question of what the exact bound on the number of generations will be
when the repairing effect is considered deserves further investigation.

ADAPTING CROSSOVER AND MUTATION RATES 9

4. EXPERIMENTS

To examine the performance of the progress rate genetic algorithm (PRGA), we
compared it with four variants of GAs. They included the simple genetic algorithm (SGA)
with fixed crossover and mutation rates; the decreasing mutation rate genetic algorithm
(DMRGA) proposed by Bäck [2]; the cyclic-parental, low-offspring mutation (CPLO) in
[13]; and the adaptive genetic algorithm (AGA) proposed by Srinivas and Patnaik [24].
The test problem was the 0/1 knapsack problem, which belongs to the class of knap-
sack-type problems and is well known to be NP-hard [17].

The 0/1 knapsack problem is as follows: given a set of objects, ai, for 1 ≤ i ≤ n, to-
gether with their profits Pi, weights Wi, and a capacity C, find a binary vector x = <x1,
x2, …, xn>, such that

CWx
n

i
ii ≤⋅∑

=1
 and is maximal. ∑

=
⋅

n

i
ii Px

1

Because the difficulty of knapsack problems is greatly affected by the correlation
between profits and weights [18], we employed the three randomly generated sets of data
used in [18]:

(1) uncorrelated

Wi and Pi: random(1..v);

(2) weakly correlated
Wi: random(1..v);
Pi: Wi + random(−r..r);

(3) strongly correlated
Wi: random(1..v);
Pi: Wi + r.

The data were generated with the following parameter settings: v = 10, r = 5, and n

= 250. Following a suggestion made in [17], we adopted two different types of capacity
C: 1) C = 2v, for which the optimal solution contained very few items; and 2) C = 0.5∑Wi,
in which about half of the items were in the optimal solution.

The test suit represented two different types of problem instances. Those data sets in
Group 1 under the constraint C = 2v were more difficult than those in Group 2 under the
constraint C = 0.5∑W, because the fitness landscape in Group 1 abounded with local hills.
This increased the difficulty for GAs to locate the global optimum. The instance diffi-
culty in each group was further classified by means of the correlation between profits and
weights.

To be consistent with the crossover and mutation operators considered, we used the
binary encoding scheme: each bit represented the inclusion or exclusion of an object. It
was, however, possible to generate infeasible solutions with this representation. That is,
the total weights of the selected objects would exceed the knapsack capacity. In the lit-
erature, two different ways of handling this constraint violation [18] have been proposed.
One way is to use a penalty function to penalize the fitness of the infeasible candidate to

WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG 10

diminish its chance of survival. Another approach is to use a repair mechanism to correct
the representation of the infeasible candidate. In [18], the repair method was more effec-
tive than the penalty approach. Hence, we adopted the repair approach in our implemen-
tation.

The repair scheme that we used was a greedy approach. All the objects in a knapsack
represented by an overfilled bit string were sorted in decreasing order of their profit
weight ratios. The last object was then selected for elimination (the corresponding bit of
“1” was changed to “0”). This procedure was executed until the total weight of the re-
maining objects was less than the total capacity.

The common parameters set in this experiment were those listed below:

crossover: one-point crossover;
mutation: bit-flip mutation;
selection: random selection;
replacement: (µ+λ) replacement;
population size: 100;
generations: 500;
experimental runs: 10.

In a preliminary experiment, we noticed that the original AGA algorithm [24] that

adopted proportional selection with generational replacement was inferior to all of the
other methods that used random selection and (µ+λ) replacement. For this reason, the
AGA algorithm was changed to use random selection with (µ+λ) replacement as well.

The crossover and mutation rates employed for each variant are shown below:

SGA: pc = 0.65, pm = 0.01;
DMRGA: pc = 0.65,

122)(
−







 ⋅

−
+= t

T
Ltpm ,

where t is the generation count, L the length of chromosomes, and T the maximum
generation;

CPLO: pc = 0.65, pm = 0.1 for parent mutation, and 0.001 for offspring mutation;

AGA: the expressions for pc and pm were

pc = (fmax – f’) / (fmax – favg), f’ ≥ favg,
pc = 1.0, f’ < favg,

and

pm = 0.5 (fmax – f’) / (fmax – favg), f ≥ favg,

ADAPTING CROSSOVER AND MUTATION RATES 11

pm = 0.5, f < favg,

where fmax represents the maximum fitness value of the population, favg the average
fitness value of the population, f the fitness value of the solution undergone muta-
tion, and f’ the larger of the fitness values of the solutions to be crossed.

We first examined the effects of different step sizes for adaptation of pc and pm. To
understand the effect of varying θ1 and θ2 under constant step sizes, we first measured
the PRGA performance using four different settings: 1) θ1 = θ2 = 0.01; 2) θ1 = 0.01 and
θ2 = 0.001; 3) θ1 = 0.001 and θ2 = 0.01; 4) θ1 = 0.001 and θ2 = 0.001. The results are pre-
sented in Table 4.

Table 4. Best fitness obtained by PRGA using different constant step sizes of θ1 and θ2.

 θ1 = 0.01
θ2 = 0.01

θ1 = 0.01,
θ2 = 0.001

θ1 = 0.001,
θ2 = 0.01

θ1 = 0.001
θ2 = 0.001

Uncorrelated, C = 2v 114 89 87 78
Uncorrelated, C = 0.5ΣWi 1078 983 1089 1069
Weakly, C = 2v 54 54 58 54
Weakly, C = 0.5ΣWi 1063 962 1079 947
Strongly, C = 2v 60 65 65 65
Strongly, C = 0.5ΣWi 1470 1435 1500 1460

As Table 4 shows, no combination was superior to the others in all test suits. This

observation led us to seek a self-adaptive control of the step sizes. Inspired by [24], we
tuned the values of θ1 and θ2 according to the population convergence. When the popula-
tion converged, we increased the step sizes to reduce the probability of the GA getting
stuck in a local optimum. The resulting self-adapting function is expressed as follows:

θ1 = θ2 = 0.01
minmax

max

ff
ff avg

−

−
, if fmax > fmin,

θ1 = θ2 = 0.01, if fmax = favg.,

where the convergence is measured as the difference between the maximum and average
population fitness, fmax − favg, and normalized by fmax − fmin.

We next compared the other four methods with our PRGA algorithm using the
adaptive step size function. The results are shown in Figs. 2 to 7. Our PRGA outper-
formed the competitors in all test cases except for the weakly correlated case C = 0.5∑Wi,
where AGA led. For the most difficult problem, as shown in Fig. 2, SGA converged
quickly to a local optimum and failed to perform further exploration. CPLO, with cy-
clic-rate mutation, exhibited the ability to escape from local traps, but the resulting im-
provement was not clear. DMRGA and AGA performed well initially but failed to per-
form further exploration when the population began to converge. Similar phenomena
were observed for the other two instances in Group 1, as shown in Figs. 4 and 6.

WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG 12

0
20
40
60
80

100
120
140

1 51 101 151 201 251 301 351 401 451
generation

be
st

 fi
tn

es
s

SGA PRGA CPLO
DMRGA AGA

Fig. 2. Experimental results for the uncorrelated 0/1 knapsack problem with C = 2v.

700

800

900

1000

1100

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

generation

be
st

 fi
tn

es
s

SGA PR GA C PLO

D M R GA AGA

Fig. 3. Experimental results for the uncorrelated 0/1 knapsack problem with C = 0.5∑Wi.

25
30
35
40
45
50
55
60

1 51 101 151 201 251 301 351 401 451
generation

be
st

 fi
tn

es
s

SGA PRGA CPLO
DMRGA AGA

Fig. 4. Experimental results for the weakly correlated 0/1 knapsack problem with C = 2v.

ADAPTING CROSSOVER AND MUTATION RATES 13

750

850

950

1050

1150

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

generation

be
st

 fi
tn

es
s

SGA PRGA CPLO

DMRGA AGA

Fig. 5. Experimental results for the weakly correlated 0/1 knapsack problem with C = 0.5∑Wi.

For the cases within Group 2, we found that the performance gap between PRGA
and the competitors was smaller. Note that the ranking of SGA, CPLO, DMRGA, and
AGA, however, was different. CPLO ranks lower in Fig. 3, while SGA ranks last in Fig.
5, and DMRGA ranks last in Fig. 7. This phenomenon reveals that when the interaction
between crossover and mutation is not considered, solely adapting the mutation rate can
guarantee no performance gain.

To understand how pc and pm evolved when our method was employed, we also re-
corded the rates at the end of each generation. We only show the results for the uncorre-
lated case with C = 2v; similar results were observed for the other cases.

Fig. 8 depicts the results, where pm rises aggressively throughout evolution to reach
the upper bound, while pc behaves in the opposite manner. Note that the evolution map of
pm contradicts the conventional suggestion made by most researchers [2, 3, 8, 12] that pm
should behave as a descending curve. These results also confirm the necessity of using
operator rate adaptation scheme to locate prospective solution.

35
45
55
65
75

1 51 101 151 201 251 301 351 401 451
generation

be
st

 fi
tn

es
s

SGA PRGA CPLO

DMRGA AGA

Fig. 6. Experimental results for the strongly correlated 0/1 knapsack problem with C = 2v.

WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG 14

1340

1390

1440

1490

1 51 101 151 201 251 301 351 401 451

generation

be
st

 fi
tn

es
s

SGA PRGA CPLO

DMRGA AGA

Fig. 7. Experimental results for the strongly correlated 0/1 knapsack problem with C = 0.5∑Wi.

0

0.2

0.4

0.6

0.8

1

1 51 101 151 201 251 301 351 401 451

generation

pr
ob

ab
ili

ty

Pc Pm

Fig. 8. Evolution of pc and pm for the uncorrelated 0/1 knapsack problem with C = 2v.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented an adaptive genetic algorithm for automatically ad-
justing suitable crossover and mutation rates to reduce the effort of searching for appro-
priate crossover and mutation rates. Our approach takes into account the interaction be-
tween crossover and mutation in adapting the operator rates. The performance of the
proposed genetic algorithm has been empirically shown to be better than that of previous
schemes. In the future, we will attempt to design other sophisticated adaptation schemes
that include other parameters, such as the population size and the replacement rate.

REFERENCES

1. H. Aytug and G. J. Koehler, “Stopping criteria for finite length genetic algorithms,”
INFORMS Journal on Computing, Vol. 8, 1996, pp. 183-191.

ADAPTING CROSSOVER AND MUTATION RATES 15

2. T. Bäck, “Self-adaptation in genetic algorithms,” in Proceedings of the First Euro-
pean Conference on Artificial Life, 1992, pp. 263-271.

3. T. Bäck, “Optimal mutation rates in genetic search,” in Proceedings of the Fifth In-
ternational Conference on Genetic Algorithms, 1993, pp. 2-8.

4. K. Deb and S. Argrawal, “Understanding interactions among genetic algorithm pa-
rameters,” in Foundations of Genetic Algorithms 5, 1998, pp. 265-286.

5. K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive sys-
tems,” PhD thesis, University of Michigan, 1975.

6. K. A. De Jong, “Adaptive system design: A genetic approach,” IEEE Transactions
on System, Man and Cybernetics, Vol. 10, 1980, pp. 566-574.

7. A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary
algorithms,” IEEE Transactions on Evolutionary Computation, Vol. 3, 1999, pp.
124-141.

8. T. C. Fogarty, “Varying the probability of mutation in genetic algorithms,” in
Proceedings of the Third International Conference on Genetic Algorithms, 1989, pp.
104-109.

9. D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning,
Addison Wesley, 1989.

10. D. Greenhalgh and S. Marshall, “Convergence criteria for genetic algorithms,”
SIAM Journal on Computing, Vol. 30, 2000, pp. 269-282.

11. J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,”
IEEE Transactions on System, Man and Cybernetics, Vol. 16, 1986, pp. 122-128.

12. J. Hesser and R. Männer, “Towards on optimal mutation probability for genetic
algorithms,” in Proceedings of Parallel Problem Solving from Nature Conference,
1990, pp. 23-32.

13. T. P. Hoehn and C. C. Pettey, “Parental and cyclic-rate mutation in genetic algo-
rithms: an initial investigation,” in Proceedings of Genetic and Evolutionary Com-
putation Conference, 1999, pp. 297-304.

14. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

15. T.-P. Hong, H.-S. Wang, W.-Y. Lin, and W.-Y. Lee, “Evolution of appropriate
crossover and mutation operators in a genetic process,” Applied Intelligence, Vol.
16, 2002, pp. 7-17.

16. B. A. Julstrom, “What have you done for me lately? Adapting operator probabili-
ties in a steady-state genetic algorithm,” in Proceedings of the Sixth International
Conference on Genetic Algorithms, 1995, pp. 81-87.

17. S. Martello and P. Toth, Knapsack Problems, Jonh Wiley, UK, 1990.
18. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,

Springer-Verlag, 1994.
19. M. Mitchell, An Introduction to Genetic Algorithms, MIT press, 1996.
20. G. Ochoa, I. Harvey, and H. Buxton, “On recombination and optimal mutation

rates,” in Proceedings of Genetic and Evolutionary Computation Conference, 1999,
pp. 488-495.

21. K. Park, “A comparative study of genetic search,” in Proceeding of the Sixth
International Conference on Genetic Algorithms, 1995, pp. 512-519.

WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG 16

22. J. D. Schaffer and A. Morishima, “An adaptive crossover distribution mechanism
for genetic algorithms,” in Proceeding of the Second International Conference on
Genetic Algorithms, 1987, pp. 36-40.

23. J. D. Schaffer, et al, “A study of control parameters affecting online performance
of genetic algorithms for function optimization,” in Proceeding of the Third Inter-
national Conference on Genetic Algorithms, 1989, pp. ___________

24. M. Srinias and L. M. Patnaik, “Adaptive probabilities of crossover and mutation in
genetic algorithms,” IEEE Transactions on System, Man and Cybernetics, Vol. 24,
1994, pp. 656-667.

25. A. Tuson and P. Ross, “Cost based operator rate adaptation: an investigation,” in
Proceedings of Parallel Problem Solving from Nature Conference, 1996, pp.
461-469.

Wen-Yang Lin (林文揚) received his B.S. and M.S. both in Computer Science and
Information Engineering from National Chiao-Tung University in 1988 and 1990, re-
spectively. He then received his Ph.D. in Computer Science and Information Engineering
from National Taiwan University in 1994. In 1996, he joined the faculty of the Depart-
ment of Information Management at I-Shou University and now is an Associate Profes-
sor. He is primarily interested in the area of sparse matrix technology and large-scale
supercomputing. Currently he is also interested in data warehousing, data mining and
evolutionary computations. Dr. Lin is a member of SIAM, IEEE, the Taiwanese AI As-
sociation and the Institute of Information and Computing Machinery.

Wen-Yuan Lee (李文淵) was born in Kaohsiung, Taiwan in 1974. He earned his
B.E. degree in Information Management in 1999, and M.S. degree in Information Engi-
neering in 2001, both from the I-Shou University. In 2001, He joined the R&D Depart-
ment of the TransAsia Telecommunications Inc. in Kaohsiung, Taiwan. In 2002, he de-
signed new applications for VASMS (VAS monitoring system) to improve the quality of
the short message service. In 2003, he developed WAP Push Engine for Java game and
multi-media downloading. He is currently a VAS development engineer for the short
message group and a technical project leader. His main research interest is Genetic Algo-
rithms.

 Tzung-Pei Hong (洪宗貝) received his B.S. degree in chemical engineering from

National Taiwan University in 1985, and his Ph.D. in computer science and information
engineering from National Chiao-Tung University in 1992.

From 1987 to 1994, he was with the Laboratory of Knowledge Engineering, Na-
tional Chiao-Tung University, where he was involved in applying techniques of parallel
processing to artificial intelligence. He was an associate professor at the Department of
Computer Science in Chung-Hua Polytechnic Institute from 1992 to 1994, and at the
Department of Information Management in I-Shou University (originally Kaohsiung
Polytechnic Institute) from 1994 to 1999. He was a professor in I-Shou University from

ADAPTING CROSSOVER AND MUTATION RATES 17

1999 to 2001. He was in charge of the whole computerization and library planning for
National University of Kaohsiung in Preparation from 1997 to 2000. He was also the first
director of the library and computer center in National University of Kaohsiung from
2000 to 2001. He is currently a professor at the Department of Electrical Engineering in
National University of Kaohsiung. He has published more than 250 research papers in
international/national journals and conferences. He has also planned for more than fifty
information systems. His current research interests include artificial intelligence, soft
computing, data mining, parallel processing, management information systems and www
applications.

Dr. Hong is a member of the Association for Computing Machinery, the IEEE, the
Chinese Fuzzy Systems Association, the Taiwanese Association for Artificial Intelli-
gence, and the Institute of Information and Computing Machinery.

