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It is well known that a judicious choice of crossover and/or mutation rates is critical 

to the success of genetic algorithms. Most earlier researches focused on finding optimal 
crossover or mutation rates, which vary for different problems, and even for different 
stages of the genetic process in a problem. In this paper, a generic scheme for adapting 
the crossover and mutation probabilities is proposed. The crossover and mutation rates 
are adapted in response to the evaluation results of the respective offspring in the next 
generation. Experimental results show that the proposed scheme significantly improves 
the performance of genetic algorithms and outperforms previous work.   
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1. INTRODUCTION 

Genetic Algorithms (GAs) are robust search and optimization techniques that were 
developed based on ideas and techniques from genetic and evolutionary theory [9, 19]. 
Beginning with a random population of chromosomes, a genetic algorithm chooses par-
ents from which to generate offspring using operations analogous to biological processes, 
usually crossover and mutation. All chromosomes are evaluated using a fitness function 
to determine their “fitness.” These fitness values are then used to decide whether the 
chromosomes are eliminated or retained. According to the principle of survival of the 
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fittest, the more adaptive chromosomes are kept, and the less adaptive ones are discarded 
in the course of generating a new population. The new population replaces the old one, 
and the whole process is repeated until specific termination conditions are satisfied. Fig. 
1 depicts a typical genetic process. 

There is evidence showing that the probabilities of crossover and mutation are criti-
cal to the success of genetic algorithms [3-6, 12, 20]. Traditionally, determining what 
probabilities of crossover and mutation should be used is usually done by means of 
trial-and-error. The optimal crossover or mutation rates, however, vary along with the 
problem of concern, even within different stages of the genetic process in a problem. In 
the past few years, though some researchers have investigated schemes for automating 
the parameter settings for GAs, the problem of making GAs self-adaptive in choosing the 
optimal parameters remains an unexplored area. 
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Fig. 1. A typical genetic process. 

In this paper, a generic scheme for adapting the crossover and mutation probabilities 
is proposed. The crossover and mutation rates are adapted in response to the evaluation 
results of the respective offspring in the next generation. Experimental results show that 
the proposed scheme significantly improves the performance of genetic algorithms and 
outperforms previous proposed methods. 

The content of this paper is organized as follows. A brief review of operator rate 
adaptation in genetic algorithms and related works is given in section 2. Our scheme for 
adapting the crossover and mutation rates is proposed in section 3. There we also discuss 
its convergence property. Section 4 describes our experiments. Conclusion and future 
work are given in section 5. 
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2. OPERATOR RATE CONTROL IN GENETIC  
ALGORITHMS AND RELATED WORK 

When genetic algorithms are applied to solve a problem, the first step is to define a 
representation that describes the problem states. The most commonly used representation 
is the bit string. An initial population is then defined, and three genetic operations 
(crossover, mutation, and selection) are performed to generate the next generation. This 
procedure is repeated until the termination criterion is satisfied. This so-called Simple 
Genetic Algorithm (SGA) [9] is described in Algorithm 1.  

Algorithm 1. A simple Genetic Algorithm. 
Initialize the parameters; 
Generate a population P randomly; 
generation ← 1; 
while generation ≤ max_gen do 

Clear the new population P’; 
Use a fitness function f(·) to evaluate each individual in P; 
while |P’| ≤ N do 

Select two parents from P; 
Perform crossover with rate pc; 
Perform mutation with rate pm; 
Insert the offspring to P’; 

endwhile 
P ← P’; 
generation ← generation + 1; 

 endwhile 
 
The power of genetic algorithms arises primarily from crossover and mutation. The 

crossover operation is used to generate offspring by exchanging bits in a pair of indi-
viduals (parents) chosen from the population, with the possibility that good solutions can 
generate better ones. Crossover occurs only with a probability pc (the crossover rate or 
crossover probability). When individuals are not subjected to crossover, they remain 
unmodified. The mutation operator is used to change some elements in selected individu-
als with a probability pm (the mutation rate or mutation probability), leading to additional 
genetic diversity to help the search process escape from local optimal traps.  

The choice of pc and pm is known to critically affect the behavior and performance 
of GAs. The crossover rate controls the capability of GAs in exploiting a located hill to 
reach the local optima. The higher the crossover rate, the quicker exploitation proceeds. 
A pc that is too large would disrupt individuals faster than they could be exploited. The 
mutation rate controls the speed of GAs in exploring a new area. Small pm values are 
commonly adopted in GAs. A number of guidelines exist in the literature for setting the 
values for pc and pm [3, 6, 9, 23]. Typical values of pc are in the range 0.5~1.0, while 
typical values of pm are in the range 0.001~0.05. These general guidelines were drawn 
from empirical studies on a fixed set of test problems, and were inadequate because the 
optimal use of pc and pm is specific to the problem under consideration. Some studies 
focused particularly on finding optimal crossover or mutation rates [3, 11, 12, 22]. These 
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heralded the need for self-adaption in the crossover or mutation rates [7]. 
Fogarty [8], to our knowledge, was the first to use a varying mutation rate. He 

concluded that a mutation rate that decreased exponentially over generations had superior 
performance. His idea is quite similar to simulated annealing, where the mutation rate 
takes on a role analogous to that of temperature. Indeed, a mutation-only GA that 
evolves at a constant mutation rate is analygous to simulated annealing at a constant 
temperature [22] (which corresponds to the Metropolis process). Bäck [2] followed 
Fogarty’s investigation and devised a deterministic formula for adjusting the mutation 
rate to dynamically approach the optimal value. An analogous way of cyclically varying 
the mutation rate reported in [13] exhibited a similar effect.  

In [24], Srinivas and Patnaik proposed a mechanism for adapting operator 
probabilities in a generational GA. Each chromosome has its own crossover probability 
pc and mutation probability pm necessary for it to undergo crossover and mutation, 
respectively. During the execution of GAs, both pc and pm are adapted in proportion to 
the population maximum and mean fitness, with probabilities being larger when the mean 
fitness is near the maximum, and smaller for particular chromosomes with larger 
fitnesses. Similar concepts were adopted and further explored in [16, 25]. 

3. SCHEME FOR ADAPTING CROSSOVER AND MUTATION RATES 

In the classic genetic algorithm, the involved genetic operators, such as crossover 
and mutation, work at an a priori, constant probability. Different crossover and mutation 
rates can, however, traverse different search directions in the state space, thus affecting 
the performance of the applied genetic algorithm. In fact, the overall performance of a 
genetic algorithm depends on it maintaining an acceptable level of productivity through-
out the process of evolution. It is, thus, essential to design a genetic algorithm that adapts 
itself to the appropriate crossover and mutation rates. Our intuition is to dynamically ad-
just the operator’s applied probability according to its “contribution” (or productivity); 
thus, there is the potential to produce children of improved fitness. In this section, we 
propose a rate-adapting scheme to achieve this goal.  

The rationale behind this approach is as follows: It may be advantageous to employ 
a method that dynamically adjusts the genetic algorithm’s settings according to a measure 
of the performance of each operator. To measure the performance of an operator, we de-
velop a scheme involving the ability of an operator to produce new, preferably fitter, 
children. The purpose of the dynamic operator adapting methods is to exploit information 
gained regarding the current ability of each operator to produce children of improved 
fitness. 

3. 1 Description 

The first step in our approach is determining an initial pc and pm pair. For classic ge-
netic algorithms, the general rule is to use a high crossover rate and a low mutation 
probability. However, inspired by previous works [3, 8], a large initial mutation rate is 
employed to help explore more local hills and locate a prospective area quickly. During 
this time, crossover should occur with a small probability to retain diversity. For these 
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reasons, we set the initial crossover rate and mutation rate at 0.5 and 0.5, respectively, 
and adjust them using the progress-value concept [15] described in the following. 

Consider the offspring generated from two parents after a crossover operation is per-
formed. Let f_sumS be the fitness sum of the two offspring, and let f_sumP denote the 
fitness sum of the parent individuals. We define the progress value of crossover CP as 
the gain obtained by 

CP = f_sumS − f_sumP.                                               (1) 

  

~
CP

For a generation that undergoes nc crossover operations, the average crossover pro-
gress 
value  is 

∑= CP
n

CP
c

1~
                                                     (2) 

Thus,  measures the overall performance of the crossover operator within a genera-
tion run. 

~
CP

Similarly, consider the resulting offspring after a mutation operation is performed; 
the progress value of the mutation MP is 

MP =  fnew − fold,                                                 (3) 

where fnew is the fitness of the new offspring and fold the fitness of the original individual. 
For a generation that undergoes nm mutation operations, the average mutation progress ~
value MP  is 

∑= MP
n

MP
m

1~
                                                    (4) 

Before the end of each generation, the crossover and mutation rates are adjusted us-
ing these average progress values. The operator that performs better in the previous run 
(with a larger average progress value) should participate more frequently (increase its 
probability) in the next generation run, and vice versa. The adjustment is executed as 
shown below: 

pc = pc + θ1    if >
~ ~

CP MP , 
~

CP
~

MPpc = pc − θ1    if < , 
 

and 
pm = pm + θ2    if <

~ ~
CP MP , 
~ ~

MPpm = pm − θ2    if CP > , 

where θ1 and θ2 represent the amount of adjustment of pc and pm, respectively. Now we 
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are confronted with another problem: What values of θ1 and θ2 should be chosen? Should 
θ1 and θ2 be identical or different? And, should they be constant values or adapting func-
tions? We will examine these aspects later through experiments. 

Notice that after each adjustment, we should make sure that the crossover and muta-
tion operations have the chance to work continuously. For this reason, we set the mini-
mum crossover and mutation rates to 0.001. If the crossover or mutation rate is less than 
or equal to 0.001, the adjustment operation stops decreasing the probability. 

The refined genetic algorithm incorporating this adaptation approach (called the 
progress rate genetic algorithm, or PRGA) is described in Algorithm 2. 

Algorithm 2. Progress Rate Genetic Algorithm. 
Initialize the parameters; 
Generate a population P randomly; 
generation ← 1; 
while generation ≤ max_gen do 

Clear the new population P’; 
Use a fitness function f(·) to evaluate each individual in P; 
while |P’| ≤ N do 

Select two parents from P; 
Perform crossover and accumulate the crossover progress value CP; 
Perform mutation and accumulate the mutation progress value MP; 
Insert the offspring to P’; 

endwhile 

Compute and
~

CP
~

MP , and adjust the crossover rate pc and mutation rate pm; 
P ← P’; 
generation ← generation + 1; 

 endwhile 

Let us illustrate this approach using a single generation run with the following func-
tion: 

f(t) = t4 |sin(5πt)|, t ∈[0.000, 1.024], find the max. 

Let the value of t be represented by a bit string with length = 10. For example, the 
genetic representation for t = 0.738 is 1011100010. Let N = 8. An example of the initial 
population is shown in Table 1. 

Assume that the crossover and mutation rates are initially set to pc = 0.5 and pm = 0.5. 
The chosen parents for crossover and the resulting offspring are shown in Table 2. Here, 
we assume that one-point crossover is employed, and that for pc = 0.5, only the pairs (4, 8) 
and (1, 8) are subjected to crossover. The crossover point is underlined.  

The average crossover progress value is calculated as follows. Say parents 4 and 8 
are chosen to produce two offspring, N3 and N4. According to Equation 1, the progress 
value of the crossover operation is (0.0004 + 0.0021) ─  (0.0149 + 0.0004) = −0.0128, 
and the progress value for offspring N7 and N8 is (0.0010 + 0.1562) − (0.2453 + 0.0004) 
= −0.0885. The average crossover progress value is −0.0506. 
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Table 1. An example initial population. 

No Old string t f(t) 

1 1011100010 0.738 0.2453 

2 1100001100 0.78 0.1144 

3 1100101010 0.81 0.0673 

4 0110101101 0.429 0.0149 

5 0110100111 0.423 0.0113 

6 0100100111 0.295 0.0076 

7 0011111001 0.249 0.0027 

8 0010010101 0.149 0.0004 

Table 2. Eight offspring generated by the crossover operator. 

No Parents Offspring t  f(t) 

N1 (7, 8) 0011111001 0.249 0.0027

N2 (7, 8) 0010010101 0.149 0.0004

N3 (4, 8) 0110010101 0.405 0.0021

N4 (4, 8) 0010101101 0.173 0.0004

N5 (4, 6) 0110101101 0.429 0.0149

N6 (4, 6) 0100100111 0.295 0.0076

N7 (1, 8) 1010010101 0.661 0.1562

N8 (1, 8) 0011100010 0.226 0.0010

 
Next, the offspring are mutated with probability pm. Here, we assume that bit-flip 

mutation is employed, and that individuals N2, N5, N6 and N8 in Table 2 are chosen to 
undergo mutation. The results are shown in Table 3, where the values in bold denote the 
positions at which mutation occurs. According to Equation 2, the mutation progress value 
for N2 is 0.1562 ─ 0.0004 = 0.1558, and the mutation progress values are −0.0137, 
0.0024, 0.0005 for N5, N6 and N8, respectively. The average mutation progress value is 
0.0362. 

Table 3. Offspring that undergo mutation. 

No Offspring t  f(t) 

N2’ 1010010101 0.661 0.1562

N5’ 0110001101 0.397 0.0012

N6’ 0101100111 0.359 0.0100

N8’ 0011101010 0.234 0.0015
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~
Since MP  = 0.0362 > CP = −0.0506, the mutation rate obtains an increment, while 

the crossover rate decreases.  

~

y.  

3.2 Convergence Property of PRGA 

Since genetic algorithms are stochastic search processes, there is no convincing the-
ory that can completely deduce the convergence rate for GAs to reach the optimal 
solution. Nevertheless, we can examine a sort of convergence in probabilit

Let N be the population size, and let n be the length of each individual. Given a 
probability α, we may ask what the smallest number of generations g(α) required to ob-
tain an optimal solution is. Aytug and Koehler [1] modeled genetic algorithms with the 
Markov chain and derived the following bound: 


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where INT[x] denotes the smallest integer greater than or equal to x, for x ≥ 0; Q is the 
Markov chain transition matrix; uj is the jth unit vector; δ(A) is the spectral radius of a 
matrix A; and pm is the mutation probability. The lower bound is difficult to evaluate be-
cause the maximum is taken over all states of the Markov chain. Greenhalgh and Mar-
shall [10] showed that the upper bound can be improved further as   

,
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and that the bound holds independent of the crossover and selection schemes.  
The above result can be further refined in the case where the mutation rate is 

adapted. Note that the mutation rate pm under the proposed adaptation scheme is always 
bounded between 0 and 1. Without loss of generality, let p1 ≤ pm ≤ p2 for p1 < 1 and p2 > 
0. Then, it is easy to show that, following the derivation in [10],  

,
}),)1(min{1(n1  

)1(n1INT)(
2

1
11 


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


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


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≤
− nn PPPN

g αα .                             (7) 

Note that the above derivation is based on the simple GAs, without taking into ac-
count the effect of repairing chromosomes. Because the degree of population diversity is 
reduced after repairing is performed, we can expect that the population will converge 
more quickly. The question of what the exact bound on the number of generations will be 
when the repairing effect is considered deserves further investigation. 
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4. EXPERIMENTS 

To examine the performance of the progress rate genetic algorithm (PRGA), we 
compared it with four variants of GAs. They included the simple genetic algorithm (SGA) 
with fixed crossover and mutation rates; the decreasing mutation rate genetic algorithm 
(DMRGA) proposed by Bäck [2]; the cyclic-parental, low-offspring mutation (CPLO) in 
[13]; and the adaptive genetic algorithm (AGA) proposed by Srinivas and Patnaik [24]. 
The test problem was the 0/1 knapsack problem, which belongs to the class of knap-
sack-type problems and is well known to be NP-hard [17].  

The 0/1 knapsack problem is as follows: given a set of objects, ai, for 1 ≤ i ≤ n, to-
gether with their profits Pi, weights Wi, and a capacity C, find a binary vector x = <x1, 
x2, …, xn>, such that 

  

CWx
n

i
ii ≤⋅∑

=1
 and  is maximal. ∑

=
⋅

n

i
ii Px

1

Because the difficulty of knapsack problems is greatly affected by the correlation 
between profits and weights [18], we employed the three randomly generated sets of data 
used in [18]:  

 
(1) uncorrelated 

Wi and Pi: random(1..v); 
 

(2) weakly correlated 
Wi: random(1..v); 
Pi: Wi + random(−r..r); 
 

(3) strongly correlated 
Wi: random(1..v); 
Pi: Wi + r. 

 
The data were generated with the following parameter settings: v = 10, r = 5, and n 

= 250. Following a suggestion made in [17], we adopted two different types of capacity 
C: 1) C = 2v, for which the optimal solution contained very few items; and 2) C = 0.5∑Wi, 
in which about half of the items were in the optimal solution.  

The test suit represented two different types of problem instances. Those data sets in 
Group 1 under the constraint C = 2v were more difficult than those in Group 2 under the 
constraint C = 0.5∑W, because the fitness landscape in Group 1 abounded with local hills. 
This increased the difficulty for GAs to locate the global optimum. The instance diffi-
culty in each group was further classified by means of the correlation between profits and 
weights. 

To be consistent with the crossover and mutation operators considered, we used the 
binary encoding scheme: each bit represented the inclusion or exclusion of an object. It 
was, however, possible to generate infeasible solutions with this representation. That is, 
the total weights of the selected objects would exceed the knapsack capacity. In the lit-
erature, two different ways of handling this constraint violation [18] have been proposed. 
One way is to use a penalty function to penalize the fitness of the infeasible candidate to 
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diminish its chance of survival. Another approach is to use a repair mechanism to correct 
the representation of the infeasible candidate. In [18], the repair method was more effec-
tive than the penalty approach. Hence, we adopted the repair approach in our implemen-
tation.   

The repair scheme that we used was a greedy approach. All the objects in a knapsack 
represented by an overfilled bit string were sorted in decreasing order of their profit 
weight ratios. The last object was then selected for elimination (the corresponding bit of 
“1” was changed to “0”). This procedure was executed until the total weight of the re-
maining objects was less than the total capacity.  

The common parameters set in this experiment were those listed below: 
 
crossover: one-point crossover; 
mutation: bit-flip mutation; 
selection: random selection; 
replacement: (µ+λ) replacement; 
population size: 100; 
generations: 500; 
experimental runs: 10. 
 
In a preliminary experiment, we noticed that the original AGA algorithm [24] that 

adopted proportional selection with generational replacement was inferior to all of the 
other methods that used random selection and (µ+λ) replacement. For this reason, the 
AGA algorithm was changed to use random selection with (µ+λ) replacement as well.  

The crossover and mutation rates employed for each variant are shown below: 
 

SGA: pc = 0.65, pm = 0.01; 
DMRGA: pc = 0.65,  

122)(
−







 ⋅

−
+= t

T
Ltpm , 

where t is the generation count, L the length of chromosomes, and T the maximum 
generation; 
 
CPLO: pc = 0.65, pm = 0.1 for parent mutation, and 0.001 for offspring mutation; 

 
AGA: the expressions for pc and pm were 
 

pc = (fmax – f’) / (fmax – favg),      f’ ≥ favg, 
pc = 1.0,       f’ < favg, 

 
and 

 
pm = 0.5 (fmax – f’) / (fmax – favg),       f ≥ favg, 

  



ADAPTING CROSSOVER AND MUTATION RATES 11

pm = 0.5,       f < favg, 

where fmax represents the maximum fitness value of the population, favg the average 
fitness value of the population, f the fitness value of the solution undergone muta-
tion, and f’ the larger of the fitness values of the solutions to be crossed. 

We first examined the effects of different step sizes for adaptation of pc and pm. To 
understand the effect of varying θ1 and θ2 under constant step sizes, we first measured 
the PRGA performance using four different settings: 1) θ1 = θ2 = 0.01; 2) θ1 = 0.01 and 
θ2 = 0.001; 3) θ1 = 0.001 and θ2 = 0.01; 4) θ1 = 0.001 and θ2 = 0.001. The results are pre-
sented in Table 4.  

Table 4. Best fitness obtained by PRGA using different constant step sizes of θ1 and θ2. 

  θ1 = 0.01 
θ2 = 0.01 

θ1 = 0.01, 
θ2 = 0.001 

θ1 = 0.001,
θ2 = 0.01 

θ1 = 0.001 
θ2 = 0.001 

Uncorrelated, C = 2v 114 89 87 78 
Uncorrelated, C = 0.5ΣWi 1078 983 1089 1069 
Weakly, C = 2v 54 54 58 54 
Weakly, C = 0.5ΣWi 1063 962 1079 947 
Strongly, C = 2v 60 65 65 65 
Strongly, C = 0.5ΣWi 1470 1435 1500 1460 

 
As Table 4 shows, no combination was superior to the others in all test suits. This 

observation led us to seek a self-adaptive control of the step sizes. Inspired by [24], we 
tuned the values of θ1 and θ2 according to the population convergence. When the popula-
tion converged, we increased the step sizes to reduce the probability of the GA getting 
stuck in a local optimum. The resulting self-adapting function is expressed as follows: 

 

θ1 = θ2 = 0.01
minmax

max

ff
ff avg

−

−
, if fmax > fmin, 

θ1 = θ2 = 0.01, if fmax = favg., 

where the convergence is measured as the difference between the maximum and average 
population fitness, fmax − favg, and normalized by fmax − fmin. 

We next compared the other four methods with our PRGA algorithm using the 
adaptive step size function. The results are shown in Figs. 2 to 7. Our PRGA outper-
formed the competitors in all test cases except for the weakly correlated case C = 0.5∑Wi, 
where AGA led. For the most difficult problem, as shown in Fig. 2, SGA converged 
quickly to a local optimum and failed to perform further exploration. CPLO, with cy-
clic-rate mutation, exhibited the ability to escape from local traps, but the resulting im-
provement was not clear. DMRGA and AGA performed well initially but failed to per-
form further exploration when the population began to converge. Similar phenomena 
were observed for the other two instances in Group 1, as shown in Figs. 4 and 6. 

  



WEN-YANG LIN, WEN-YUNG LEE AND TZUNG-PEI HONG 12 

 

0
20
40
60
80

100
120
140

1 51 101 151 201 251 301 351 401 451
generation

be
st

 fi
tn

es
s

SGA PRGA CPLO
DMRGA AGA

 
Fig. 2. Experimental results for the uncorrelated 0/1 knapsack problem with C = 2v. 
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Fig. 3. Experimental results for the uncorrelated 0/1 knapsack problem with C = 0.5∑Wi. 
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Fig. 4. Experimental results for the weakly correlated 0/1 knapsack problem with C = 2v. 
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Fig. 5. Experimental results for the weakly correlated 0/1 knapsack problem with C = 0.5∑Wi. 

For the cases within Group 2, we found that the performance gap between PRGA 
and the competitors was smaller. Note that the ranking of SGA, CPLO, DMRGA, and 
AGA, however, was different. CPLO ranks lower in Fig. 3, while SGA ranks last in Fig. 
5, and DMRGA ranks last in Fig. 7. This phenomenon reveals that when the interaction 
between crossover and mutation is not considered, solely adapting the mutation rate can 
guarantee no performance gain. 

To understand how pc and pm evolved when our method was employed, we also re-
corded the rates at the end of each generation. We only show the results for the uncorre-
lated case with C = 2v; similar results were observed for the other cases.  

Fig. 8 depicts the results, where pm rises aggressively throughout evolution to reach 
the upper bound, while pc behaves in the opposite manner. Note that the evolution map of 
pm contradicts the conventional suggestion made by most researchers [2, 3, 8, 12] that pm 
should behave as a descending curve. These results also confirm the necessity of using 
operator rate adaptation scheme to locate prospective solution. 
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Fig. 6. Experimental results for the strongly correlated 0/1 knapsack problem with C = 2v. 
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Fig. 7. Experimental results for the strongly correlated 0/1 knapsack problem with C = 0.5∑Wi. 
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Fig. 8. Evolution of pc and pm for the uncorrelated 0/1 knapsack problem with C = 2v. 

5. CONCLUSION AND FUTURE WORK 

In this paper, we have presented an adaptive genetic algorithm for automatically ad-
justing suitable crossover and mutation rates to reduce the effort of searching for appro-
priate crossover and mutation rates. Our approach takes into account the interaction be-
tween crossover and mutation in adapting the operator rates. The performance of the 
proposed genetic algorithm has been empirically shown to be better than that of previous 
schemes. In the future, we will attempt to design other sophisticated adaptation schemes 
that include other parameters, such as the population size and the replacement rate. 
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