
Dynamic Mining of Multi-supported Association Rules with
Classification Ontology

MING-CHENG TSENG 1, WEN-YANG LIN 2,*, RONG JENG 3

1, 3 Institute of Information Engineering, 2 Dept. of Comp. Sci. & Info. Eng.
1, 3 I-Shou University, 2 National University of Kaohsiung

TAIWAN, R.O.C.
1 clark.tseng@msa.hinet.net, 2 wylin@nuk.edu.tw, 3 rjeng@isu.edu.tw

(*corresponding author)

Abstract

One of the predominant techniques used in the area of data
mining is association rule mining. In real world, data
mining analysts usually are confronted with a dynamic
environment; the database would be changed over time,
and the analysts may need to set different support
constraints to discover real informative rules. Efficiently
updating the discovered association rules thus becomes a
crucial issue. In this paper, we consider the problem of
dynamic mining of association rules with classification
ontology and with non-uniform multiple minimum
supports constraint. We investigate how to efficiently
update the discovered association rules when there is
transaction update to the database and the analyst has
refined the support constraint. A novel algorithm called
DMA_CO is proposed. Experimental results show that our
algorithm is 14% to 80% faster than applying generalized
associations mining algorithms to the whole updated
database.

Keywords: Association rules, classification ontology,
data mining, database update, support constraint
refinement.

1 Introduction
Data mining is to discover implicit, unknown, and useful
patterns from databases or data warehouses and enables
managers to identify necessary information to support in
the decision-making. One of the predominant techniques
used in the area of data mining is association rule mining.
The classical association rule is based on a list of
transactions gathered in a database. An association rule
can be expressed as

A  B (sup 20%, conf 90%),
where A and B are sets of items. This rule reveals that in
the transaction database, 20% (support) of customers
purchase both A and B together, and 90% (confidence) of
customers who purchase A also purchase B. The problem
of mining association rules is to discover all association
rules that satisfy support and confidence constraints.

In many applications, there exists classification
ontology over the items implicitly, so it is more useful to
find association rules at different levels of the
classification ontology than only at the primitive concept
level [6][12]. For example, consider the classification

ontology of items in Figure 1, where “MC” stands for
“Mobile Computer”, “ASUS P” a kind of PDA and
“ScanMaker” a kind of scanner. It is likely that the
association rule

Acer TM  Epson EPL (sup 20%, conf 80%)
does not hold when the minimum support is set to 25%, but
the following association rule is true

Notebook  Epson EPL (sup 30%, conf 75%).
This kind of association rule with classification ontology is
also called generalized association rule [12] or multi-level
association rule [6].

ScanMakerPrinter

HP DeskJet Epson EPL

MC

ASUS P

Acer TM

Notebook

IBM TP

Figure 1. Example of item classification ontology.

In our previous work, we have investigated the problem
of mining generalized association rules across different
levels of classification ontology with non-uniform
multiple minimum supports [14]. We proposed two
efficient algorithms, MMS_Cumulate and MMS_Stratify,
which not only can discover association rules that span
different levels but also have high potential to produce rare
but informative item rules. In real world, however, data
mining practitioners usually are confronted with a
dynamic environment. New transactions are continually
added into the database as time passes, and because the
work of discovering interesting association rules is an
iterative process, the analysts need to repeatedly adjust the
constraint of minimum support and/or minimum
confidence to discover real informative rules. Under these
circumstances, how to dynamically discover generalized
association rules efficiently is a crucial issue.

One approach to dealing with this issue is to adopt the
generalized association mining algorithms to the whole
updated database. However, this way is not efficient since
generating frequent itemsets is time-consuming, and
discovered frequent itemsets are not re-used.

A better approach is to perform an initial association
mining algorithm to generate and store the frequent
itemsets, and when update to the original database and/or
refinement to the support constraint do occur, employ an
updating method to re-build the discovered rules. The
challenge falls into deploying an efficient updating

algorithm to facilitate the whole mining process. This
problem is nontrivial because update may invalidate some
of the discovered association rules, and turn previous weak
rules into strong ones.

In this paper, we examine this issue and propose an
algorithm called DMA_CO (Dynamic Mining of
multi-supported Association rules with Classification
Ontology), which reuses discovered frequent itemsets and
significantly reduces the number of candidate sets and
database rescanning, and so can update the association
rules efficiently. Experimental results show that our
algorithm is faster than applying classifical generalized
association mining algorithms to the whole updated
database.

As founded in [1], the work of association rules mining
can be decomposed into two steps: first, find all itemsets
that are no less than the minimum support; second, from
the frequent itemsets generate all association rules having
confidence larger than or equal to the minimum
confidence. Since the second step is less expensive, we
focus only on the first step of finding all frequent itemsets.

The rest of this paper is organized as follows. We
formulate the problem in Section 2. In Section 3, we
propose the DMA_CO algorithm and give an example in
Section 4. In Section 5, we evaluate the performance of the
proposed DMA_CO algorithm. We discuss previous work
in Section 6. Finally, we conclude this work in Section 7.

2 Problem Formulation
Let I {i1, i2, …, ip} be a set of items and DB {t1, t2, …, tn}
be a set of transactions, where each transaction tiTID, A
has a unique identifier TID and a set of items A (A I).
Assume that a set of classification ontology of items, T, is
available and is denoted as a set of hierarchies (trees) on I
 J, where J {j1, j2, …, jq} represents the set of
generalized items derived from I. Following the concept in
[9], we assume that the user can specify different
minimum supports for different items in the classification
ontology.

Definition 1. Let ms(a) denote the minimum support of an
item a in T. The minimum support of an itemset A {a1,
a2, …, ak}, where ai T, equal to the lowest value of
minimum support of items in A, i.e., ms(A) =
minaiA ms(ai).

Definition 2. An itemset A is frequent if its support is
larger than or equal to the its minimum support constraint,
i.e., sup(A) ms(A) = minaiA ms(ai).

Consider the situation when new transactions in db are
added to DB, and the old minimum support constraint
(msold) is changed into the new one (msnew) with the same
item classification ontology T. Let ED and ed denote the
extended version of the original database DB and
incremental database db, respectively, by adding the
generalized items in T to each transaction. Further, let UE
be the updated extended database containing ED and ed,
i.e., UE ED + ed. The problem of updating LED when
new transactions in db are added to DB, and the old

minimum support constraint (msold) is changed into the
new one (msnew) is equivalent to discovering the set of
frequent itemsets in UE with respect to msnew, denoted as
LUE.

For illustration, consider the original database with
item classification ontology having old item minimum
supports (shown in parentheses) in Figure 2. Figure 3
shows an incremental database to be updated to the
original database with the new minimum support
specification under the same item classification ontology.
The minimum support for item “MC” is changed from
35% to 40%,“Acer N” from 20% to 15%, “Printer” from
25% to 45%, “HP DeskJet” from 20% to 15%, and
“ScanMaker” from 65% to 75%. Figure 4 shows the
corresponding updated extended database UE after
combing ED and ed.

Printer ScanMaker

Notebook

MC

ASUS P HP DeskJet

Acer TMIBM TP

Epson EPL

(35)

(25)
(20)

(20)(15)

(25)

(20) (15)

(65)

() : msold

Original Database (DB)

1

3
2

Acer TM
ASUS P, ScanMaker

TID Items Purchased
Acer TM, Epson EPL, ScanMaker

5
4

ASUS P, ScanMaker

IBM TP, ASUS P

6

Acer TM
7
8

Epson EPL, ScanMaker

ScanMaker

Figure 2. Example of an original database with old
minimum support specification.

Printer ScanMaker

Notebook

MC

ASUS P HP DeskJet

Acer TMIBM TP

Epson EPL

(40)

(25)
(20)

(15)(15)

(45)

(15) (15)

(75)

() : msnew

Incremental Database (db)

9
10

HP DeskJet, ScanMaker
HP DeskJet, ScanMaker

TID Items Purchased

Figure 3. Example of an incremental database with new
minimum support specification.

3 The Proposed Approach
In this section, we first describe the basic concept behind
the proposed approach and then detail the algorithm.

3.1 Algorithm Basics
The basic process of our mining multi-supported
generalized association rules under incremental

Updated Extended database (UE)
TID Primitive Items Generalized Items

1 Acer TM, Epson EPL, ScanMaker Notebook, MC, Printer
2 ASUS P, ScanMaker MC
3 Acer TM Notebook, MC
4 IBM TP, ASUS P Notebook, MC
5 Epson EPL, ScanMaker Printer
6 ASUS P, ScanMaker MC
7 ScanMaker
8 Acer TM Notebook, MC
9 HP Desk Jet, ScanMaker Printer

10 HP Desk Jet, ScanMaker Printer

Figure 4. The resulting updated extended database UD for
the examples in Figures 2 and 3.

transaction and multiple support constraint refinement
follows the level-wise approach used by famous
Apriori-like algorithms [2].

However, the well-known apriori pruning technique
based on the concept of downward closure [2] does not
work for multiple support specification. For example,
consider four items a, b, c, and d that have minimum
supports specified as ms(a) = 15%, ms(b) = 20%, ms(c) =
4%, and ms(d) = 6%. Clearly, a 2-itemset {a, b} with 10%
support is discarded for 10%  min{ms(a), ms(b)}.
According to the downward closure, the 3-itemsets {a, b, c}
and {a, b, d} will be pruned even though their supports
may be larger than ms(c) and ms(d), respectively. To solve
this problem, we have adopted the sorted closure property
[8] described as follows. Hereafter, to distinguish from the
traditional itemset, a sorted k-itemset denoted as a1, a2, …,
akis used.

Lemma 1. If a sorted k-itemset a1, a2, …, ak, for k2 and
ms(a1) ms(a2)  … ms(ak), is frequent, then all of its
sorted subsets with k1 items are frequent, except the
subset a2, a3, …, ak.

Lemma 2. For k 2, the procedure apriori-gen(L1) [2] fails
to generate all candidate 2-itemsets in C2.

For example, consider a sorted candidate 2-itemset a,
b. It is easy to find if we want to generate this itemset from
L1, both items a and b should be included in L1; that is,
each one should be occurring more frequently than the
corresponding minimum support ms(a) and ms(b). Clearly,
the case ms(a) sup(b) < ms(b) fails to generate a, bin
C2 even sup(a, b) ms(a).

For the above reason, all items within an itemset are
sorted in the increasing order of their minimum supports,
and a sorted itemset, called frontier set, is facilitated to
generate the set of candidate 2-itemsets C2 [8]. Please refer
to [8] for more details.

Lemma 3. For k 3, any k-itemset A a1, a2, …, ak
generated by procedure apriori-gen(Lk1) [2] can be pruned
if there exists one (k1) subset of A, say ai1, ai2, …, aik1,
such that ai1, ai2, …, aik1Lk1 and ai1 a1 or ms(ai1) =
ms(ai2).

For more details about how to refine the classical
apriori candidate generation in adopting the sorted closure
property, please refer to [8] or [14].

Now let us focus the kernel issue: how to efficiently
rediscover qualified frequent itemsets when the database
has been updated and the analyst has adjusted the support
constraint. A straightforward method would be to run any
of the algorithms for finding generalized frequent itemsets,
such as our previously proposed MMS_Cumulate and
MMS_Stratify [14], on the updated extended database UE
with respect to the new support constraint msnew. This
simple way, however, ignores two pieces of useful
information: the discovered frequent itemsets and the
relationship between msold and msnew. Previous work [3][4]
[5][15] has demonstrated that making use of the
discovered frequent itemsets can avoid unnecessary
computation as well as database scan in the course of
incremental update, though the situation might become
more complicated when taking into account msold and
msnew. The intuition is that a frequent itemset A remains
frequent if msnew(A) msold(A), and an infrequent itemset
A keeps infrequent if msnew(A) > msold(A). In view of this, a
better approach is to, within the set of discovered frequent
itemsets LED, differentiate the frequent itemsets from the
others and utilize them to avoid unnecessary computation
as well as database scan.

Lemma 4. The support count, countED(A), of an itemset A
in ED is kept unchanged under the same item classification
ontology.
Proof. This is straightforward since the original extended
database is kept unchanged. □

This lemma implies that countED(A) is immediately
available if A is a discovered frequent itemset in ED with
respect to msold, i.e., A LED, for LED being the set of
frequent itemsets in ED with respect to msold.

Lemma 5. If an itemset A is frequent in ED with respect to
msold(A) and msnew(A)msold(A), then A is frequent in ED
with respect to msnew(A).
Proof. The lemma follows immediately from the fact that
supED(A) msold(A) msnew(A). □

Lemma 6. If an itemset A is infrequent in ED with respect
to msold and msnew(A)msold(A), then A is infrequent in ED
with respect to msnew.
Proof. Since A is infrequent in ED and msnew(A)msold(A),
we have supED(A) msold(A) msnew(A). □

After clarifying what will become a candidate itemset in
the original databse ED that undergoes the support
constraint refinement, we will advance to the more
complicated situation that embraces the incremental
database ed.

Lemma 7. If an itemset A is frequent in ED with respect to
msold and is frequent in ed with respect to msnew, and
msnew(A)msold(A), then A is also frequent in the updated
extended database UE with respect to msnew.
Proof. Since A is frequent in ED and msnew(A)msold(A),
according to Lemma 5, we have supED(A) msnew(A) 

countED(A) msnew(A) |ED|. Further, A is frequent in ed,
so suped(A) msnew(A)  counted(A) msnew(A) |ed|.
Then countED(A) + counted(A) msnew(A) (|ED| |ed|) 
countUE(A) msnew(A) |UE|  supUE(A) msnew(A),
which proves the lemma. □

Lemma 8. If A is infrequent in ED with respect to msold

and is infrequent in ed with respect to msnew, and msnew(A)
msold(A), then A is also infrequent in UE with respect to
msnew.
Proof. Since A is infrequent in ED and msnew(A) > msold(A),
according to Lemma 6, supED(A) msnew(A)  countED(A)
msnew(A) |ED|. Further, A is infrequent in ed, so suped(A)
msnew(A)  counted(A) msnew(A) |ed|. Then countED(A)
+ counted(A) msnew(A) (|ED| |ed|)  countUE(A) 
msnew(A) |UE|  supUE(A) msnew(A), which proves the
lemma. □

Now, we will show how to employ the above properties
to infer whether frequent or not a candidate itemset A is in
the whole updated database UE with respect to msnew(A).
We conclude that there are six different cases summarized
in Table 2.
(1) If A is a frequent itemset in ED and ed, and msnew(A)

msold(A), then it is also frequent in the updated
extended database UE.

(2) If A is not a frequent itemset in ED and ed, and
msnew(A)msold(A), then it is also infrequent in UE.

(3) If A is a frequent itemset in ED and ed, and msnew(A) >
msold(A), then a simple calculation can determine
whether A is frequent or not in UE.

(4) If A is frequent in ED but is not frequent in ed, then no
matter msnew(A) msold(A) or msnew(A) > msold(A), a
simple calculation can determine whether A is
frequent or not in UE.

(5) If A is not a frequent itemset in ED but is frequent in
ed, then no matter msnew(A) msold(A) or msnew(A) >
msold(A), it is an undetermined itemset in UE, i.e., it
may be either frequent or infrequent.

(6) If A is not a frequent itemset in ED and ed, and
msnew(A) < msold(A), then it is an undetermined itemset
in UE.

Table 2. Six cases arising in determining the status of a
candidate itemset under incremental database and multiple

minimum support update.

Conditions Results

LED

(msold)
Led

(msnew)

msnew(A)
to

msold(A)

UE
(msnew) Action Case

 freq. no 1


> ? compare supUE(A)
with msnew(A) 3

 , > ? compare supUE(A)
with msnew(A) 4

 , > ? scan ED 5
< ? scan ED 6


 infreq. no 2

Cases 1 and 2 correspond to the situations expressed in
Lemmas 7 and 8, respectively. So there is no need of extra

action to determine what A will become. On the other
hands, Cases 3 to 6 represent the situations with
uncertainty. In Cases 3 and 4, since the support counts of A
in ED and ed are available, a simple comparison of
supUE(A) with msnew(A) suffices for the purpose. But in
Cases 5 and 6, the support count of A in ED is unknown; so
an additional scan of ED is required. In summary, there is
no need to invoke a further scan of ED for Cases 1 to 4 to
determine the support count of itemset A. That is, we have
utilized the information of the discovered frequent
itemsets to avoid such a database scan. Furthermore, the
identification of itemsets satisfying Cases 2 to 4 provides
another opportunity for candidate pruning.

3.2 Algorithm DMA_CO
Based on the aforementioned concepts, we developed an
algorithm, called DMA_CO, to accomplish the task. The
main procedure of DMA_CO algorithm is as follows.

First, generate the set of candidate k-itemsets. If k = 1,
then set C1 to be the set of items in the item classification
ontology T, i.e., all items in T are candidate 1-itemsets; if k
= 2, generate candidate 2-itemsets C2 from the frontier set
F while for k 3 invoke procedure apriori-gen to generate
candidate k-itemsets Ck from UE

kL 1 .

Next, load the original frequent k-itemsets ED
kL and

divide Ck into two independent subsets: CX, and CY, where
CX consists of k-itemsets in ED

kL , and CY is composed of

k-itemsets not in ED
kL . Then, scan ed to get the support

counts of itemsets in Ck and generate ed
kL . For each

k-itemset in CX, its support count in ED is available while
for those in CY, we need to scan ED to get their counts.
Besides, for all candidate k-itemsets in CY and k 2, delete
those that are infrequent in ed and msnew(A) msold(A), and
then rescan ED to get the support counts of the remaining
itemsets in CY.

Finally, accumulate the support count for each
k-itemset in ed and ED, compare their supports with
msnew(A), and get frequent k-itemsets for UEL1 .

The DMA_CO algorithm is shown in Figure 5.

4 Example of Algorithm DMA_CO
Consider the example in Figures 2 and 3. To simplify the
illustration, we use item “A” to stand for “MC”, “B” for
“Notebook”, “C” for “IBM TP”, “D” for “Acer TM”, “E”
for “ASUS P”, “F” for “Printer”, “G” for “HP DeskJet”,
“H” for “Epson EPL”, and“I” for “ScanMaker”in the item
classification ontology. The resulting figure is shown in
Figure 6. The original frequent itemsets from Figure 2 are
shown in Table 3.

First, let candidate 1-itemsets C1 be the set of items in
the item classification ontology T, i.e., all items in T are
candidate 1-itemsets. Second, load the original frequent
1-itemsets EDL1 and divide C1 into two subsets: CX and CY,
where CX {A, B, D, E, F, H} and CY {C, G, I}. Next,
scan ed for C1 and scan ED for CY. Calculate the support
count of each 1-itemset in C1, and generate the frontier set

F D, G, H, E, B, A, F, I}. After comparing the supports
of each 1-itemset with the corresponding ms, the set of new
frequent 1-itemsets UEL1 is {A, B, D, E, G, H}.

Input: (1)DB: original database; (2)T: item classification ontology;
(3)db: incremental database; (4)msold: old minimum support setting;
(5)msnew: new minimum support setting; (6)LED: set of original frequent
itemsets.
Output: LUE: set of new frequent itemsets in UE with respect to msnew.
Steps:
1. k 1;

2. repeat

3. if k then generate C1 from T;

4. else if k then generate C2 from the frontier set F;

5. elseCkapriori-gen(UE
kL 1);

6. Delete any candidate in Ck that consists of an item and its
ancestor;

7. Load original frequent k-itemsets ED
kL ;

8. Divide Ck into two subsets: CX and CY;

9. for each A CX do /* Cases 1, 3 & 4 */

10. Get countED(A) from ED
kL ;

11. Scan ed to compute counted(A) for each itemset A in Ck;

12. ed
kL {A | ACk and suped(A) msnew(A)};

13. if k then scan ED for CY and generate the frontier set F;

14. else if k then

15. Delete any candidate A from CY if A  ed
kL and msnew(A) 

msold(A); /* Case 2 */
16. Scan ED to count countED(A) for each itemset A in CY; /*

Cases 5& 6 */
17. end if

18. Accumulate countUE(A) countED(A) counted(A) for each
itemset A in Ck;

19.
UE
kL {A | ACk and supUE(A) msnew(A)};

20. until UE
kL 

21.
UEL Uk

UE
kL ;

Figure 5. Algorithm DMA_CO.

A

DC

EB

() : msold

(35)

(25)

(15)

(20) (15)

(20)

(25)

(20)

IF

HG

(65) A

DC

EB

() : msnew

(40)

(25)

(15)

(20) (15)

(15)

(45)

(15)

IF

HG

(75)

Original Extended Incremental
Database (ed)

9
10

TID Primitive
Items

Generalized
Items

G, I
G, I

F
F

Original Extended Database (ED)

1

6
5
4
3
2

A, B, F
A

TID Primitive
Items

Generalized
Items

A, B
A, B

F

D, H, I

D

E, I
H, I
C, E

E, I

A
7
8 D

I
A, B

Figure 6. Example of an extended database with old and
new multiple minimum supports.

After generating UEL1 , we use the frontier set F to
generate candidate 2-itemsets C2, obtaining C2 {DG, DH,
DE, DF, DI, GH, GE, GB, GA, GI, HE, HB, HA, HI, EB,
EF, EI, BF, BI, AF, AI}. After loading the original
frequent 2-itemsets EDL2 , divide C2 into two subsets: CX

{HI, EI, AI} and CY {DG, DH, DE, DF, DI, GH, GE,
GB, GA, GI, HE, HB, HA, EB, EF, BF, BI, AF}. Note that
{DB}, {DA}, {GF}, {HF}, {EA} and {BA} are pruned
because of the existence of item-ancestor relationships.
Next, scan ed for C2 and determine the frequent 2-itemsets
in ed, i.e., edL2 . According to Case 2, {DG}, {DH}, {DE},
{DF}, {DI}, {GH}, {GE}, {GB}, {GA}, {HE}, {HB},
{HA}, {EB}, {EF}, {BF}, {BI} and {AF} are discarded
from CY since they are infrequent in ed. Then scan ED for
the remaining candidates in CY. Calculate the support
count for each 2-itemset in C2 and generate UEL2 {GI, HI,

EI}. Finally, we use UEL2 to generate candidate 3-itemsets

C3 and apply the same procedure to generate UEL3 , resulting
in an empty set.

The frequent itemsets of the incremental database from
Figure 3 are shown in Table 4. The resulting frequent
itemsets from Figure 6 are shown in Table 5.

Table 3. Frequent itemsets generated from the database in
Figure 2.

EDL1 ms (%) sup (%) EDL2
ms (%) sup (%)

H 15 25 H, I 15 25
E 20 37.5 E, I 20 25
D 20 37.5 F, I 25 25
F 25 25 A, I 35 37.5
B 25 50
A 35 75

Table 4. Frequent itemsets generated from the incremental
database in Figure 3.

edL1 ms (%) sup (%) edL2 ms (%) sup (%)
G 15 100 G, I 15 100
F 45 100 F, I 45 100
I 75 100

Table 5. Resulting fequent itemsets from the updated
database in Figure 6.

UEL1 ms (%) sup (%) UEL2 ms (%) sup (%)
D 15 30 G, I 15 20
G 15 20 H, I 15 20
H 15 20 E, I 20 20
E 20 30
B 25 40
A 40 60

5 Experiments
In order to examine the performance of DMA_CO, we
conduct experiments to compare its performance with that

of applying our proposed multi-supported generalized
association mining algorithms, including MMS_Cumulate
and MMS_Stratify [14], to the whole updated database
using refined support constraint. A synthetic dataset
generated by the IBM data generator [2] was used in the
experiments. The parameter settings for synthetic data are
shown in Table 6.

Table 6. Parameter setting.

Parameter Default
value

|DB| Number of original transactions 200000
|db| Number of incremental transactions 80000
|t| Average sizes of transactions 16
N Number of items 231
R Number of groups 30
L Number of levels 3
F Fanout 5

The comparisons were evaluated from two aspects: the
effect of varying minimum supports and that of
incremental transaction sizes. Each aspect was then
examined under two extreme cases of support refinement
that set bounds to the performance behavior of our
DMA_CO algorithm: 1) all items having msnewmsold; and
2) all items having msnewmsold. Besides, we adopted the
ordinary case that the minimum support of an item is no
larger than any of its ancestors. The vertical intersection
counting strategy [10][17] were used in the
implementation of each algorithm. All experiments were
performed on an Intel Pentium-IV 2.80GHz with 2GB
RAM, running on Windows 2000.
Minimum Supports: We use the following formula [8] to
generate multiple minimum supports for each item a:

ms(a) 

 

otherwise,
)(if,)(

k
kasupasup DBDB  ,

where k 0.4.
We first compared the performance of these three

algorithms with varying support specification and 80,000
incremental transactions. The experimental results are
shown in Figure 7. For differentiation, we used
DMA_CO1 to denote DMA_CO running under Case 1
(msnewmsold) and DMA_CO2 for DMA_CO under Case
2 (msnew msold). Not surprisingly, DMA_CO1 is faster
than DMA_CO2, mainly due to no new itemset in ED
being generated in Case 1. As shown in the figure,
DMA_CO outperforms MMS_Cumulate and
MMS_Stratify in either case, with performance gain
ranging from 14% to 80%. For 0.4, the performance
gain is tiny because of the significant decrease in the
number of frequent itemsets.
Transaction Sizes: We then compared the three
algorithms under varying transaction sizes. In this
experiment, was set to0.3 for all item ms setting. As the
results shown in Figure 8, the running time of all
algorithms increase in proportional to the incremental size.
And the performance gain of DMA_CO over

MMS_Cumulate or MMS_Stratify remains nearly
constant, independent of the transaction size.

10

110

210

310

410

510

610

0.1 0.2 0.3 0.4 0.5 0.6α

R
un

tim
e

(s
ec

.)

MMS_Cumulate
MMS_Stratify
DMA_CO1
DMA_CO2

Figure 7. Performance comparison with varying support
settings.

10

20

30

40

50

60

70

4 8 12 16 20
Number of incremental transctions (x 10,000)

R
un

tim
e

(s
ec

.)

MMS_Cumulate
MMS_Stratify
DMA_CO1
DMA_CO2

Figure 8. Performance comparison with different
incremental sizes.

6 Related Work
The problem of updating association rules incrementally
was first addressed by Cheung et al. [3], whose work was
later be extended to incorporate the situation of deletion
and modification [5]. Since then, a number of techniques
have been proposed to improve the efficiency of
incremental mining algorithms [7][9][11][13]. But all of
them were confined to mining associations among
primitive items. The problem of mining association rules
in the presence of classification ontology information was
first introduced in [6] and [12], independently. Cheung et
al. [4] were the first to consider the problem of maintaining
multi-level association rules.

The problem of mining association rules with multiple
minimum supports was investigated by Liu et al. [8]. Their
method allowed users to specify different minimum
supports to different items and could find rules involving
both frequent and rare items. However, their model
considers no classification ontology at all, and hence fails
to find generalized association rules. We have extended
this problem model to that of incorporating the
classification ontology of items [14], further advanced the
maintenance issue of frequent itemsets with respect to

database update [15], and dealt with the situation for
adjusting minimum support constraint to carry on iterative
association mining [16]. In this context, this paper is a
continuation of our previous work, taking into account
both the database update and support constraint refinement
to facilitate more real-world applications of associations
mining.

7 Conclusion
In this paper, we have investigated the problem of
dynamically mining association rules with classification
ontology under multiple minimum support update when
new transactions are continually added into the original
database over time. We also have presented a novel
algorithm, DMA_CO, for updating multi-supported
frequent itemsets. Experimental results on a synthetic data
show that the DMA_CO algorithm is 14% to 80% faster
than applying multi-supported generalized associations
mining algorithms to the whole updated database. In the
future, we will extend the problem of updating generalized
association rule to a more general model that the item
classification and/or composition ontology can be
evolving along with incremental transactions update.

References
[1] R. Agrawal, T. Imielinski and A. Swami, “Mining

Association Rules between Sets of Items in Large
Databases,”in Proc. 1993 ACM-SIGMOD Intl. Conf.
Management of Data, 1993, pp. 207-216.

[2] R. Agrawal, and R. Srikant, “Fast Algorithms for
Mining Association Rules,”in Proc. 20th Intl. Conf.
Very Large Data Bases, 1994, pp. 487-499.

[3] D.W. Cheung, J. Han, V.T. Ng, and C.Y. Wong,
“Maintenance of Discovered Association Rules in
Large Databases: An Incremental Update
Technique,” in Proc. 1996 Int. Conf. Data
Engineering, 1996, pp. 106-114.

[4] D.W. Cheung, V.T. Ng and B.W. Tam,
“Maintenance of Discovered Knowledge: A case in
Multi-level Association Rules,”in Proc. 1996 Int.
Conf. Knowledge Discovery and Data Mining, 1996,
pp. 307-310.

[5] D.W. Cheung, S.D. Lee and B. Kao, “A General
Incremental Technique for Maintaining Discovered
Association Rules,”in Proc. DASFAA'97, 1997, pp.
185-194.

[6] J. Han and Y. Fu, “Discovery of Multiple-level
Association Rules from Large Databases,”in Proc.
21st Intl. Conf. Very Large Data Bases, Zurich,
Switzerland, 1995, pp. 420-431.

[7] T.P. Hong, C.Y. Wang and Y.H. Tao, “Incremental
Data Mining Based on Two Support Thresholds,”in
Proc. 4th Int. Conf. Knowledge-Based Intelligent
Engineering Systems and Allied Technologies, 2000,
pp. 436-439.

[8] B. Liu, W. Hsu and Y. Ma, “Mining Association
Rules with Multiple Minimum Supports,”in Proc.
5th Intl. Conf. Knowledge Discovery and Data
Mining, 1999, pp. 337-341.

[9] K.K. Ng and W. Lam, “Updating of Association
Rules Dynamically,” in Proc. 1999 Int. Symp.
Database Applications in Non-Traditional
Environments, 2000, pp. 84-91.

[10] A. Savasere, E. Omiecinski and S. Navathe, “An
Efficient Algorithm for Mining Association Rules in
Large Databases,”in Proc. 21st Intl. Conf. Very
Large Data Bases, 1995, pp. 432-444.

[11] N.L. Sarda and N.V. Srinivas, “An Adaptive
Algorithm for Incremental Mining of Association
Rules,”in Proc. 9th Int. Workshop on Database and
Expert Systems Applications, 1998, pp. 240-245.

[12] R. Srikant and R. Agrawal, “Mining Generalized
Association Rules,” in Proc. 21st Int. Conf. Very
Large Data Bases, 1995, pp. 407-419.

[13] S. Thomas, S. Bodagala, K. lsabti and S. Ranka, “An
Efficient Algorithm for the Incremental Updation of
Association Rules in Large Databases,” in Proc. 3rd
Int. Conf. Knowledge Discovery and Data Mining,
1997, pp. 263-266.

[14] M.C. Tseng and W.Y. Lin, “Mining Generalized
Association Rules with Multiple Minimum
Support,” in Proc. Int. Conf. Data Warehousing and
Knowledge Discovery, Lecture Notes in Computer
Science, Vol. 2114, 2001, pp. 11-20.

[15] M.C. Tseng and W.Y. Lin, “Maintenance of
Generalized Association Rules with Multiple
Minimum Supports,”Intelligent Data Analysis, Vol.
8, No. 4, 2004, pp. 417-436.

[16] M.C. Tseng, W.Y. Lin and R. Jeng, “Efficient
Remining of Generalized Association Rules under
Multiple Minimum Support Refinement,” in Proc.
9th Int. Conf. Knowledge-Based Intelligent
Information & Engineering Systems, Lecture Notes
in Computer Science, Vol. 3683, 2005, pp.
1338-1344.

[17] M.J. Zaki, “Scalable Algorithms for Association
Mining,”IEEE Transactions on Knowledge and
Data Engineering, Vol. 12, No. 2, 2000, pp.
372-390.

Author Biographies

Ming-Cheng Tseng is a PhD student in
the Department of Information Engineering at the I-Shou
University, Taiwan. He received the BS and MS degrees
in Information Management from the I-Shou University,
Taiwan, in 1999 and 2002, respectively. His research
interests include data mining, data warehousing, database
systems, fuzzy theory and information systems.

Wen-Yang Lin is a Professor and the
Chair of Department of Computer Science and
Information Engineering in National University of
Kaohsiung. He received his B. S. and M. S. both in
Computer Science and Information Engineering from
National Chiao-Tung University in 1988 and 1990,
respectively. He then received his Ph.D. in Computer
Science and Information Engineering from National
Taiwan University in 1994. Dr. Lin has published more
than 30 journal publications and 70 conference
publications in the area of data warehousing, data mining,
evolutionary computation, sparse matrix technology and
large-scale supercomputing. Dr. Lin is a member of IEEE,
the Taiwanese AI Association and the Institute of
Information and Computing Machinery.

Rong Jeng is an Associate Professor in
the Department of Information Management at the I-Shou
University, Taiwan. He received the BS degree in Control
Engineering from the National Chiao Tung University,
Taiwan, and the MS degree in Electrical Engineering from
the Memphis State University, and PhD degree in
Electrical and Computer Engineering from the University
of Cincinnati, in 1989. His research interests include
information education, application software, statistical
analysis, operation research and system simulation.

