
Under consideration for publication in Knowledge and Information
Systems

A Genetic Selection Algorithm for
OLAP Data Cubes

Wen-Yang Lin1 and I-Chung Kuo2

1Department of Information Management, I-Shou University, Kaohsiung 84008, Taiwan
2Institute of Information Engineering, I-Shou University, Kaohsiung 84008, Taiwan

Abstract. Multidimensional data analysis, as supported by OLAP (online analytical
processing) systems, requires the computation of many aggregate functions over a large
volume of historically collected data. To decrease the query time and to provide various
viewpoints for the analysts, these data are usually organized as a multi-dimensional
data model, called data cubes. Each cell in a data cube corresponds to a unique set
of values for the different dimensions and contains the metric of interest. The data
cube selection problem is, given the set of user queries and a storage space constraint,
to select a set of materialized cubes from the data cubes to minimize the query cost
and/or the maintenance cost. This problem is known to be an NP-hard problem. In
this study, we examined the application of genetic algorithms to the cube selection
problem. We proposed a greedy-repaired genetic algorithm, called the genetic greedy
method. According to our experiments, the solution obtained by our genetic greedy
method is superior to that found using the traditional greedy method. That is, within
the same storage constraint, the solution can greatly reduce the amount of query cost
as well as the cube maintenance cost.

Keywords: Multidimensional database; Data warehouse; OLAP; Data cubes; Genetic
algorithms; Greedy method

1. Introduction

The multidimensional database (MDDB) is a new database concept dedicated
to solving the demands of a decision supporting system. To understand what the
data is really saying, the managers usually need to investigate data from differ-
ent business perspectives and change the navigation according to the previous

Received xxx
Revised xxx
Accepted xxx

2 Lin and Kuo

observation. Toward this purpose, data from various operational sources are rec-
onciled and stored in a repository database using a multidimensional data model
(Chaudhuri and Dayal 1997), called a data cube. Each cell of a data cube rep-
resents a specific view in which users are interested. Because of the space limits
of MDDB, only a subset of the data cubes can be stored in the repository. The
OLAP data cube selection problem is, given a set of user queries and a storage
space constraint, to select a set of materialized cubes from the data cubes to
minimize the query cost and/or the maintenance cost. This problem is known to
be an NP-hard problem (Harinarayan et al 1996).

In this paper, unlike most of the work done so far making use of heuristics to
obtain a near optimal solution, we apply genetic algorithms to solve this problem.
Our genetic method is featured by an innovative greedy repair method to tackle
the problem of unfeasible solutions, which occurs when a naive binary encoding
scheme is used. According to the experiments, our greedy genetic algorithm is
more effective than the well-known greedy algorithm (Gupta 1997, Gupta et
al 1997, Harinarayan et al 1996) in finding good solutions, especially when the
space constraint is more restricted.

1.1. Data Warehouse and OLAP

For many years, enterprises have accumulated a lot of data and now realize the
importance of using these data for supporting their decision-making. However,
these data are usually stored in different information systems, which means that
the decision makers have no common data source while they make decisions. This
would lead to some important faults: (1) Decision makers would not know where
to get the related data. (2) While different analysts cite different data sources,
it is very possible to achieve very different conclusions. (3) Because the data are
distributed in different sources of information systems, analysts must integrate
the data before the analysis, including format transformation and filtering. This
process can be computation-intensive and makes the results out of date.

The data warehouse concept (Inmon and Kelley 1993) is a technique to solve
these problems. According to the demands of analysts, data are extracted and
transformed from each source database and saved in a repository, called a data
warehouse. The data are usually organized into a relational model of multi-
dimensional data, called a star schema (Chaudhuri and Dayal 1997), as depicted
in Figure 1. Each dimension table contains all the information specific to the
dimension itself, while the fact table correlates all dimensions and contains in-
formation of interest to the analysts. When users execute any query, the system
only needs to search the data warehouse instead of the source databases.

A complete data warehousing system is composed of three primary parts: the
source databases in the backend, a data warehouse and several data marts in the
core, and analysis tools in the front-end. Often, the analysis that a data ware-
house supports is on-line analytical processing (OLAP) (Chaudhuri and Dayal
1997), where the queries aggregate large volumes of data to detect trend anoma-
lies. Typical OLAP operations include drill-down, roll-up, pivoting, and slice-
and-dice (Chaudhuri and Dayal 1997). One of the design issues for supporting
OLAP analysis is how to speed up the computation-intensive operations used
for OLAP to facilitate on-line navigation between different abstraction views of
the aggregate data. To this end, the aggregate data are pre-computed and stored
in another repository dedicated for OLAP, called a multidimensional database

A Genetic Selection Algorithm for OLAP Data Cubes 3

Fact Table

Dimension

Table 2

Dimension

Table 4

Dimension

Table 3

Dimension

Table 1

Fig. 1. A star schema.

Data Warehouse

Analysis

OLAP server

MDDB

Operational
 or

external sources

Extract

Transform

Fig. 2. A general structure of the data warehousing system with OLAP services.

(MDDB) or data mart. Figure 2 illustrates a general structure of the data ware-
housing system with OLAP services.

1.2. Related Work

As will be formalized later, the data in a MDDB are organized with a multi-
dimensional data model, called a data cube. A data cube can be regarded as,
in terms of database terminology, a materialized view. Harinarayan et al (1996)
was the first one to consider the problem of materialized views selection for sup-
porting multidimensional analysis in OLAP. They proposed a lattice model and
provided a greedy algorithm to solve this problem. Gupta et al (1997) further
extended their work to include indices selection. Ezeife (1997) also considered
the same problem but proposed a uniform approach using a more detailed cost
model. Recently, Shukla et al (1998) proposed a modified greedy algorithm that
selects only according to the cube size. Their algorithm was shown to have the
same quality as Harinarayan’s greedy method but is more efficient. Soutyrina
and Fotouhi (1997) proposed a dynamic programming algorithm to solve the
problem, which can yield the optimal set of cubes. All of these works were based
on the assumption that all aggregates are computed from a single cube. Instead
of focusing on this special case, Shukla et al (2000) considered the view selection
problem for multi-cube data models and proposed a multi-cube algorithm.

4 Lin and Kuo

Baralis et al (1997) formalized the cube lattice model and proposed a method
to reduce the solution space before applying the cube selection process. Qiu and
Ling (2000) further investigated this issue. They proposed two methods, called
the functional dependency filter and the size filter, to eliminate the redundant
or insignificant views. Ross et al (1996) discussed how to materialize additional
views to decrease the maintenance cost.

Gupta (1997) proposed a systematical methodology for the selection of ma-
terialized views. He extended the aggregated queries into a more general form
that could be represented by an AND-OR graph. Gupta and Mumick (1999)
then investigated how to select views or indices to decrease the cost of query
processing under the maintenance cost constraint. The same problem was also
discussed by Liang et al (2001). Though the AND-OR graph is appropriate for
general view selection problem, it is not suitable for OLAP. The AND-OR graph
is originally used in query evaluation, which expresses all of the alternative ”use-
ful” ways for evaluating a query from the given base relations in the presence of
the other queries/views. But it is tedious to transform all of the user’s OLAP
activities into query expressions. Indeed, researchers have shown that for the
grouping/aggregated queries used in OLAP, we only have to model the query or
view dependence using the data cube lattice (or called OR-view graph) (Gupta
1997, Gupta et al 1997, Harinarayan et al 1996). In addition, the cube lattice
can accommodate the dimension hierarchy information that is very important
to underlie the two commonly used OLAP operations, roll-up and drill-down.

Theodoratos and Sellis (1997) supposed that all queries should be answered
solely by the materialized views, with or without rewriting the users’ queries.
They modeled the problem as a state space optimization problem, and provided
exhaustive and heuristic algorithms without concern for the storage constraint.
At the same time, Yang et al (1997) proposed a different model called Multi-
ple View Processing Plan (MVPP) for the same problem. They exploited the
existence of common sub-expressions among most queries.

A general framework that incorporates all of the above issues was presented
in Theodoratos and Bouzeghoub (2000). On the basis of the AND/OR expression
DAGs, the framework tried to accommodate all possible design goals, such as
query evaluation cost and/or view maintenance cost, and various constraints,
such as space constraint and/or maintenance cost constraint. Jamil and Modica
(2001) presented the design and implementation of a view selection system for
multidimensional databases.

There is some work devoted to applying genetic algorithms to the view se-
lection problem (Horng et al 1999, Zhang and Yang 1999, Zhang et al 2001).
Following the AND-OR view graph used in Gupta et al (1997), Horng et al
(1999) proposed a genetic algorithm to select the appropriate set of views to
minimize the query cost and view maintenance cost. Their algorithm is very
similar to ours. The primary difference is in the repairing scheme. We use a
greedy repair method to correct the infeasible solutions while they use a penalty
function to punish the fitness of the infeasible solutions and incorporate a lo-
cal search technique to maintain local optimality. Researches have shown that
the repair scheme is better in dealing with infeasible solutions than the penalty
function is (Michalewicz 1994).

The problem considered in Zhang and Yang (1999) and Zhang et al (2001) is
different from ours. Rather than optimize the view selection from a given query
processing plan, the primary purpose in Zhang and Yang (1999) and Zhang et
al (2001) is to find an optimal set of processing plans for multiple queries. A

A Genetic Selection Algorithm for OLAP Data Cubes 5

solution in their genetic algorithm thus represents a set of processing plans for
the given queries.

1.3. Paper Organization

The rest of this paper is organized as follows. In Section 2, we introduce the
cube lattice model and formalize the OLAP cube selection problem. Section
3 explains the concept of genetic algorithms and states how to apply GAs to
the cube selection problem. The proposed greedy repair method is described as
well. In Section 4, we describe our experiments and the results. Section 5 is the
conclusion of this paper.

2. Problem Formulation

2.1. Data Cube and Lattice Framework

The data cube concept was first proposed by Gray et al (1997) as a generalization
of the SQL groupby operator to meet users’ on-line investigation of data from
various viewpoints. This interactive and multidimensional analysis is usually
accomplished by pre-computing aggregations over the data (Sarawagi et al 1996).
For example, consider a fact table about product sales with the following schema

Sales Fact (Product, Supplier, Customer, Sales).

Each tuple represents the sale of some product that is provided by some supplier
sold to some customer at a sale price.

There are a number of queries that can be asked of this data. For example, the
analysts will be interested in knowing the sales value from different viewpoints:
consumer, supplier, and product. The sales data can be regarded as a data cube
consisting of three dimensions: Customer, Supplier, and Product. Each cell of the
data cube corresponds to a unique set of values for different dimensions. In this
example, a cell represents the sales of a product provided by some supplier and
sold to some customer, as shown in Figure 3. The data cube consists of four
suppliers, four customers, and six products. If we want to know the sales of
each product provided by every supplier, we must perform an aggregation along
the customer dimension, with respect to different suppliers and products. For
example, (c1, p1, s1) + (c2, p1, s1) + (c3, p1, s1) + (c4, p1, s1) yields the sales
for product p1 provided by s1. This aggregated query can be described by a
SQL-statement as follows:

SELECT Product, Supplier, SUM (Sales) AS Total Sales
FROM Sales Fact
GROUP BY Product, Supplier

The result of this query indeed corresponds to a subcube of the original data
cube, as shown in Figure 4. We denote this subcube as (-, p, s), where symbol ’-’
represents the corresponding attribute that is not in the GROUP BY statement
in SQL.

In the same way, we can aggregate any combinations of the three dimen-
sions, Customer, Product and Supplier, and obtain eight possible cubes (views).
The relation of these eight cubes can be modeled as a cube lattice shown in

6 Lin and Kuo

Customer

Supplier

P

ro

d
u
c
t

c1 c2
 c3
 c4

s1

s2

s3

s4

p
1

p

2

p
3

p

4

p
5

p

6

Fig. 3. An example of data cubes.

Supplier

P

ro

d
u

c
t

All

p
1

p
2

p

3

p
4

p

5

p
6

s1

s2

s3

s4

Customer

Fig. 4. The corresponding cube (-, p, s) derived from the data cube in Figure 3.

Figure 5. The numbers beside each cube indicate its size and invoking frequency,
respectively. The edge between any two cubes ci and cj represents the depen-
dence relation between these two cubes. We say ci is dependent on cj , denoted
as ci ¹ cj , if any query answered by ci can also be answered by cj , but the
reverse is not true. For example, consider (-, p, -) and (-, p, s). If we want to
know the sales of each product, it is obvious that we can answer this question by
using cube (-, p, -) or (-, p, s). But if we want to know the sales of each product
provided by different suppliers, we can only obtain the answer from cube (-, p,
s).

Given a fact relation with N dimensions, there are 2N data cubes. Consider a
subset, say M , of these 2N data cubes. We define the ancestors and descendants
of a cube ci as follows:

Anc(ci,M) = {cj |cj ∈ M and ci ¹ cj},
Des(ci,M) = {cj |cj ∈ M and cj ¹ ci}.

A Genetic Selection Algorithm for OLAP Data Cubes 7

(
c, -, -)
 0.1M, 0.15
 (-,
 p, -)
 0.2M, 0.25
 (-, -,
 s)
 0.01M, 0.2

(-, -, -)
 1, 0

(
c, p, s)
 6M, 0.05

(
c, p, -)
 6M, 0.1
 (
c, -, s)
 5M, 0.1
 (-,
p, s)
 0.8M,
 0.15

Fig. 5. A lattice with eight data cubes.

The least ancestor and greatest descendant of ci then can be derived straight-
forwardly,

Lanc(ci,M) = min
cj∈Anc(ci)

|cj |,

Gdes(ci,M) = max
cj∈Des(ci)

|cj |.

For example, the ancestors of (c, -, -) in Figure 5 are (c, p, -), (c, -, s) and (c, p,
s) while the least ancestor is (c, -, s).

2.2. The Cube Selection Problem

According to the above discussions, it is important that a MDDB stores suitable
cubes in light of users’ questions to accelerate the query processing. That is,
suitable cubes are pre-computed and stored in the MDDB. The best way is
to materialize all data cubes. Nevertheless, the space limitation of the MDDB
would hinder us from doing this. We should instead consider users’ queries to
select the optimal subset of cubes for materialization in order to speed up the
query response time without requiring too much work to keep the materialization
consistent with any modifications to the fact table. This problem is called the
data cube selection problem, which we will state formally as follows.

Given an OLAP cube-lattice L with n cubes C = {c1, c2, . . . , cn} derived from
a fact table R, a set of queries Q = {q1, q2, . . . , qk}, a set of query frequency values
F = {fq1 , fq2 , . . . , fqk

} associated with the queries in Q, a set of update frequency
values G = {gc1 , gc2 , . . . , gcn} of the cubes in C, and a space constraint S, the
cube selection problem is denoted as a seven-tuple Ω = (L,C, R, Q, F, G, S). A
solution to Ω is a subset of C, say M , that can minimize the following cost
function under the constraint that

∑
c∈M |c| ≤ S,

k∑

i=1

fqiE(qi,M) +
∑

c∈M

gc U(c, M) (1)

where E(qi,M) and U(c,M) denote, with respect to the set of materialized cubes
M , the cost to evaluate query qi and the cost to update cube c, respectively.

Note that though Eq. 1 is derived from the OLAP-cube lattice model, it is

8 Lin and Kuo

valid for other general view selection models such as AND/OR view graph. The
readers should refer to Gupta (1997) for the details.

2.3. The Cost Model

In this subsection, we will deliberate the cost function defined previously. There
are two parts: the query cost and the maintenance cost.

For the query cost part, note that the queries considered in the OLAP analy-
sis, such as min, max, average, and sum, are all types of aggregation functions; an
entire scan of the inspected data suffices for the evaluation. Hence, we follow the
cost model proposed by Harinarayan et al (1996), in which the cost of evaluating
a query equals to the number of non-null cells in the aggregated cube used to
answer the query. To validate this assumption, Harinarayan et al (1996) made
an experiment and found that there is an almost linear relationship between the
cube size and the query evaluation time.

Using the linear cost model, the evaluation cost can be expressed alterna-
tively in terms of the cube notion. Consider an aggregation query q involving
t dimensions, say a1, a2, . . . , at. The cubes used to answer this query should be
composed of a superset of these dimensions. We denote the very cube with just
the same dimensions as query q be cq. Hence, there is a mapping from the query
set Q to the cube set C. For a cube c, we define its invoking frequency fc as

fc =
∑

q∈Q,c=cq

fq.

Then the query cost becomes
n∑

i=1

fciE(ci,M),

where E(ci,M) denotes the cost to evaluate cube ci from the current material-
ization set M . In terms of the least ancestor notion,

E(ci,M) = min(|ci|, |Lanc(ci, M)|).
For the maintenance cost part, we consider only the insertion of tuples into

the fact table R from which the data cubes are derived. This assumption is based
on the fact that the data stored in a data warehouse are continually expanding
with no modification. Furthermore, we assume that the insertions do not violate
the referential integrity constraint within the star schema.

All of the materialized cubes constructed for supporting OLAP must be up-
dated, reflecting the changes to the data warehouse. The materialized cubes can
be recomputed from scratch or a deferred maintenance technique can be used de-
pending on the design of the OLAP server (Mumick et al 1997, Ross et al 1996).
In this paper, to simplify the discussion, we adopted the first approach, but the
techniques addressed here can also be applied to the other approach. With this
assumption, the cost to maintain a materialized cube ci in M then equals the
size of the least ancestor of ci, e.g., U(ci,M) = |Lanc(ci,M)|. Let gu represent
the frequency of insertions to the base relation R. The total maintenance cost
becomes

gu

∑

c∈M

U(c,M).

A Genetic Selection Algorithm for OLAP Data Cubes 9

Combining the above derivations, the cost function in Eq. 1 then becomes
n∑

i=1

fci
E(ci,M) + gu

∑

c∈M

U(c,M). (2)

Hereafter, this modified cost function is used in all discussions.

3. The Proposed Genetic Algorithm for Cube Selection

3.1. Simple Genetic Algorithms

The Genetic Algorithm (GA), first proposed by Holland (1992) in 1975, is an
approach that mimics biological processes for evolving optimal or near optimal
solutions to problems. Beginning with a random population (group of chromo-
somes), it chooses parents and generates offspring using operations analogous
to biological processes, usually crossover and mutation. Adopting the survival
of the fittest principle, all chromosomes are evaluated using a fitness function to
determine their fitness values, which are then used to decide whether the chromo-
somes are eliminated or retained to propagate. The higher fitness chromosomes
are kept and the less fitness ones are discarded in generating a new population.
The new population replaces the old one and the whole process is repeated until
a specific termination criterion is satisfied. The chromosome with the highest
fitness value in the last population gives the solution. A general description of a
simple genetic algorithm (Goldberg 1989) is given in Algorithm 3.1.

Algorithm 3.1. A simple genetic algorithm.

Initialize the parameters;
Generate a population P randomly;
generation ← 1;
while generation ≤ max gen do

Clear the new population P ′;
Use a fitness function µ(·) to evaluate each individual in P ;
while |P ′| ≤ population size do

Select two parents from P ;
Perform crossover;
Perform mutation;
Place the offspring into P ′;

endwhile
P ← P ′;
generation ← generation + 1;

endwhile

3.2. On Applying Simple Genetic Algorithms

As stated above, GA is an evolutionary process composed of many biological
imitations, such as the chromosome representation, genetic operators, population
selection, and fitness function. Below, we state the primary issues involved in
applying GAs to the cube selection problem.

10 Lin and Kuo

Child

1
1
0
0
 0
0
1
0

1
1
0
0
 1
1
1
1

0
0
0
1
 1
1
1
1

0
0
0
1
 0
0
1
0

Parent

Fig. 6. One-point crossover.

Encoding scheme. The encoding scheme is the first step and the key part
of using GAs. To make available the crossover and mutation operations, and to
enhance the performance of the algorithm, a chromosome representation that
stores the current solution is desirable. The most common encoding scheme is
to transform the problem solutions into a binary string. For the cube selection
problem, this scheme is extremely natural. For example, we can use an 8-bit
binary string to represent the way that the cubes in Figure 5 are selected; ’0’
means that the cube is not selected and ’1’ means that it is selected. In this way,
’01011010’ means that the selected cubes are (c, p, -), (-, p, s), (c, -, -), and (-,
-, s).

Fitness function. A fitness function evaluates the degree of fitness of each
chromosome. All chromosomes with smaller fitness are discarded to increase the
probability of retaining population superiority. Designing the fitness function is
important in creating an effective GA. It may be the most time-consuming and
is dependent on the characteristics of the problem. Different kinds of problems
have different fitness function definitions. Here, we use the cost function in Eq. 2
as the fitness function.

Selection. Selection is a way of choosing individuals from a population as
the parents for crossover. According to the survival of the fittest principle, we
select the better individuals to generate the next generation. Nevertheless, the
diversity of the population will be lost if we always focus on the best individuals.
This is because that the area exploited for possible solutions is restricted, and
the population will converge too quickly to evolve to a better solution. In this
study, we adopted the tournament selection method (Mitchell 1996). Two indi-
viduals are randomly chosen from the current population and a random number
r between 0 and 1 is generated. If r is less than a predefined value, usually set
as 0.75, we choose the individual with the higher fitness value; otherwise, we
choose the other one. An individual who has been selected still can be chosen
the next time. Besides, we adopted the elitism principle (Mitchell 1996): The
best individual is always selected into the next population.

Crossover. The crossover operation is used to generate offspring by exchang-
ing bits in a pair of individuals (parents) chosen from the population. There are
diverse forms of crossovers mentioned in the literature, but each has its limita-
tions and must be considered in light of the characteristics of the problem in
question. Here, we adopted the simplest one-point crossover. A crossover point
is randomly selected with probability pc (called crossover probability, typically
pc = 0.7) and the portions of the two individuals divided by this point are
exchanged to form the offspring. This operation is illustrated in Figure 6.

Mutation. The mutation operator is used to randomly change some elements
in selected individuals and leads to additional genetic diversity to help the search
process escape from local optimal traps. The canonical bit-flip mutation is used
in this study: Each locus of an individual is subject to mutation with probability
pm (called mutation probability) and the bit value at that locus is changed from

A Genetic Selection Algorithm for OLAP Data Cubes 11

0 to 1 or vice versa. For example, suppose that an individual x = 10010100 is
mutated at the sixth locus. The new individual x′ will be 10010000.

3.3. Incorporated with the Greedy Repair Algorithm

A naive implementation using the simple genetic algorithm will generate infea-
sible solutions during the evolution. The primary reason is that the simple GA
does not embed the constraint into its encoding scheme. For example, assume
that the space limit is 7M and the two chromosomes selected for crossover are
10001101 and 00111110. The sizes of the materialized cubes corresponding to
these two chromosomes are both under 7M. If we select the second gene as
a crossover point, then the offspring generated by crossover are 10111110 and
00001101. Both exceed the space limit! There are many methods to remedy infea-
sible solutions (Michalewicz 1994). Some commonly used methods are (1) using
an alternative encoding scheme to avoid infeasible solutions; (2) using a penalty
function to make the infeasible solutions get a worse fitness, and thus decreasing
their opportunities to survive; and (3) using a repair method to adjust the genes
of the infeasible chromosomes to meet the problem constraint.

In the literature, using a repair method has been shown to be more effective
than the others for most constraint problems (Michalewicz 1994). Hence, we
adopted the third method in our study.

We proposed a greedy repair method that can be seen as a reverse version of
Harinarayan’s greedy method. Rather than increase the set of materialized cubes
from the empty one by one, we correct the genes of an infeasible chromosome
each time by choosing the least detrimental cube. That is, the elimination of this
cube will increase the least cost per space unit.

For this purpose, we defined a detriment function D(c,M) to compute, rel-
ative to some selected set of cubes M , the total cost increase caused by the
elimination of a cube c, i.e.,

D(c,M) =
1
|c|


 ∑

ci∈C−{c}
fci [E(ci,M − {c})− E(ci,M)]+

gu

∑

ci∈M−{c}
[U(ci,M − {c})− U(ci,M)]


 (3)

Using this function, we compute the detriment of all selected cubes in M when
a chromosome corresponds to an infeasible solution, and choose the one having
the least detriment for repairing. Our greedy repair algorithm is described in
Algorithm 3.2.

For an illustration of Algorithm 3.2, consider the previous example: An indi-
vidual 10111110 needs to be repaired, and the space constraint is 7M. We assume
that the cube invoked frequencies are 0.05, 0.1, 0.1, 0.15, 0.15, 0.25, 0.2, and 0,
as shown in Figure 5. We also assume that when (c, p, s) is not materialized, all
queries that should be answered by (c, p, s) will go back to the base relation in
the data warehouse and that the size of the base relation is 200M. Table 1 lists
the detriment of the six cubes, (c, p, s), (c, -, s), (-, p, s), (c, -, -), (-, p, -), and
(-, -, s), where the elements in column ”influenced cubes” of cube ci refer to the
cubes whose evaluation or maintenance cost must be updated when ci is elimi-

12 Lin and Kuo

Table 1. Detriment of subcubes during the process of greedy repair algorithm.

Cube Influenced cubes Detriment
For evaluation For maintenance

cps cps, cp- cps, c-s, -ps 7.98
c-s c-s c-s, c– -0.08
-ps -ps -ps, -p-, –s 1.57
c– c– c– 3.85
-p- -p- -p- 0.35
–s –s –s 7.8

nated. For example, when we remove cube (c, p, s), the corresponding queries for
(c, p, s) and (c, p, -), currently answered by (c, p, s), should now go back to the
base relation. The maintenance cost for (c, p, s) becomes zero while the cost for
maintaining (c, -, s) and (-, p, s) is increased from 6M into 200M. The detriment
is ((200− 6) ∗ (0.05 + 0.1) + (−200 + (200− 6) ∗ 2) ∗ 0.1) /6 = 7.98. According
to Table 1, the cube selected for removal is (c, -, s). The size of the remaining
cubes amounts to 7M, which is no larger than 7M.

Algorithm 3.2. A greedy repair method.

Let an individual x that needs to be repaired be (x1, x2, ..., xn), and the
corresponding set of selected cubes be M = {ci|xi = 1, 1 ≤ i ≤ n};
while

∑
c∈M |c| > S do

for each ci ∈ M do
Calculate the detriment D(ci,M);

cj ← the cube with min detriment;
xj ← 0;
M ← M − {cj};

endwhile

Algorithm 3.3 shows our greedy genetic algorithm for OLAP cube selection.

3.4. Complexity Analysis

We first analyze the complexity of Algorithm 3.2 to facilitate the whole evalua-
tion. It is easy to see that the computation for repairing an individual is propor-
tional to the number of bits undergoing repair. This number is dependent on how
far the total size of the materialized views represented by the individual is from
the space constraint. Let the space limit be S and the total size of all sub-cubes
be σ, for σ =

∑
i |ci|. In average, we can expect an individual of size σ/2 and a

sub-cube of size σ/n. The number of bits to be repaired will be n/2−nS/σ. Fur-
thermore, each bit repair involves finding the sub-cube with minimum detriment,
which according to the definition of detriment function consumes approximately
O(n log n) time. Therefore, each calling of Algorithm 3.2 requires O(n2 log n)
computation. Note that this is in the same order of magnitude as Harinarayan’s
greedy algorithm (Harinarayan et al 1996).

Let r denote the population size and g denote the max generation. The
crossover and mutation operations can be completed within a constant time.
Each fitness evaluation requires O(n) time. In each generation there are at most
r individuals undergoing crossover and needed to be re-evaluated the fitness.

A Genetic Selection Algorithm for OLAP Data Cubes 13

The total evaluations for g generations thus require O(grn) time. It is hard to
estimate within a generation how many individuals will undergo repairing. In the
worst case, all offspring generated by crossover become infeasible. Consequently,
the cost spent on repairing for g generations is O(grn2 log n). The complexity of
Algorithm 3.3 is thus O(grn2 log n).

Algorithm 3.3. A greedy genetic cube selection algorithm.

Initialize the parameters;
Generate a population P randomly;
generation ← 1;
while generation ≤ max gen do

Clear the new population P ′;
for each individual x ∈ P do

if x is not feasible then
Invoke Algorithm 3.2 to repair x;

Evaluate the fitness of x;
endfor
while |P ′| ≤ population size do

Select two parents from P ;
Perform crossover;
Perform mutation;
Place the offspring into P ′;

endwhile
P ← P ′;
generation ← generation + 1;

endwhile

Now that the complexity of our genetic algorithm is associated with the
population size and max generations, we want to clarify the setting of these two
parameters. Since genetic algorithms are stochastic search processes, there is no
convincing theory that would completely justify the setting of population size
and max generation for GAs to reach the optimal solution. Nevertheless, we can
examine a sort of convergence in probability. Reeves (1993) adopted the principle
that the initial population should contain at least one instance of every allele
at every locus to ensure that a genetic algorithm is potentially able to reach
every point in its search space. He showed that the probability that at least one
allele is present at each locus is (1 − (1/2)r−1)n. Let p denote the desired least
probability. We can derive a lower bound on r in terms of n and p:

(
1−

(
1
2

)r−1
)n

≥ p ⇒ r ≥ 1− log (1− n
√

p) . (4)

Similarly, given a fixed probability p, we may ask what is the smallest number
of generations required to obtain an optimal solution. Aytug and Koehler (1996)
modeled the genetic algorithms with Markov chain and derived the following
bound

INT

[
max

j

{
ln(1− p)

ln
(
δ(Q−Quj uT

j)
)
}]

≤ g

14 Lin and Kuo

≤ INT
[

1− ln(1− p)
r ln (1−min {pm(1− pm)n−1, pm

n})
]

, (5)

where INT[x] denotes the smallest integer greater than or equal to x, for x ≥
0, Q is the Markov chain transition matrix, uj the jth unit vector, δ(A) the
spectral radius of a matrix A and pm the mutation probability. The lower bound
is difficult to evaluate because the maximum is taken over all states of the Markov
chain. Nevertheless, we can derive a lower bound for g in terms of the takeover
time, i.e., the number of generations until the whole population contains the
best individual of the initial population (Goldberg and Deb 1991). For the 2-
tournament selection, the take over time (Goldberg and Deb 1991) is

ln r + ln(ln r)
ln 2

. (6)

Greenhalgh and Marshall (2000) showed that the upper bound can be improved
further as

g ≤ INT
[

1− ln(1− p)
r ln (1−min {pm(1− pm)n−1, pm

n})
]
≈ − ln(1− p)

r pm
n

. (7)

Taking pm = 1/n, as suggested by Muhlenbein (1992), and incorporating Eqs. 6
and 7, we have

ln r + ln(ln r)
ln 2

≤ g ≤ − ln(1− p)nn

r
. (8)

Note that the above derivation is based on the simple GAs, which does not
take into account the effect of chromosomes repairing. Though very loose this
bound is, it gives us the preliminary guidance in appropriate generation setting.
Because the population diversity is reduced after repairing, we can expect that
the population will converge more quickly. The question of what the exact bound
on the number of generations is when concerning the repairing effect deserves
further investigation.

4. Experimental Results

To validate the effectiveness of the proposed genetic selection method, we com-
pared it with the leading selection method used in Harinarayan et al (1996),
which is a greedy based heuristic. We used the test set in TPC-D benchmark
(Raab et al 1995), which is a database generator following the proposal of the
Transaction Processing Performance Council in 1995, and is dedicated to de-
cision support applications. This database can generate up to 10000GB data.
Here, we used the smallest database 1GB. We chose three dimensions from the
test set, Customer c, Product p, and Supplier s. To broaden the variety of data
cubes, we added additional attributes to each dimension, forming the hierarchy
shown in Figure 7. Because there are four combinations for each dimension, we
have 64 different data cubes, as detailed in Table 2. For simplicity, each cube is
represented by the first letter of the attributes and symbol ’-’ means none.

We considered three different cases of cube invoking frequencies: (1) uniform
frequencies set as 1. (2) random frequencies between 0 and 1. (3) linear frequen-
cies proportional to the reciprocal of the cube size. For the space constraint, we
considered ten different values set as 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%,

A Genetic Selection Algorithm for OLAP Data Cubes 15

Product

Type
 Size

Customer

Nation

Region

None

Supplier

Nation

Region

None

None

Fig. 7. The attribute hierarchy of three dimensions: Product, Customer, and Supplier.

Table 2. All data cubes derived from three dimensions: Customer, Product, and Supplier. The
size is measured in K (1000) numbers of tuples.

cps 6000 nps 5000 rps 4000 -ps 800
cpn 6000 npn 5000 rpn 4000 -pn 800
cpr 6000 npr 5000 rpr 4000 -pr 800
cp- 6000 np- 5000 rp- 1000 -p- 200
css 5000 nss 500 rss 2500 -ss 500
csn 5000 nsn 30 rsn 6.25 -sn 1.25
csr 5000 nsr 6.25 rsr 1.25 -sr 0.25
cs- 5000 ns- 1.25 rs- 0.025 -s- 0.05
cts 5990 nts 800 rts 3000 -ts 1500
ctn 5990 ntn 90 rtn 18.75 -tn 3.75
ctr 5990 ntr 18.75 rtr 3.75 -tr 0.75
ct- 5990 nt- 3.75 rt- 0.75 -t- 0.15
c-s 6000 n-s 250 r-s 50 –s 10
c-n 2500 n-n 0.625 r-n 0.125 –n 0.025
c-r 500 n-r 0.125 r-r 0.025 –r 0.025
c– 100 n– 0.025 r– 0.005 — 0.001

80%, and 90%, respectively, of the total size of all cubes. In this way, we have
thirty different combinations. Furthermore, if none of the cubes that are capable
of answering a specific query is materialized, we assumed that the fact table R
in the data warehouse is used. The cost for the evaluation or maintenance of a
cube using R is set as three times that using the largest cube, i.e., 18M. The
following parameter settings are used in our greedy genetic algorithm.

max generation: 100
population size: 100
crossover probability: 0.65
mutation probability: 1/64

The results are depicted in Figures 8 to 10, each corresponding to one of the
three frequency assumptions. From these results, we observed the following:

(1) Regardless of the storage space and frequency of the test set, the solution
obtained by our genetic greedy method is superior to Harinaryan’s greedy
method.

(2) The total cost reaches a minimum when the space is around 20% of the size
of all cubes. Any further increase beyond this amount does not significantly

16 Lin and Kuo

0

50

100

150

200

250

300

350

5%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

Space limit

T
o

ta
l

co
st

 (
m

il
li

o
n

)

Greedy selection
 Genetic selection

Fig. 8. Comparison of greedy selection and genetic selection with uniform frequencies.

0

50

100

150

200

250

5%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

Space limit

T
o
ta

l
co

st
 (

m
il

li
o
n
)

Greedy selection
 Genetic selection

Fig. 9. Comparison of greedy selection and genetic selection with random frequencies.

decrease the cost. A similar phenomenon was also observed by Harinarayan
et al (1996), whereas they only examined the query cost.

From the above observations, it can be seen that blindly increasing the
amount of storage cannot decrease the cost effectively. In the test data we used,
most cost-effective storage space is about 20% of the total cubes. We believe
that different problems should have different characteristics. The best way is to
estimate a priori the optimal storage space of the problem. When the available
space is greater than the optimal space, we only have to consider the optimal
space and apply the traditional greedy method. On the other hand, when the
storage space is smaller than the optimal space, we should use the genetic greedy
method. Note that in real world most data warehouses are extremely large and
continually expanding. The available storage space thus is usually quite smaller

A Genetic Selection Algorithm for OLAP Data Cubes 17

480

500

520

540

560

580

600

620

5%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%

Space limit

T
o

ta
l

co
st

 (
m

il
li

o
n

)

Greedy selection
 Genetic selection

Fig. 10. Comparison of greedy selection and genetic selection with linear frequencies.

68000000

69000000

70000000

71000000

72000000

73000000

74000000

1
 11
 21
 31
 41
 51
 61
 71
 81
 91

Max generation

B
es

t
fi

tn
es

s

popsize=20
 popsize=50
 popsize=100

Fig. 11. Best fitness vs. max generation for random frequency with 10% space limit.

than the total cubes. From this point of view, our genetic greedy algorithm will
be the best choice.

We also conducted an experiment to examine the performance distribution of
solutions by changing the population size and max generation. Figure 11 depicts
the results. Here we only show the case of random frequencies and 10% space
limit; the results are similar for the other cases. As is indicated in Figure 11, the
solution becomes better as the population size grows; the number of generations
to reach the best solution decreases as well. For population size of 100, the best
fitness begins to converge at generation 11, and for population sizes of 50 and 20,
they begin at generation 31 and 45, respectively. It can be verified that for each
of the three different population sizes, the generation at which the best fitness
begins to converge conforms to the bound expressed in Eq. 8.

Figure 12 illustrates the minimum number of generations to achieve solutions

18 Lin and Kuo

0

50

100

150

200

5
 10
 20
 30
 40
 50
 60
 70
 80
 90

Space limit (%)

G
en

er
at

io
n

popsize=20
 popsize=50
 popsize=100

Fig. 12. Minimum number of generations to achieve solutions better than that obtained by
greedy algorithm under random frequencies.

better than Harinarayan’s greedy algorithm for various population sizes under
the case of random invoking frequencies. We observe the following:

(1) The number of generations grows as the space limit increases. This is because
that when the space limit increases, the number of feasible solutions also
increases, making the genetic algorithm more difficult to locate the best
solution.

(2) For space limit no more than 10% of the total cube size, the genetic greedy
algorithm yields a better solution than does the greedy algorithm right after
the first generation, though it is far from the best solution. This is because
the greedy algorithm performs poorly under a more restricted space limit.

5. Conclusions

In this paper, we have established a selection model using a genetic algorithm
in configuring OLAP data cubes. We proposed a genetic selection algorithm
incorporated with a greedy repair method to avoid infeasible solutions. According
to the experimental results, our genetic selection algorithm always generates a
better solution than the greedy algorithm. We also observed that there is an
optimal space to obtain the best cost-effective solution; increasing storage space
further over this optimal space has no significant effect on reducing the cost. The
problem of how to obtain the optimal cost-effective space is a critical issue and
deserves advanced investigation.

Acknowledgements. We thank anonymous reviewers for their very useful comments
and suggestions. This work was supported by the National Science Council of ROC
with grant No. NSC89-2213-E-214-007.

References

Aytug H, Koehler GJ (1996) Stopping criteria for finite length genetic algorithms. INFORMS
Journal on Computing 8(2):183–191

A Genetic Selection Algorithm for OLAP Data Cubes 19

Baralis E, Paraboschi S, Teniente E (1997) Materialized view selection in a multidimensional
database. In Jarke M, Carey MJ, Dittrich KR, et al (eds). Proceedings of the 23rd inter-
national conference on very large data bases, Athens, Greece, August 1997, pp. 156–165.

Chaudhuri S, Dayal U (1997) An overview of data warehouse and OLAP technology. ACM
SIGMOD Record 26(1): 65–74

Ezeife CI (1997) A uniform approach for selecting views and indexes in a data warehouse. In
Proceedings of the 2nd international database engineering and applications symposium,
Montreal, Canada, August 1997, pp. 151–160

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Read-
ing, MA, Addison-Wesley

Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic
algorithms. In Whitley LD (ed). Foundations of Genetic Algorithms, Morgan Kaufmann,
San Mateo, CA, pp. 69–93

Gray J, Chaudhuri S, Bosworth A, et al (1997) Data cube: A relational aggregation operator
generalizing group-by, cross-tabs and subtotals. Data Mining and Knowledge Discovery
1(1): 29-53

Greenhalgh D, Marshall S (2000) Convergence criteria for genetic algorithms. SIAM Journal
on Computing 30(1): 269–282

Gupta H (1997) Selection of views to materialize in a data warehouse. In Afrati FN, Kolaitis P
(eds). Proceedings of the 5th international conference on database theory, Delphi, Greece,
January 1997, pp. 98–112

Gupta H, Harinarayan V, Rajaraman A, Ullman JD (1997) Index selection for OLAP. In Gray
A, Larson P (eds). Proceedings of the 13th international conference on data engineering,
Birmingham, UK, April 1997. Lecture Notes in Computer Science 1186, Springer, Berlin,
pp. 208–219

Gupta H, Mumick IS (1999) Selection of views to materialize under a maintenance cost con-
straint. In Beeri C, Buneman P (eds). Proceedings of the 7th international conference on
database theory, Jerusalam, Israel, January 1999. Lecture Notes in Computer Science 1540,
Springer, Berlin, pp. 453–470

Harinarayan V, Rajaraman A, Ullman JD (1996) Implementing data cubes efficiently. In Ja-
gadish HV, Mumick IS (eds). Proceedings of ACM SIGMOD international conference on
management of data, Montreal, Canada, June 1996, pp. 205–216

Holland JH (1992) Adaptation in Natural and Artificial Systems, Second Edition, MIT Press
Horng JT, Chang YJ, Liu BJ, Kao CY (1999) Materialized view selection using genetic algo-

rithms in a data warehouse. In Proceedings of world congress on evolutionary computation,
Washington DC, USA, July 1999, pp. 2221–2227

Inmon WH, Kelley C (1993) Rdb/VMS: Developing the Data Warehouse, QED Publishing
Group, Boston, Massachussetts

Jamil HM, Modica GA (2001) A view selection tool for multidimensional databases. In Monos-
tori L, Váncza J, Ali M (eds). Proceedings of the 14th international conference on industrial
and engineering applications of artificial intelligence and expert systems, Budapest, Hun-
gary, June 2001. Lecture Notes in Computer Science 2070, Springer, Berlin, pp. 237–246

Liang W, Wang H, Orlowska ME (2001) Materalized view selection under the maintenance
time constraint. Data and Knowledge Engineering 37(2): 203–216

Michalewicz Z (1994) Genetic Algorithms + Data Structures = Evolution Programs, Springer-
Verlag, New York

Mitchell M (1996) An Introduction to Genetic Algorithms, MIT press
Mühlenbein H (1992) How genetic algorithms really work: I. Mutation and hillclimbing. In

Männer R, Manderick B (eds). Parallel Problem Solving from Nature 2, Brussels, Belgium,
September 1992, pp. 15–25.

Mumick IS, Quass D, Mumick BS (1997) Maintenance of data cubes and summary tables in a
warehouse. In Peckham J (ed). Proceedings of ACM SIGMOD international conference on
management of data, Tucson, Arizona, USA, June 1997, pp. 100–111

Qiu SG, Ling TW (2000) View selection in OLAP environment. In Ibrahim MT, Küng J,
Revell N (eds). Proceedings of the 11th international conference on database and expert
system applications, London, UK, September 2000. Lecture Notes in Computer Science
1873, Springer, Berlin, pp. 447–456

Raab F, et al (1995) TPC BenchmarkTM D (Decision Support) Proposed revision 1.0, Trans-
action Processing Performance Council, San Jose, CA

Reeves CR (1993) Using genetic algorithms with small populations. In Forrest S (ed). Proceed-

20 Lin and Kuo

ings of the 5th international conference on genetic algorithms, Morgan Kaufmmann, San
Mateo, CA, 1993, pp. 92–99

Ross KA, Srivastava D, Sudarshan S (1996) Materialized view maintenance and integrity con-
straint checking: trading space for time. In Jagadish HV, Mumick IS (eds). Proceedings of
ACM SIGMOD international conference on management of data, Montreal, Canada, June
1996, pp. 447–458

Sarawagi S, Agrawal R, Gupta A (1996) On Computing the Data Cube, Research Report
10026, IBM Almaden Research Center, San Jose, California

Shukla A, Deshpande PM, Naughton JF (1998) Materialized view selection for multidimen-
sional datasets. In Gupta A, Shmueli O, Widom J (eds). Proceedings of the 24th interna-
tional conference on very large data bases, New York, USA, August 1998, pp. 488–499

Shukla A, Deshpande PM, Naughton JF (2000) Materialized view selection for multicube
data models. In Zaniolo C, Lockemann PC, Scholl MH, Torsten G (eds). Proceedings of
advances in database technology (EDBT ’00), 7th international conference on extended
database technology, Konstanz, Germany, March 2000. Lecture Notes in Computer Science
1777, Springer, Berlin, pp. 269–284

Soutyrina E, Fotouhi F (1997) Optimal view selection for multidimensional database systems.
In Proceedings of 1997 international database engineering and applications symposium,
1997, pp. 309–318

Theodoratos D, Bouzeghoub M (2000) A general framework for the view selection problem
for data warehouse design and evolution. In Proceedings of the 3rd ACM International
Workshop on Data Warehousing and OLAP, Washington DC, USA, November 2000, pp. 1–
8

Theodoratos D, Sellis T (1997) Data warehouse configuration. In Jarke M, Carey MJ, Dittrich
KR, et al (eds). Proceedings of the 23rd international conference on very large data bases,
Athens, Greece, August 1997, pp. 126–135

Yang J, Karlapalem K, Li Q (1997) Algorithm for materialized view design in data warehousing
environment. In Jarke M, Carey MJ, Dittrich KR, et al (eds). Proceedings of the 23rd
international conference on very large data bases, Athens, Greece, August 1997, pp. 136–
145

Zhang C, Yang J (1999) Genetic algorithm for materialized view selection in data warehouse
environments. In Mohania MK, Tjoa AM (eds). Proceedings of the 1st international con-
ference on data warehouse and knowledge discovery, Florence, Italy, August 1999. Lecture
Notes in Computer Science 1676, Springer, Berlin, pp. 116–125

Zhang C, Yao X, Yang J (2001) An evolutionary approach to materialized views selection in a
data warehouse environment. IEEE Transactions on Systems, Man and Cybernetics, Part
C 31(3): 282–294

Author Biographies

insert photo

Wen-Yang Lin received his B.E. and M.E. both in Computer Science
and Information Engineering from National Chiao-Tung University in
1988 and 1990, respectively. He then received his Ph.D. in Computer
Science and Information Engineering from National Taiwan University
in 1994. In 1996, he joined the Department of Information Manage-
ment at I-Shou University and now is an Associate Professor. He is
primarily interested in the area of sparse matrix technology and large-
scale supercomputing. Currently he is also interested in data warehous-
ing, data mining and evolutionary computation. Dr. Lin has authored
over 50 technical papers.

A Genetic Selection Algorithm for OLAP Data Cubes 21

insert photo

I-Chung Kuo received a B.S. degree in Information Management
from I-Shou University, Kaohsiung, Taiwan, in 1998 and an M.E. de-
gree in Information Engineering from the same university, in 2000.
From 2000 to 2002, he joined the army for two years’ military obliga-
tion. During this time, he participated in the deployment of a human
resource management system for the army headquarters. Now he works
in a computer company. His research interests include data warehous-
ing, evolutionary computation and database.

Correspondence and offprint requests to: Wen-Yang Lin, Department of Information Manage-

ment, I-Shou University, Kaohsiung, Taiwan 84008, ROC. Email: wylin@isu.edu.tw

