
ON OPTIMAL REORDERINGS OF SPARSE MATRICES FOR

PARALLEL CHOLESKY FACTORIZATIONS ∗

WEN-YANG LIN† AND CHUEN-LIANG CHEN‡

Abstract. The height of the elimination tree has long acted as the only criterion in deriving a
suitable fill-preserving sparse matrix ordering for parallel factorization. Although the deficiency in
adopting height as the criterion for all circumstances was well recognized, no research has succeeded
in alleviating this constraint. In this paper, we extend the unit-cost fill-preserving ordering into a
generalized class that can adopt various aspects in parallel factorization, such as computation, com-
munication and algorithmic diversity. We recognize and show that if any cost function satisfies two
mandatory properties, called the independence and conservation properties, a greedy ordering scheme
then generates an optimal ordering with minimum completion cost. We also present an efficient imple-
mentation of the proposed ordering algorithm. Incorporating various techniques, the complexity can
be improved from O(n log n+ e) to O(q log q +κ), where n denotes the number of nodes, e the number
of edges, q the number of maximal cliques and κ the sum of all maximal clique sizes in the filled graph.
Empirical results show that the proposed algorithm can significantly reduce the parallel factorization
cost without sacrificing much in terms of time efficiency.

Key Words. elimination tree, fill-preserving ordering, Jess and Kees algorithm, minimum com-
pletion cost, parallel Cholesky factorization, sparse matrix

AMS. 65F05, 65F50, 65Y05, 68R10

1. Introduction. In this paper, we consider the problem of finding fill-preserving

sparse matrix orderings for parallel factorization, which arises during the exploitation of
parallelism in the direct solution of large sparse symmetric positive definite systems [10].

Given a large sparse symmetric and positive definite matrix A, we want to determine
an ordering that is appropriate in terms of preserving the sparsity and minimizing the

cost to perform its Cholesky factorization in parallel.
Jess and Kees [12] were the first to propose a fill-preserving ordering strategy for

parallel factorization. Their method has the desirable property of minimizing the height
of the elimination tree over the class of fill-preserving orderings. Some effective imple-

mentations of the Jess and Kees algorithm have been proposed [15][23]. In [22], Joseph
Liu used a tree rotation heuristic to find orderings that, though not optimal, could

substantially reduce the height of the elimination tree. Aspvall and Heggernes [2] also
proposed an efficient algorithm to generate orderings for a minimum height elimination

tree. Their work was limited to interval graphs, a subclass of chordal graphs.

Thus far, all approaches to this problem have been devoted to minimizing the height
of the elimination tree. This criterion is based on the unit cost assumption for node

elimination, which though simple in nature, is improper for exhibiting various factors

∗ A preliminary version of this paper appeared in the Proceedings of 2000 IEEE International Parallel
and Distributed Processing Symposium, pp. 799–805.

† Department of Computer Science and Information Engineering, National University of Kaohsiung,
Kaohsiung, Taiwan, Email:wylin@nuk.edu.tw

‡ Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, Taiwan, Email:clchen@csie.ntu.edu.tw

1

that affect the cost of parallel factorization, such as communication overhead and the
algorithmic diversity of the Cholesky form. In [16][17], we produced some examples to

illustrate how the cost discrepancy may grow indefinitely. In [16][17], we also solved the
problem that specifically adopts the operation count or communication message count

for factoring a column/row to generate a parallel pivoting sequence with the property
that it minimizes the critical completion cost for parallel factorization.

In this study, we extend the elimination tree height criterion to a more general
class that is categorized as nodal cost functions satisfying two properties called the

independence and conservation properties. In terms of such a class of ordering criteria,
we propose a greedy algorithm to find the optimal orderings for parallel factorization.

Empirical results show that on the average, the proposed minimum completion cost

ordering (MinCP) reduces the parallel completion cost by up to 25% more than the
well-known minimum height ordering (Jess-Kees), and by up to 66% in the best case.

The rest of this paper is organized as follows. In Section 2, we provide background
material and introduce related notation. In Section 3, we introduce the elimination-

tree-based computation model on which all discussions are based. We then define the
independent and conservative properties, and specify the generalized class of ordering

criteria. Section 4 describes our greedy algorithm for finding optimal fill-preserving
ordering. The optimality proof and the implementation details are also discussed there.

Section 5 presents the experimental results on our test set. Finally, the conclusions and
future work are summarized in Section 6.

2. Background.

2.1. Sparse Cholesky factorization. Consider a system of linear equations

Ax = b,

where A is an n× n symmetric positive definite matrix, b is a given vector and x is the

unknown vector to be solved. In the direct solution of such linear systems, A is usually
first decomposed into LLT , which is known as Cholesky factorization, where L is a lower

triangular matrix. The solution vector x is then computed by solving two triangular
systems Ly = b and LT x = y. When A is sparse, some initially zero entries in A may

become nonzero in L, which are called fill or fillin. In order to reduce time and storage
requirements, only the nonzero positions of L are stored and operated on during sparse

Cholesky factorization. Hence, an ordering stage is typically applied first to reduce the
fill in the factor L [7]. Finding an ordering that gives the least fill is NP-hard [28]. Two

frequently used heuristics are minimum degree and nested dissection [7].
From the study by Dongarra et al. [4], there are six algorithmic forms of Cholesky

factorization obtained by permuting the three nested loops that execute the following
single statement

aij ← aij − likljk.

Depending on which of the three indices is placed in the outer most loop, they can be
classified into three basic forms [10]: column-Cholesky , row-Cholesky , and submatrix-

Cholesky .
2

Here, we consider the parallel versions of these three sparse Cholesky factorizations
and a more complicated variant of sparse submatrix-Cholesky called multifrontal fac-

torization [5]. These four algorithms are described in Figures 1, 2, 3 and 4, respectively.

In Figure 4, we let F (k) be the frontal matrix associated with column k and F (k)
the

remaining frontal matrix after the removal of the first column. The symbols A∗k and
L∗k denote column k of A and L, respectively.

for j = 1 to n do

for k = 1 to j − 1 with ljk 6= 0 do

for i = j to n with lik 6= 0 do

aij ← aij − likljk ;

ljj ← √ajj ;

for i = j + 1 to n with aij 6= 0 do

lij ← aij/ljj ;
endfor

Fig. 1. Sparse column-Cholesky factorization.

2.2. Graph notation. The nonzero structure of matrix A can be conveniently

represented by an undirected graph G = (V, E). The n nodes, v1, v2, . . . , vn, correspond

to the n columns/rows of the matrix, and an edge connects vi and vj if and only if
the corresponding entry aij is nonzero. A graph G is called an “ordered graph” if a

bijection

α : {1, 2, . . . , n} → V

is defined. The bijection α is called the “ordering” of G. An ordering of G corresponds
to a symmetric permutation of the rows and columns of A. Hereafter, to simplify the

discussion, we assume that the sparse matrix A is irreducible and has been permuted
by a fill-reducing ordering, such as a minimum degree or nested dissection ordering.

For a node v in G, we denote its adjacent set as adj(v, G) and its degree as deg(v, G).
A prior (monotone) adjacent set Padj(v, G) (Madj(v, G)) is the set of all nodes adjacent

to and numbered lower (higher) than v, and Pdeg(v, G) (Mdeg(v, G)) is the size of
Padj(v, G) (Madj(v, G)). The next equalities follow immediately from the connection

of the notation with the structure of the matrix.

Padj(vj, G) ≡ {i < j | aij 6= 0} ,
Madj(vj , G) ≡ {i > j | aij 6= 0} .

The structural effect of Gaussian elimination on the matrix can easily be modeled

by a sequence of elimination (reduced) graphs [7]: Initially, let G(0) = G. At the ith
step, where 1 ≤ i ≤ n, a node v along with its incident edges are eliminated from G(i−1)

and edges are added such that all nodes in adj(v, G(i−1)) are pairwise adjacent. The
graph structure of the resulting Cholesky factor L of A, G∗, is called the filled graph of

A and denoted by G∗ =
⋃n−1

i=0 G(i).
3

for i = 1 to n do

for j = 1 to i do

for k = 1 to j − 1 with likljk 6= 0 do

aij ← aij − likljk;
if i = j then lii ←

√
aii;

else if aij 6= 0 then lij ← aij/ljj;
endfor

Fig. 2. Sparse row-Cholesky factorization.

for k = 1 to n do

lkk ←
√

akk;
for j = k + 1 to n with ajk 6= 0 do

ljk ← ajk/lkk;
for j = k + 1 to n with ljk 6= 0 do

for i = j to n with lik 6= 0 do

aij ← aij − likljk;

endfor

Fig. 3. Sparse submatrix-Cholesky factorization.

for k = 1 to n do

assemble column A∗k into F (k);

for each child l of k in the assembly tree do

assemble the remaining frontal matrix F (l)
into F (k);

apply one step Cholesky to factor the first column F (k)
∗1 of F (k);

strip off F (k)
∗1 from F (k) to form F (k)

;

store F (k)
∗1 into L∗k;

endfor

Fig. 4. Multifrontal method.

4

A clique is a set of nodes with the property that all of its members are pairwise
adjacent. If no other node can be added while preserving the pairwise adjacent prop-

erty, the clique is called maximal. It has been shown that a filled graph G∗ can be
represented as a set of maximal cliques. Assume that G∗ comprises the maximal cliques

K1, K2, . . . , Kq. Following [15], the term residual clique refers to the resulting structure
of a maximal clique that has undergone some elimination steps. We denote the residual

clique of Kj after i elimination steps as K
(i)
j . Note that the residual clique may not be

maximal. Indeed, when a residual clique becomes a proper subset of another residual

clique, the former residual clique is not maximal and should be absorbed to maintain
the clique representation of the elimination graph. Figure 5 illustrates the elimination

graphs and clique structures for the first two elimination steps applied to a filled graph.

Initially, K
(0)
1 = {a, d}, K

(0)
2 = {b, e, f}, K

(0)
3 = {c, e, f}, K

(0)
4 = {d, e, f}. After elim-

inating node a, the residual clique of K1 is left with only one node d, which is clearly

a proper subset of and absorbed by K4. The next elimination of node b leaves nodes e
and f behind in clique K2, which is a subset of K3 and K4, and shall be absorbed by

either of these two cliques.

d
 e

f
 c

b
 d
 e

f
 c

K
 1

(0)
 K
 K

K

2
4

3

(0)
 (0)

(0)

K
 K

K

2
4

3

(1)
 (1)

(1)

K

K

4

3

(2)

(2)

a
 b

c

d
 e

f

Fig. 5. Clique representation of the elimination graph for the first two steps, where K
(0)
1 = {a, d},

K
(0)
2 = {b, e, f}, K

(0)
3 = {c, e, f}, K

(0)
4 = {d, e, f}. Two cliques are connected if their intersection is

not empty.

A node v in a graph G is simplicial if adj(v, G) is a clique. A maximal clique

that contains simplicial nodes is called a simplicial clique. Two nodes, u and v, are
indistinguishable if {u} ∪ adj(u, G) = {v} ∪ adj(v, G). Two nodes are independent

if there is no edge between them. The next results follow immediately from these
definitions.

Lemma 2.1. Any two simplicial nodes are either independent or indistinguishable.
Lemma 2.2. A node is simplicial if and only if it belongs to only one maximal

clique.
Lemma 2.3. During the elimination process, a node becoming simplicial will remain

simplicial until it is eliminated.

A fill-preserving ordering of A is a permutation such that the reordered matrix

5

will suffer the same fill and require the same number of arithmetic operations for fac-
torization. In the literature [21][22], such orderings have also been called equivalent

reorderings. In terms of graph theory, a fill-preserving ordering of A retains the struc-
ture of the filled graph G∗.

Rose [25] has shown that a filled graph is a chordal graph and always has at least
one perfect ordering, i.e., an ordering with no fill. For example, the ordering used to

generate the filled graph is a perfect ordering of the filled graph. It is interesting to
note that if A is reordered by a perfect ordering on G∗, the resulting filled graph G̃∗

is a subset of G∗ [21]. Some of the filled edges in G∗ may not appear in G̃∗. That
is, a perfect ordering on G∗, as an ordering of A, is at least as good as the original

fill-preserving ordering of A in terms of fill and computation. Therefore, finding a fill-

preserving ordering for matrix A can be regarded as finding a perfect ordering of the
filled graph G∗.

It also has been shown that eliminating a simplicial node creates no filled edge. A
perfect ordering thus can be obtained by finding simplicial nodes in the reduced graphs

during the elimination process.
Lemma 2.4. An ordering (v1, v2, . . . , vn) on G∗ is perfect if and only if vj is sim-

plicial in G∗(j−1), 1 ≤ j ≤ n.

3. Computation model and cost specification.

3.1. The elimination tree model. The elimination tree model, which was in-

troduced in [12], has been shown to be useful in exploiting the parallelism that exists in
sparse matrix factorization. An elimination tree T (A) of matrix A is a tree containing

the same node set as G and has an edge between two nodes vi and vj if vj = parent(vi),
where parent(vi) = min {vk | k > i and lki 6= 0}. The elimination tree captures the col-

umn/row dependencies of the Cholesky factor [20]. Short elimination trees imply less
interdependency and thus more parallelism. Liu [20] illustrated that the elimination

tree model is appropriate for analyzing the three versions of Cholesky factorization.
Duff and Reid [5] also used the elimination tree as a structure in their multifrontal

factorization. We thus concentrate on this computation model.
Let T [v] denote the subtree of T (A) rooted at node v. Some useful properties of

the elimination trees in [12] are given below.
Lemma 3.1. If ljk 6= 0 and k < j, then the node vk is a descendant of vj in T (A).

This lemma implies that the root vertex is vn.

Lemma 3.2. Assume T [v] and T [u] are two disjoint subtrees. Then in G∗ there is
no edge (x, y) with x ∈ T [v] and y ∈ T [u].

Consider a perfect ordering α on G∗. Let Φα(v) specify the cost of eliminating a
node v in G∗

α with respect to the Cholesky factorization. Since the elimination tree

exhibits the column dependencies of the Cholesky factor, it is natural to define the
nonnegative cost (called completion cost) to complete the parallel elimination at node

v as the critical weighted path on the subtree T [v]. More precisely, let CPα() denote

6

the completion cost function. We have the following recursive definition

CPα(v) =

{
Φα(v), if v is a leaf node,

Φα(v) + max{CPα(u) | u is a child of v}, otherwise.

The total completion cost, CPα, to eliminate the entire graph or factorize the corre-

sponding matrix is then equal to CPα(vn). We omit the “ordering” subscript when it
is clear from the context.

3.2. Independence and conservation properties. Given a filled graph, the
work of finding an optimal perfect ordering to minimize the parallel factorization time

is not at all trivial; current approaches do not take into consideration various algorithmic
forms of factorization. Our previous study [17] provides us with a foundation to work

from. We observed that a greedy approach seems promising to yield an optimal perfect
ordering under various considerations. We further found that the conditions assuring the

optimality of a greedy ordering algorithm can be clarified as two important properties
on the cost specification.

Let ρ be a perfect ordering on G∗:

ρ : v1, v2, . . . , vn,

such that nodes vj and vj+1 are both simplicial in G∗(j−1)
ρ . Then the ordering

ρ̃ : v1, v2, . . . , vj−1, vj+1, vj, vj+2, . . . vn

that differs from ρ only in positions j and j + 1 is also a perfect ordering. We define

a class Ω of cost functions that satisfies the following independence and conservation
properties. That is, Ω = {Φ : Φ satisfies the independence and conservation properties

}.
Definition 3.1. Let vj and vj+1 belong to two different simplicial cliques in

G∗(j−1)
ρ . The cost function satisfies the independence property if the relative order be-

tween vj and vj+1 is irrelevant. That is,

Φρ̃(vj+1) = Φρ(vj+1) and Φρ̃(vj) = Φρ(vj).

Definition 3.2. Let vj and vj+1 belong to the same simplicial clique in G∗(j−1)
ρ .

The cost function satisfies the conservation property if, when vj and vj+1 are inter-

changed in the elimination order, the sum of the cost of vj and vj+1 is unchanged. That
is,

Φρ(vj) + Φρ(vj+1) = Φρ̃(vj) + Φρ̃(vj+1).

It is worthwhile to point out that when the two simplicial nodes vj and vj+1 belong

to different maximal cliques, the two subtrees T [vj] and T [vj+1] are disjoint. The cost
independence property thus constrains the class Ω to preserve the subtree independence

property. The conservation property further restricts our attention to the functions that
reflect the graph indistinguishability of any nodes within the same simplicial clique, a

principle useful in many aspects of the sparse matrix computations [10].
7

3.3. Example cost functions in Ω. There are various factors affecting the spec-
ification of the cost function for eliminating nodes in parallel. Some typical factors are

parallel architecture: distributed- or shared-memory, the number of processors available,
the task granularity and scheduling strategy, and the algorithmic form of the Cholesky

factorization. On the basis of the elimination tree model, we considered the parallel
sparse column-, row-, submatrix-Cholesky and multifrontal methods on a distributed-

memory multiprocessor with the following assumptions:
(1) There is an unlimited number of processors as well as unlimited number of

memory modules connected via an interconnection network of sufficiently wide
bandwidth.

(2) The column-oriented distribution is used for column-, submatrix-Cholesky, and

multifrontal, and row-oriented distribution is used for row-Cholesky. Each
processor is solely responsible for the task of maintaining and updating its

column or row.
(3) For simplicity, we ignore the underlying interconnection and routing topology.

It is difficult to define one cost function that is generally good for most cases.
Instead, we chose to specify a cost function for each case. As an example, we con-

sidered the typical factors, computation and communication, with respect to different
algorithmic forms of Cholesky factorization. Table 1 summarizes this category. The

specification of each cost function is described in Table 2, where the notation K (i)
vj

de-
notes the residual set of the maximal clique Kvj

in which a node vj becomes simplicial.

The derivation of these specifications is omitted here. We only show in Figure 6 an
example for Φ2. The details can be found in [18].

Table 1

A category of node cost functions.

Column Row Submatrix Multifrontal

computation unit Φ1 Φ1 Φ1 Φ1

multiplications Φ2 Φ3 Φ4 Φ4

communication number of messages Φ5 Φ5 Φ5 Φ6

volume Φ7 Φ8 Φ7 Φ9

Note that function Φ1 corresponds to the case for unit cost. That is, the criterion
for using elimination tree height is a special case of the proposed class. It is not hard to

verify that each function satisfies the independence and conservation properties. When
vj and vj+1 are independent in G∗(j−1)

ρ , the assertion is evident because the interchange of

vj and vj+1 doe not change their prior (monotone) adjacent sets as well as the structure
of the elimination tree. On the other hand, when vj and vj+1 are indistinguishable

in G∗(j−1)
ρ , the interchange of vj and vj+1 makes vj+1 become a member of vj’s prior

adjacent set and vj a member of vj+1’s monotone adjacent set. Although this would
change the nodal costs of vj and vj+1, the cost variations are the same; thus the sum

of the cost remains unchanged.
As an illustration, consider the filled graph in Figure 5 again. Figures 7 and 8

illustrate the independence and conservation properties for the nodal cost function Φ2,
8

Table 2

Specification of the cost functions in Table 1.

Φ1 1

Φ2
∑

vj∈Padj(vi)∪{vi} |K(i−1)
vj
|

Φ3
∑

vj∈Padj(vi)∪{vi}(|K(j−1)
vj
| − |K(i)

vj
|)

Φ4 1
2
|K(i−1)

vi
|(|K(i−1)

vi
|+ 1)

Φ5 Pdeg(vi)

Φ6
∑

vj∈child(vi) Mdeg(vj)

Φ7
∑

vj∈Padj(vi) |K(i−1)
vj
|

Φ8
∑

vj∈Padj(vi)(|K(j−1)
vj
| − |K(i−1)

vj
|)

Φ9
∑

vj∈child(vi)
1
2
|K(i−1)

vj
|(|K(i−1)

vj
|+ 1)

a

b

e

f

c

d

K
 2

(4)
K
 3
K
 4
 K
4

(4)
 (4)
 (4)

Fig. 6. Illustration of nodal cost Φ2.

which measures the multiplicative operations for column-Cholesky factorization. In
Figure 7, c and d are two independent simplicial nodes after the first two elimination

steps. The nonzeros surrounded by squares or circles represent the contribution to

Φ2(c) or Φ2(d) respectively. As the picture shows, the effect of interchanging c and d
is nothing more than a relabelling. In Figure 8, d and e are indistinguishable simplicial

nodes after elimination step 3. It can be observed that Φ2(d)+Φ2(e) equals 4+8 = 12
before the interchange and remains 5 + 7 = 12 after the interchange.

Observation. A linear combination of any two cost functions in Table 1 with the
form Φi + λΦj is also in Ω, where λ denotes a constant.

For example, assume that a communication-to-computation cost ratio is λ. The cost
function for eliminating a node under column-Cholesky factorization can be denoted as

Φ2 + λΦ5 or Φ2 + λΦ7, a more realistic form.

4. A generic ordering algorithm.

4.1. General description. Assume that the sparse matrix A has been ordered

by a fill-reducing ordering and the filled graph is G∗. Our intention is to find a perfect
ordering σ : {1, 2, . . . , n} → V on G∗ to minimize the completion cost.

Lemma 2.4 gives us the basic guideline—use the elimination process model. In each
9

a

b

e

f

a

b

e

f

d
c

c
d

Fig. 7. Illustration of the cost independent property.

a

b

e

f

a

b

e

f

d

c
 c

d

Fig. 8. Illustration of the cost conservative property.

elimination step, the nodes that are simplicial are identified. Then based on a greedy
paradigm, one of the simplicial nodes with the minimum completion cost as defined

in Section 3 is chosen to be labeled and eliminated next. This process continues un-
til all nodes are eliminated. This greedy ordering strategy is summarized in Algorithm 1.

Algorithm 1. A greedy fill-preserving ordering algorithm.

G(0) ← G∗;
for i = 1 to n do

S ← the set of all simplicial nodes in G(i);
pick a simplicial node v for which CP (v) is minimized over S;

σ(i)← v;
G(i) ← G(i−1)\{v};

endfor

Consider the step for picking the next eliminated node. There are some points

deserved further clarification. First, when node v is chosen to be eliminated in the ith
elimination step, we have to calculate its completion cost with the knowledge of an

incomplete ordering σ(1), σ(2), ..., σ(i). This seems to be inconsistent with the defin-

10

ition given in Section 3.1, where the completion cost function is determined from the
elimination tree corresponding to a complete ordering. But recall that the completion

cost of node v equals to the critical weighted path on the subtree rooted at v, and all
descendants of v are ordered earlier than v. Thus, knowing the incomplete ordering

σ(1), σ(2), ..., σ(i) is sufficient to determine the structure of subtree T [v].
Second, to choose the next node for elimination, we have to evaluate the completion

cost of each simplicial node, which however cannot be worked out until the node is
actually eliminated. To resolve the uncertainty about node ordering, we tentatively

regard each simplicial node as the next eliminated node and figure out its completion
cost. The computed cost thus is a provisional completion cost. The node with the

minimum provisional completion cost is eliminated next and its provisional completion

cost becomes its actual completion cost.
For illustration, consider the graph in Figure 5. After eliminating nodes a, b, and

c, the remaining three nodes, d, e, and f , in the graph are simplicial. Assume the nodal
cost is Φ2. If d is regarded as the next eliminated node, the completion cost of d is

CP (a)+Φ2(d) = 2+3 = 5. Similar calculations yield that both e and f have the same
provisional completion cost, 3 + 3 = 6. Hence, node d is eliminated next.

4.2. Minimum completion cost property. In this subsection, we will show

that given a filled graph G∗, the ordering obtained with Algorithm 1 minimizes the
completion cost over all perfect orderings of G∗.

To facilitate the discussion, we consider two cases: the relative order between in-
dependent simplicial nodes and that between indistinguishable simplicial nodes. More

specifically, let ρ : v1, v2, . . . , vn be any perfect ordering in which nodes vj and vj+1 are

both simplicial in G∗(j−1). Then a reordering of ρ, which differs only in the j-th and
j + 1-st positions is also a perfect ordering, i.e., ρ̃ : v1, v2, . . . , vj−1, vj+1, vj, vj+2, . . . , vn.

We will show the effect the interchange of vj and vj+1 has on the completion cost, for
each of the two different cases that vj and vj−1 are independent or indistinguishable,

and extend the result to a more general case for interchanging a set of consecutive
simplicial nodes vj, vj+1, . . . , vj+s in G∗(j−1).

Lemma 4.1. If vj and vj+1 are both simplicial and belong to different maximal
cliques in G∗(j−1), then CPρ̃ = CPρ.

Proof. Since vj and vj+1 are independent, T [vj] and T [vj+1] are disjoint, and the
elimination tree remains the same after the interchanging of vj and vj+1. The statement

then follows from the assumption that Φ satisfies the independence property.
Corollary 4.2. Assume that vj, vj+1, . . . , vj+s is an independent set of simplicial

nodes in G∗(j−1). Then, the relative order between vj, vj+1, . . . , vj+s is irrelevant with
respect to the total completion cost.

We next consider the case for indistinguishable nodes. To facilitate the discussion

and simplify the notation, we introduce the descendant cost of a node v in G∗(j), 1 ≤
j ≤ n, as

Dj(v) = max {CP (u) | u ∈ adj(v, G∗) ∩ {v1, v2, . . . , vj}} ,

11

and Dj(v) = 0 when adj(v, G∗) ∩ {v1, v2, . . . , vj} = ∅. We do not refer to the children
of v because this set is not determined until v is eliminated.

Lemma 4.3. If vj and vj+1 are simplicial and belong to the same maximal clique
in G∗(j−1) and Dj−1(vj) ≥ Dj−1(vj+1), then CPρ̃ ≤ CPρ.

Proof. Clearly, an edge exists between vj and vj+1. By the elimination tree defini-
tion, vj+1 must be the parent of vj in the case of ordering ρ. Therefore,

CPρ(vj+1) = Φρ(vj+1) + max {CPρ(vj), Dj−1(vj+1)} ,
= Φρ(vj+1) + max {Φρ(vj) + Dj−1(vj), Dj−1(vj+1)} ,
= Φρ(vj+1) + Φρ(vj) + Dj−1(vj).

In ordering ρ̃, vj becomes the parent of vj+1. We have

CPρ̃(vj) = Φρ̃(vj) + max
{
CPρ̃(vj+1), Dj−1(vj)

}
,

= Φρ̃(vj) + max
{
Φρ̃(vj+1) + Dj−1(vj+1), Dj−1(vj)

}
,

It is immediately clear that CPρ̃(vj) will be Φρ̃(vj) + Dj−1(vj) or Φρ̃(vj) + Φρ̃(vj+1) +
Dj−1(vj+1). Both are no greater than CPρ(vj+1) due to the conservation property and

the condition that Dj−1(vj) ≥ Dj−1(vj+1). The lemma then follows.
Corollary 4.4. Assume that vj, vj+1, . . . , vj+s is an indistinguishable set of sim-

plicial nodes in G∗(j−1) and Dj−1(vj) ≤ Dj−1(vj+1) ≤ · · · ≤ Dj−1(vj+s). Then, any
reordering of ρ that differs only in the permutation of vj, vj+1, . . . , vj+s has no less total

completion cost than the original ordering ρ.
Corollary 4.5. Assume that vj, vj+1, . . . , vj+s is an indistinguishable set of sim-

plicial nodes in G∗(j−1) and Dj−1(vj) = Dj−1(vj+1) = · · · = Dj−1(vj+s). Then, any

reordering of ρ that differs only in the permutation of vj, vj+1, . . . , vj+s has the same
total completion cost.

Theorem 4.6. If a nodal cost function satisfies the independence and conservation
properties, Algorithm 1 generates a minimum completion cost ordering among the class

of perfect orderings on G∗.
Proof. Let σ : u1, u2, . . . , un be the ordering obtained by Algorithm 1 and ρ :

v1, v2, . . . , vn be an optimal ordering. Clearly, both σ and ρ are perfect orderings. We
will show that ρ can be transformed into σ without increasing the completion cost.

Hence, σ also is optimal.
Assume that σ 6= ρ and k is the least index such that uk 6= vk. Since both σ and

ρ are perfect orderings, uk and vk must be simplicial in G∗(k−1)
σ as well as G∗(k−1)

ρ by
Lemma 2.4. Furthermore, let vj = uk for some j, k < j ≤ n, and ρ̃ be a reordering of ρ

such that vj is ordered immediately before vk whereas other nodes remain unchanged,
i.e., ρ̃ : v1 = u1, . . ., vk−1 = uk−1, vj, vk, . . ., vj−1, vj+1, . . ., vn. We want to show that

ρ̃ can be obtained from a sequence of reorderings of ρ such that vj is shifted left one

position each time. The sequence is defined as follows:

ω(0)(ρ) = ρ,
ω(i)(ρ) = ω(ω(i−1)(ρ))

= ω(v1, . . . , vj−i−1, vj−i, vj, vj−i+1, . . . , vj−1, vj+1, . . . , vn)
= v1, . . . , vj−i−1, vj, vj−i, vj−i+1, . . . , vj−1, vj+1, . . . , vn, 1 ≤ i ≤ j − k.

12

Note that vj is simplicial in G∗(k−1). It follows from Lemma 2.3 that vj remains simplicial
in G∗(l), for l ≥ k. Hence the sequence of reorderings of ρ defined above produce a perfect

ordering.
Consider ω(i)(ρ). For simplicity, let γ = ω(i−1)(ρ) and γ̃ = ω(i)(ρ). To show that

CPγ̃ ≤ CPγ, we only have to deliberate, according to Lemma 4.3, on the case that vj

and vj−i belong to the same maximal clique in G∗(j−i−1)
γ and show that Dj−i−1(vj) ≤

Dj−i−1(vj−i).
There are two cases to consider. Suppose first that vj−i is simplicial in G∗(k−1)

σ .

Since the algorithm chooses vj at step k, it follows that Dk−1(vj) ≤ Dk−1(vj−i). Since
both vj and vj−i are simplicial in the same maximal clique of G∗(k−1)

σ , it follows that

Dj−i−1(vj−i) ≥ Dj−i−1(vj), which is the desired result. On the other hand, suppose
that vj−i is not simplicial in G∗(k−1)

σ . Then vj−i has at least one descendant in G∗(k−1)
σ

and at least one of these descendants, say w, has to be simplicial in G∗(k−1)
σ . Again,

from the choice of the algorithm at step k, we know that Dk−1(vj) ≤ Dk−1(w). The
ancestor of w right below vj−i is adjacent to vj−i. Since cost increases as one goes

up the elimination tree, Dk−1(vj) ≤ Dj−i−1(vj−i). Clearly, if Dj−i−1(vj) = Dk−1(vj),
then Dj−i−1(vj−i) ≥ Dj−i−1(vj). If Dj−i−1(vj) > Dk−1(vj), then some simplicial node

u in the same maximal clique containing vj and vj−i is ordered earlier than j − i and
after k − 1, and CP (u) = Dj−i−1(vj). Since vj−i is also adjacent to u, it follows that

Dj−i−1(vj−i) ≥ Dj−i−1(vj), which completes the proof of the result.

4.3. Enhancements. Though Algorithm 1 generates a minimum completion cost
ordering, it takes more time than necessary to obtain the result. The bottleneck lies

in the step that determines the simplicial node with minimum completion cost. From
the time a node becomes simplicial, we have to reevaluate its provisional completion

cost in all successive steps that eliminate a neighboring simplicial node until the node

is eliminated. We will show in this subsection that the completion cost reevaluation
is not essential. Here we will also demonstrate how we can derive a supernode-based

ordering strategy.
Lemma 4.7. The ordering obtained from Algorithm 1 is in nondecreasing order of

the completion cost.
Proof. The lemma follows from the fact that a node v deleted from S has the

minimum completion cost among all nodes in S and the new simplicial nodes to be
inserted into S are ancestors of v.

Theorem 4.8. Assume that in the j-th elimination step of applying Algorithm 1
on G∗ there are, after the elimination of a node v, some nonsimplicial nodes in G∗(j−1),

say u1, u2, . . ., us, that become simplicial in a maximal clique K in G∗(j). Then
(1) u1, u2, . . . , us can be ordered before the nonsimplicial nodes in K, and

(2) the relative order between u1, u2, . . . , us is irrelevant.
Proof. To prove the first statement, we assume that a nonsimplicial node w in

K − {u1, u2, . . . , us} is ordered before or between u1, u2, . . ., us. More specifically, let

w be eliminated in step k and ordered between ui−1 and ui, for 1 ≤ i ≤ s and u0 = v.
The fact that w is nonsimplicial implies that w will have some descendant ordered later

than the children of ui excluding w. It follows that Dk−1(w) ≥ Dk−1(ui). Hence, w can

13

be ordered after ui according to Lemma 4.3. This interchange can be repeated until w
is ordered after u1, u2, . . ., us. Hence the first statement follows.

Next, note that the completion costs of all nodes adjacent to u1, u2, . . ., us and
eliminated before v are, according to Lemma 4.7, no greater than that of v. It follows

that u1, u2, . . ., us share the same descendant cost immediately after the elimination
of v. The only neighbors of u1, u2, . . ., us eliminated subsequently are simplicial nodes

in K. It follows that u1, u2, . . ., us continue to share the same descendant cost until
the first ui is eliminated. At that point, it follows from Corollary 4.5 that the relative

order between u1, u2, . . ., us is irrelevant.
As a result, during the progress of greedy elimination, the relative order for indistin-

guishable simplicial nodes is determined once they became simplicial. The elimination

step at which nodes become simplicial thus divides a maximal clique into different
classes: several sets of simplicial nodes and one set of nonsimplicial nodes, and the

simplicial nodes classified into the same set can be regarded as a “supernode.” This
relative ordering posed on the simplicial nodes and nonsimplicial nodes also resolves the

uncertainty about the children set of a simplicial node, knowledge of which is required
for evaluating its completion cost. Algorithm 2 describes a refinement of Algorithm 1 in-

corporating this supernode-based elimination without reevaluating the completion cost.

Algorithm 2. A supernodal variant of Algorithm 1.
G(0) ← G∗;

let K1, K2, . . . , Kq be the maximal cliques of G∗;
for each Kj, 1 ≤ j ≤ q do

U ← the set of simplicial nodes in Kj;
denote U as a supernode and compute its completion cost;

S ← S ∪ {U};
endfor

i← 1;

while S 6= ∅ do

pick a supernode U from S with minU∈S CP (U);

for each node v ∈ U do

σ(i)← v;

G(i) ← G(i−1)\{v};
i← i + 1;

endfor

S ← S\{U};
U ← the set of new simplicial nodes in G(i);
denote U as a supernode and compute its completion cost;

S ← S ∪ {U};
endwhile

4.4. Implementation. The realization of Algorithm 2 requires at least the fol-

lowing considerations: 1) The representation of the elimination graph and the testing

14

of the simplicial nodes; 2) The implementation of the simplicial set S; and 3) The
calculation of the completion cost of a simplicial node.

Elimination graph representation and simplicial node detection. As stated
previously, any elimination graph can be represented as a clique structure. To simplify

the discussions, we omit this material. The detailed procedure for creating the maximal
cliques composing G∗, the clique representation of the elimination graph and the testing

of simplicial nodes in each elimination step can be found in [15].
Simplicial set implementation. The primary requirement is an effective way to

find the simplicial supernode with the minimum completion cost. A simple solution is
using a heap structure in the sense of a heapsort. The root of the heap is the node with

the desired property. Note that the result in Theorem 4.8 suggests the possibility of

mass elimination. Thus, as a node v is eliminated in step j, the set of the new simplicial
nodes {u1, u2, . . . , us} can be regarded as a supernode. Hence, only the representative

node, say us, is inserted into the heap structure of S. This greatly alleviates the cost
of maintaining S.

Completion cost calculation. The completion cost of a simplicial node is com-
posed of two parts: the maximum descendant cost and the nodal cost. The nodal cost

depends on the specification of the cost function, which is not hard to calculate, but,
if not simplified, will dominate the computation of the whole algorithm. In particular,

consider the nodal cost functions Φ2, Φ3, Φ5, Φ7 and Φ8. Calculating these functions
involves an accumulation over the prior (or monotone) adjacent set, yielding a com-

plexity of O(e) for all simplicial nodes throughout the algorithm, where e is the number
of edges in G∗. The computation can be reduced if the cost functions are specified in

terms of the simplicial clique notion. For this purpose, we introduce the notation η
(j)
K ,

which denotes the set of nodes ordered no later than vj and whose simplicial clique is

K. That is,

η
(j)
K = {vi|Kvi

= K, for i ≤ j}.

a

b

e

f

c

d

(
a
)
 (
b
)

K
1

(4)

η

K
1

(5)

K
 2

(4)

η

K
2

(5)

b
 d

e
 f

a
 c

K
 2
K
 1

Fig. 9. An example filled graph and the corresponding filled matrix.

15

As an illustration, consider the graph in Figure 9(a). There are two maximal
cliques K1 = {a, b, e} and K2 = {c, d, e, f}. Assuming that the nodes are ordered as

a, b, c, d, e, f , we can derive

η
(1)
K1

= {a} η
(1)
K2

= ø

η
(2)
K1

= {a, b} η
(2)
K2

= ø

η
(3)
K1

= {a, b} η
(3)
K2

= {c}
η

(4)
K1

= {a, b} η
(4)
K2

= {c, d}
η

(5)
K1

= {a, b} η
(5)
K2

= {c, d, e}
η

(6)
K1

= {a, b} η
(6)
K2

= {c, d, e, f}.

LetM(vi) denote the set of maximal cliques containing vi in G∗. Note thatM(vi)

also represents the set of simplical cliques of the nodes in Padj(vi) ∪ {vi}, i.e.,

M(vi) =
⋃

vj∈Padj(vi)∪{vi}

Kvj
.

In short, the nodes having the same simplicial cliques forms a supernode. Using this

representation, the nodal cost Φ2 can be rewritten as
∑

K∈M(vi)

|η(i)
K ||K(i−1)|.

For example, consider the nodal cost Φ2 of node e in Figure 9(a). The set of

maximal cliques containing e is {K1, K2}, η
(5)
K1

= {a, b}, η
(5)
K2

= {c, d, e}, K
(4)
1 = {e}, and

K
(4)
2 = {e, f}. Hence, Φ2(e) = |η(5)

K1
||K(4)

1 |+ |η(5)
K2
||K(4)

2 | = 8, which is depicted in Figure
9(b). Similar transformation can be applied to Φ3, Φ5, Φ7, and Φ8. As for Φ6 and Φ9,

the set child(vi) can be transformed to the set CM(vi) so as to facilitate the supernode
representation, where CM(vi) represents the set of simplicial cliques of the nodes in

child(vi). Table 3 shows the modified specifications for the cost functions in Table 2.

Using this modification, the computation for nodal cost calculation will be reduced to
O(κ), where κ represents the sum of the sizes of all of the maximal cliques in G∗.

Table 3

Modified specifications for cost functions in Table 2.

Φ2
∑

K∈M(vi) |η
(i)
K ||K(i−1)|

Φ3
∑

K∈M(vi)
1
2
|η(i)

K |
(
2(|K(0)| − |K(i)|)− |η(i)

K |+ 1
)

Φ5
∑

K∈M(vi) |η
(i−1)
K |

Φ6
∑

K∈CM(vi) |η
(i−1)
K |

Φ7
∑

K∈M(vi) |η
(i−1)
K ||K(i−1)|

Φ8
∑

K∈M(vi)
1
2
|η(i−1)

K |
(
2(|K(0)| − |K(i−1)|)− |η(i−1)

K |+ 1
)

Φ9
∑

K∈CM(vi)
1
2
|K(i−1)|(|K(i−1)|+ 1)

The completion cost, as stated in Theorem 4.8, can be determined as the node

becomes simplicial. Let the new simplicial nodes, as a node v is eliminated in step
16

j, be u1, u2, . . . , us and all of them are contained within a maximal clique K (j). Note
that the relative order between u1, u2, . . . , us is irrelevant. Hence, it is appropriate to

consider the natural order of u1, u2, . . . , us. Let w denote in K(j) the simplicial node
that has the maximum completion cost among all nodes in K (j) that became simplicial

earlier than u1, u2, . . . , us. Then it is immediately clear that Dj(u1) = Dj(u2) = . . . =
Dj(us) = max{CP (v), CP (w)}. Instead of keeping track of the maximum descendant

cost of each simplicial node, we simply maintain this cost as the provisional cost CP (K)
of the maximal clique to which these simplicial nodes belong. In addition to inserting

the simplicial node us into S, we update CP (K). With this concept we only have to
compare CP (v) and CP (K) to obtain the maximum descendant cost without knowing

w.
Theorem 4.9. The complexity of Algorithm 2 is O(q log q + κ), where q denotes

the number of maximal cliques and κ the sum of the sizes of all of the maximal cliques

in G∗.
Proof. It has been shown in [15] that the creation of maximal cliques and the

representation of G∗ can be completed in O(n + κ) time, where κ =
∑q

i=1 |Ki| and
n denotes the number of nodes in G∗. Since each supernode becomes new simplicial

only upon the absorption of a maximal clique and each insertion to the simplicial set S
takes O(log q) time, the maintenance of the simplicial set S through the whole process

consumes at most O(q log q) time. The cost for computing the nodal cost is constant
or proportional to Pdeg(v) or |child(v)|, depending on the specification of the cost

function. For n nodes, the total cost would be O(e) in the worst case, where e denote
the number of edges in G∗. Note that in our implementation the calculation is indeed

performed via the supernode concept. The cost is thus reduced to O(κ). Hence, the
overall complexity is O(q log q + κ).

5. Experimental results. In this section, we present the experimental results on
some test matrices from the collection at the University of Florida1. Table 4 lists the

name, a description, the order, and the number of nonzeros in the lower triangular part
of the test matrices.

All experiments were performed on a SGI Origin 3800 system, with 32 processors.
We first used Liu’s multiple minimum degree algorithm MMD [19] to reorder each of the

matrices and performed symbolic factorization to obtain the corresponding filled matrix.
Thereafter we applied the Jess and Kees algorithm (following the leading implemen-

tation in [15]) and our minimum completion cost ordering algorithm, respectively, to
each of the reordered matirces. Since the minimum degree ordering is sensitive to tie

breaking and in turn will affect the cost for parallel factorization, we randomly per-
muted all test matrices 100 times (including the original one). All methods were run on

the same randomized matrices. For our purpose, we are concerned with the completion
cost difference when using Jess-Kees as the ordering method under any criterion. This

value will justify the effectiveness of our method. Every randomized matrix was tested

to collect the difference.

1 Available from http://www-pub.cise.ufl.edu/∼davis/sparse

17

The mean and the best of the differences are reported in Tables 5 and 6, respectively.
For most of the test matrices, the mean difference is less than 10% whereas it reaches

18% for BCSSTK30, BCSSTK35, and CFD1 in the case of Φ4 and Φ9. The result for
best difference, however, is larger than 15% for most matrices, and reaches 41% and 66%

for BCSSTK35 and SKIRT, respectively. Note that the results in the first three columns
are quite similar to those in the last three columns. This is because the formulations

of Φ2, Φ3, and Φ4 are similar to Φ7, Φ8, and Φ9, respectively. It is also interesting to
note that the multifrontal factorization benefits the most from our ordering algorithm

(see columns Φ4 and Φ9), then the submatrix-Cholesky, column-Cholesky, and last the
row-Cholesky factorization.

It is well known that MMD will lead to elimination trees that are not well balanced.

So, most good orderings used today are hybrids of nested dissection and minimum degree
[1] [11] [14] [24]. We thus conducted another experiment, using one of the leading hybrid

ND/MD orderings, METIS [13], in place of MMD, to evaluate the gains of our ordering.
The results are shown in Tables 7 and 8.

It is not surprising that the gains decrease for most of the test matrices, which
corroborates the result in the literature that ND produces more balanced elimination

trees than MMD and leads to more parallelism. For matrices derived from complex
geometries, however, it is known that ND does not necessarily produce good separators

and/or result in well balanced elimination trees. In this case, one can expect large
reductions in completion cost through our algorithm. Matrices SHUTTLE, STRUCT3,

and FINAN512 highlight this phenomenon; all exhibit more cost reductions when they
are initially ordered by METIS than by MMD, measured by either the mean or the

best difference. Other matrices in our test set that partially exhibit this phenomenon
include BARTH4, BARTH5, BCSSTK30, BCSSTK37, and PWT. For these matrices,

we observe that, in the case of multifrontal factorization, the performance gains obtained

with initial orderings from METIS are larger than those from MMD. Similar to the case
when the initial orderings are produced by MMD, the multifrontal factorization benefits

the most from our ordering algorithm, then the submatrix-Cholesky, column-Cholesky,
and last the row-Cholesky factorization.

As one might expect, the overhead spent on ordering should not exceed the per-
formance gain in the factorization. Table 9 reports the CPU times for the minimum

height ordering and our minimum completion ordering. As the results show, our min-
imum completion cost ordering takes approximately 2–4 times more time than mini-

mum height ordering. The overhead incurred by replacing minimum height ordering
with our scheme is small as compared with the prospective improvement in the most

time-consuming step—factorization.

6. Conclusions. The height of the elimination tree has long acted as the only

criterion in deriving a suitable fill-preserving sparse matrix ordering for parallel fac-
torization. Although it is well known that adopting height as the criterion for all

circumstances is deficient, this has never been successfully addressed by any research.
This study is the first one to expand the ordering criterion into a more general class that

reflects the various aspects of parallel factorization. We recognize that if any cost func-

18

tion satisfies the proposed independent and conservative properties, a greedy ordering
scheme then generates an optimal ordering with minimum completion cost.

It should be noted that our emphasis in this paper has been on pursuing opti-
mal equivalent reorderings for parallel Cholesky factorizations from various theoretical

perspectives. To justify the results obtained in this study, we still need to conduct a
comprehensive experiment on diverse actual parallel Cholesky factorization codes.

Recently, more effective results for parallel factorization have been achieved through
a larger task model, such as the clique or supernodal tree [9] [26] [27]. In such a case,

ordering is not only the permutation of the nodes in the filled graph, but also affects
the construction of each supernode. Different ordering may lead to a totally different

set of supernodes. To our knowledge, recent literature [3] [8] only achieved finding

an ordering to minimize the height of the clique tree. Methods for finding optimal
orderings in terms of other more general and realistic concerns remain unanswered. We

are currently engaged in this investigation and expect to have some results in the near
future.

Acknowledgements. We would like to thank John G. Lewis for many valuable

suggestions and comments, especially on improving the conservation property for the
nodal cost function. We thank the referees for many thoughtful suggestions, particularly

in pointing out some errors of our previous implementation of the MinCP algorithm.
We are also grateful for the support from the National Center for High-performance

Computing (NCHC) in using SGI Origin 3800.

REFERENCES

[1] C. Ashcraft and J.W.H. Liu, Robust ordering of sparse matrices using multisection, SIAM J.
Matrix Anal. Appl., 19 (1998), pp. 816–832.

[2] B. Aspvall and P. Heggernes, Finding minimum height elimination tree for interval graphs in
polynomial time, BIT, 34 (1994), pp. 484–509.

[3] J.R.S. Blair and B.W. Peyton, On finding minimum-diameter clique trees, Nordic Journal of
Computing, 1 (1994), pp. 173–201.

[4] J.J. Dongarra, F.G. Gustavson, and A. Karp, Implementing linear algebra algorithms for dense
matrices on a vector pipeline machine, SIAM Review, 26 (1984), pp. 91–112.

[5] I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations,
ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[6] I.S. Duff, R.G. Grimes, and J.G. Lewis, Sparse matrix test problems, ACM Trans. Math. Software,
15 (1989), pp. 1–14.

[7] A. George and J.W.H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice
Hall, Englewood Cliffs, NJ, 1981.

[8] J.R. Gilbert and R. Schreiber, Highly parallel sparse Cholesky factorization, SIAM J. Sci. Stat.
Comput., 13 (1992), pp. 1151–1172.

[9] A. Gupta and V. Kumar, Optimally scalable parallel sparse Cholesky factorization, in Proceed-
ings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, 1995,
pp. 442–447.

[10] M.T. Heath, E. Ng and B.W. Peyton, Parallel algorithms for sparse linear systems, SIAM Review,
33 (1991), pp. 420–460.

[11] B. Hendrickson and E. Rothberg, Improving the run time and quality of nested dissection ordering,
SIAM J. Sci. Comput., 20 (1999), pp. 468-489.

19

[12] J.A.G. Jess and H.G.M. Kees, A data structure for parallel L/U decomposition, IEEE Trans.
Comput., 31 (1982), pp. 231–239.

[13] G. Karypis and V. Kumar, METIS – A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices – Version 4.0,,
University of Minnesota, 1998.

[14] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1999), pp. 359–392.

[15] J.G. Lewis, B.W. Peyton and A. Pothen, A fast algorithm for reordering sparse matrices for
parallel factorization, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1146–1173.

[16] W.Y. Lin and C.L. Chen, Minimum completion time criterion for parallel sparse Cholesky fac-
torization, in Proceedings of International Conference on Parallel Processing, St. Charles, IL,
1993, pp. III 107–114.

[17] W.Y. Lin and C.L. Chen, Minimum communication cost reordering for parallel sparse Cholesky
factorization, Parallel Computing, 25 (1999), pp. 943-967.

[18] W.Y. Lin and C.L. Chen, On evaluating elimination tree based parallel sparse Cholesky factor-
izations, International Journal of Computer Mathematics, 74 (2000), pp. 361-377.

[19] J.W.H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM Trans.
Math. Software, 11 (1985), pp. 141-153.

[20] J.W.H. Liu, Computational models and task scheduling for parallel sparse Cholesky factorization,
Parallel Computing, 3 (1986), pp. 327–342.

[21] J.W.H. Liu, Equivalent sparse matrix reordering by elimination tree rotations, SIAM J. Sci. Stat.
Comput., 9 (1988), pp. 424–444.

[22] J.W.H. Liu, Reordering sparse matrices for parallel elimination, Parallel Computing, 11 (1989),
pp. 73–91.

[23] J.W.H. Liu and A. Mirzaian, A linear reordering algorithm for parallel pivoting of chordal graphs,
SIAM J. Disc. Math., 2 (1989), pp. 100–107.

[24] F. Pellegrini, J. Roman, and P. Amestoy, Hybridizing nested dissection and halo approximate
minimum degree for efficient sparse matrix ordering, Concurrency: Practice Experience, 12
(2000), pp. 69–84.

[25] D.J. Rose, A graph-theoretic study of the numerical solution of sparse positive definite systems
of linear equations, in R.C. Read, ed., Graph Theory and Computing (Academic Press, New
York, 1972), pp. 183-217.

[26] E. Rothberg, Performance of panel and block approaches to sparse Cholesky factorization on the
iPSC/860 and Paragon multicomputers, SIAM J. Sci. Comput., 17 (1996), pp. 699–713.

[27] E. Rothberg and A. Gupta, An efficient block-oriented approach to parallel sparse Cholesky fac-
torization, SIAM J. Sci. Comput., 15 (1994), pp. 1413–1439.

[28] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc. Methods, 2
(1981), pp. 77–79.

20

Table 4

Test matrices from UF Sparse Matrix Collection.

Key Description Order NZ in A(103)

3DTUBE 3-D pressure tube 45330 1629

BARTH4 Structural engineering problem 6019 23

BARTH5 Structural engineering problem 15606 61

BCSSTK30 Structural eng., off-shore platform 28924 1036

BCSSTK31 Structural eng., automobile component 35588 608

BCSSTK32 Structural eng., automobile chassis 44609 1029

BCSSTK35 Structural eng., automobile seat frame 30237 740

BCSSTK36 Structural eng., automobile shock absorber 23052 583

BCSSTK37 Structural eng., track ball 25503 583

BCSSTK39 Shuttle solid rocket booster 46772 1068

CFD1 CFD, symmetric pressure matrix 70656 949

CFD2 CFD, symmetric pressure matrix 123440 1605

CRYSTK02 Structural eng., crystal vibration 19365 497

CRYSTK03 Structural eng., crystal vibration 24696 863

CT20STIF Structural eng., CT20 engine block 52329 1323

FINAN512 Economics, portfolio optimization 74752 336

GEARBOX ZF aircraft flap actuator 153746 4617

LI 3D FEM, magnetohydrodynamic problem 22695 686

MSC10848 Aircraft structure 10848 620

MSC23052 Naval destroyer structure 23052 588

NASASRB Shuttle rocket booster 54870 1366

PWT Structural engineering problem 36519 181

SHUTTLE Structural engineering problem 10429 57

SKIRT Structural engineering problem 12598 104

STRUCT3 L-shaped regular grid 53570 613

STRUCT4 Full three ocean model 4350 121

VIBROBOX Vibroacoustic problem 12328 177

21

Table 5

Completion cost increase (mean) of Jess-Kees to MinCP, initially ordered by MMD.

key Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 Φ9

3DTUBE +0% +0% +1% +0% +0% +0% +0% +1%

BARTH4 +10% +6% +13% +5% +5% +10% +6% +13%

BARTH5 +2% +1% +5% +1% +1% +2% +1% +5%

BCSSTK30 +16% +11% +18% +4% +8% +16% +11% +18%

BCSSTK31 +2% +1% +5% +1% +1% +2% +1% +5%

BCSSTK32 +10% +6% +14% +5% +7% +10% +6% +14%

BCSSTK35 +11% +3% +18% +2% +7% +11% +3% +18%

BCSSTK36 +1% +1% +4% +1% +1% +1% +1% +4%

BCSSTK37 +5% +1% +14% +1% +6% +5% +1% +14%

BCSSTK39 +6% +5% +8% +2% +3% +6% +5% +8%

CFD1 +12% +7% +18% +6% +9% +12% +7% +18%

CFD2 +1% +1% +2% +1% +1% +1% +1% +2%

CRYSTK02 +1% +1% +2% +1% +1% +1% +1% +2%

CRYSTK03 +2% +2% +3% +1% +1% +2% +2% +3%

CT20STIF +6% +3% +14% +4% +8% +6% +3% +14%

FINAN512 +0% +0% +1% +0% +0% +0% +0% +1%

GEARBOX +1% +0% +2% +0% +1% +1% +0% +2%

LI +1% +0% +2% +0% +1% +1% +0% +2%

MSC10848 +3% +2% +3% +1% +1% +3% +2% +3%

MSC23052 +1% +1% +4% +0% +1% +1% +1% +4%

NASASRB +4% +4% +4% +2% +1% +4% +4% +4%

PWT +2% +5% +1% +3% +0% +2% +5% +1%

SHUTTLE +3% +2% +3% +1% +1% +3% +3% +3%

SKIRT +6% +7% +8% +3% +2% +6% +8% +8%

STRUCT3 +1% +1% +1% +0% +0% +1% +1% +1%

STRUCT4 +0% +0% +1% +0% +0% +0% +0% +1%

VIBROBOX +0% +0% +1% +0% +0% +0% +0% +1%

22

Table 6

Completion cost increase (best) of Jess-Kees to MinCP, initially ordered by MMD.

key Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 Φ9

3DTUBE +11% +5% +16% +4% +7% +11% +5% +16%

BARTH4 +16% +12% +20% +12% +14% +16% +12% +20%

BARTH5 +16% +9% +29% +6% +12% +16% +9% +29%

BCSSTK30 +34% +26% +33% +14% +16% +34% +26% +33%

BCSSTK31 +22% +13% +26% +11% +16% +22% +13% +26%

BCSSTK32 +37% +23% +39% +16% +23% +37% +23% +39%

BCSSTK35 +27% +9% +41% +7% +21% +27% +9% +41%

BCSSTK36 +18% +8% +33% +9% +19% +18% +8% +33%

BCSSTK37 +22% +8% +36% +11% +22% +22% +8% +36%

BCSSTK39 +17% +15% +21% +10% +10% +17% +16% +21%

CFD1 +27% +17% +37% +12% +19% +27% +17% +37%

CFD2 +14% +11% +20% +11% +8% +14% +11% +20%

CRYSTK02 +13% +9% +17% +7% +12% +13% +9% +17%

CRYSTK03 +21% +27% +16% +16% +13% +21% +27% +16%

CT20STIF +27% +14% +35% +16% +28% +27% +14% +35%

FINAN512 +8% +2% +21% +2% +10% +8% +2% +21%

GEARBOX +19% +10% +24% +10% +16% +19% +10% +24%

LI +12% +3% +23% +5% +15% +12% +3% +23%

MSC10848 +22% +15% +29% +13% +11% +22% +15% +29%

MSC23052 +15% +10% +29% +9% +20% +15% +10% +29%

NASASRB +15% +14% +17% +8% +8% +15% +14% +17%

PWT +14% +29% +9% +14% +5% +14% +29% +9%

SHUTTLE +9% +10% +10% +7% +6% +9% +10% +10%

SKIRT +55% +66% +37% +36% +24% +55% +66% +37%

STRUCT3 +12% +8% +18% +8% +7% +12% +8% +18%

STRUCT4 +5% +1% +15% +2% +8% +5% +1% +15%

VIBROBOX +3% +1% +20% +2% +6% +3% +1% +20%

23

Table 7

Completion cost increase (mean) of Jess-Kees to MinCP, initially ordered by METIS.

key Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 Φ9

3DTUBE +0% +0% +0% +0% +0% +0% +0% +0%

BARTH4 +2% +0% +8% +0% +2% +2% +0% +8%

BARTH5 +0% +0% +3% +0% +0% +0% +0% +3%

BCSSTK30 +4% +0% +25% +0% +4% +4% +0% +25%

BCSSTK31 +2% +1% +5% +1% +2% +2% +1% +5%

BCSSTK32 +0% +0% +2% +0% +0% +0% +0% +1%

BCSSTK35 +4% +1% +7% +1% +4% +4% +1% +7%

BCSSTK36 +1% +0% +4% +0% +1% +1% +0% +4%

BCSSTK37 +3% +2% +7% +1% +3% +3% +2% +7%

BCSSTK39 +0% +0% +1% +0% +0% +0% +0% +1%

CFD1 +3% +1% +7% +1% +3% +3% +1% +7%

CFD2 +0% +0% +0% +0% +0% +0% +0% +0%

CRYSTK02 +0% +0% +0% +0% +0% +0% +0% +0%

CRYSTK03 +0% +0% +6% +0% +0% +0% +0% +6%

CT20STIF +1% +0% +2% +0% +1% +1% +0% +2%

FINAN512 +2% +2% +5% +1% +2% +2% +2% +5%

GEARBOX +0% +0% +0% +0% +0% +0% +0% +0%

LI +0% +0% +5% +0% +0% +0% +0% +5%

MSC10848 +1% +0% +2% +0% +1% +1% +0% +2%

MSC23052 +1% +0% +3% +0% +1% +1% +0% +3%

NASASRB +0% +0% +1% +0% +0% +0% +0% +1%

PWT +0% +0% +2% +0% +0% +0% +0% +2%

SHUTTLE +1% +1% +4% +0% +2% +1% +1% +4%

SKIRT +3% +2% +7% +1% +4% +3% +2% +7%

STRUCT3 +2% +0% +8% +0% +2% +2% +0% +8%

STRUCT4 +0% +0% +1% +0% +0% +0% +0% +1%

VIBROBOX +0% +0% +0% +0% +0% +0% +0% +0%

24

Table 8

Completion cost increase (best) of Jess-Kees to MinCP, initially ordered by METIS.

key Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 Φ9

3DTUBE +0% +0% +0% +0% +0% +0% +0% +0%

BARTH4 +22% +1% +61% +0% +23% +22% +1% +60%

BARTH5 +5% +1% +36% +0% +7% +5% +1% +35%

BCSSTK30 +30% +13% +50% +13% +31% +30% +13% +50%

BCSSTK31 +1% +1% +12% +1% +0% +1% +1% +12%

BCSSTK32 +15% +7% +33% +10% +15% +15% +7% +33%

BCSSTK35 +13% +8% +21% +7% +12% +13% +8% +21%

BCSSTK36 +9% +9% +15% +9% +12% +9% +9% +15%

BCSSTK37 +23% +12% +48% +12% +19% +23% +12% +48%

BCSSTK39 +1% +1% +21% +0% +1% +1% +1% +21%

CFD1 +15% +11% +28% +5% +17% +15% +11% +28%

CFD2 +0% +0% +6% +0% +0% +0% +0% +6%

CRYSTK02 +0% +0% +0% +0% +0% +0% +0% +0%

CRYSTK03 +0% +0% +21% +0% +0% +0% +0% +21%

CT20STIF +9% +2% +19% +3% +10% +9% +2% +19%

FINAN512 +13% +13% +13% +9% +10% +13% +13% +13%

GEARBOX +2% +2% +9% +2% +4% +2% +2% +9%

LI +0% +2% +23% +0% +5% +0% +2% +23%

MSC10848 +11% +3% +18% +1% +9% +11% +3% +18%

MSC23052 +6% +7% +15% +8% +9% +6% +7% +15%

NASASRB +0% +0% +8% +2% +4% +0% +0% +8%

PWT +9% +8% +23% +6% +13% +9% +8% +23%

SHUTTLE +14% +21% +26% +15% +15% +14% +21% +26%

SKIRT +13% +14% +34% +10% +16% +13% +14% +33%

STRUCT3 +14% +6% +34% +3% +15% +14% +6% +34%

STRUCT4 +4% +1% +13% +0% +6% +4% +1% +13%

VIBROBOX +1% +1% +1% +0% +0% +1% +1% +1%

25

Table 9

Time (CPU seconds) to execute the minimum height (J-K) and minimum completion cost orderings
(MinCP).

Key J-K Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 Φ9

3DTUBE 0.22 0.56 0.55 0.39 0.48 0.51 0.53 0.53 0.52

BARTH4 0.02 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.04

BARTH5 0.05 0.11 0.11 0.09 0.10 0.10 0.10 0.11 0.11

BCSSTK30 0.08 0.18 0.17 0.13 0.15 0.16 0.17 0.17 0.16

BCSSTK31 0.12 0.28 0.27 0.20 0.24 0.25 0.26 0.27 0.26

BCSSTK32 0.13 0.31 0.30 0.22 0.26 0.28 0.29 0.29 0.28

BCSSTK35 0.08 0.17 0.17 0.12 0.15 0.16 0.16 0.16 0.16

BCSSTK36 0.06 0.13 0.13 0.09 0.11 0.12 0.12 0.12 0.12

BCSSTK37 0.07 0.15 0.15 0.11 0.13 0.14 0.14 0.14 0.14

BCSSTK39 0.14 0.33 0.32 0.24 0.28 0.30 0.31 0.31 0.31

CFD1 0.44 1.22 1.21 0.86 1.05 1.12 1.16 1.16 1.16

CFD2 0.77 2.18 2.23 1.59 2.00 2.08 2.19 2.17 2.18

CRYSTK02 0.06 0.15 0.15 0.11 0.13 0.14 0.14 0.14 0.14

CRYSTK03 0.12 0.29 0.28 0.20 0.25 0.26 0.27 0.27 0.27

CT20STIF 0.17 0.42 0.42 0.31 0.37 0.39 0.41 0.41 0.40

FINAN512 0.34 0.92 1.02 0.71 0.91 0.94 0.94 0.98 0.93

GEARBOX 0.63 1.64 1.64 1.18 1.43 1.53 1.58 1.59 1.52

LI 0.21 0.57 0.56 0.40 0.48 0.51 0.53 0.53 0.52

MSC10848 0.03 0.07 0.07 0.05 0.06 0.06 0.07 0.06 0.06

MSC23052 0.06 0.13 0.13 0.10 0.11 0.12 0.13 0.13 0.13

NASASRB 0.19 0.49 0.48 0.35 0.42 0.45 0.46 0.46 0.46

PWT 0.12 0.31 0.32 0.24 0.28 0.29 0.30 0.31 0.30

SHUTTLE 0.03 0.08 0.08 0.06 0.07 0.07 0.08 0.08 0.08

SKIRT 0.04 0.10 0.09 0.07 0.08 0.09 0.09 0.09 0.09

STRUCT3 0.19 0.50 0.50 0.37 0.44 0.47 0.48 0.49 0.48

STRUCT4 0.04 0.08 0.08 0.06 0.07 0.07 0.08 0.07 0.07

VIBROBOX 0.07 0.16 0.16 0.12 0.14 0.15 0.15 0.15 0.15

26

