Ch. 10 Protocol Layering
Outline

1. Introduction
2. The Need For Multiple Protocols
3. The Conceptual layers of Protocol Software
4. Functionality of the Layers
5. X.25 and Its Relation to the ISO Model
6. Locus of Intelligence
7. The Protocol Layering Principle
8. Layering in the Presence of Network Substructure
9. Two Important Boundaries in the TCP/IP Model
10. The Disadvantage of Layering
11. The Basic Idea Behind Multiplexing and Demultiplexing
12. Summary
Protocol Layering

• Separates protocol functionality
• Each layer solves one part of the communication problem
• Intended primarily for protocol designers
• Set of layers is called a protocol stack
Reference Models

ISO 7-Layer Reference Model

TCP/IP 5-Layer Reference Model
Illustration of Layering In an Internet

- IP is machine-to-machine: layering principle only applies across one hop
- TCP is end-to-end: layering principle from original source to ultimate destination

FTP, SMTP, HTTP
TCP, UDP
IP
ARP
TCP/IP Multiplexing and Demultiplexing

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer
Summary

• Layering
 – Intended for designers
 – Helps control complexity in protocol design

• TCP/IP uses 5-layer reference model
 – IP is machine-to-machine protocol
 – TCP is end-to-end protocol

• Conceptually, a router only needs layers 2 and 3, and a host needs all layers

• Demultiplexing used to handle multiple protocols at each layer