Chapter 4
Accessing and Understanding

Performance

Outline

e Defining performance (4.2)

e CPU performance and its factors (4.2)
e Evaluating performance (4.3)

e About benchmark (4.3)

Why Study Performance?

e Conflicting Goals

— User
¢ Find the most suitable machine to get the job done at the lowest cost
= Application-oriented metrics

— Vendor

e Persuade you to buy their machine regardless of your needs
—Hardware-oriented metrics

e Know the vocabulary and understand the issues, so that:
— Asauser/buyer, you can make better purchasing decisions

— Asan engineer, you can make better hardware/software design
decision

Performance for a CPU Designer

e An attempt to quantify how well a particular computer can
perform auser’s applications

e Problems:
— Essentially a softwar e+har dwar e issue
— Different machines have different strengths and weaknesses

— Thereis an enormous amount of hype and outright deception in
the market — be wary

e Key to understanding underlying organizational
motivation
— Why is some hardware better than others for different programs?

— What factors of system performance are hardware related? (e.g.,
Do we need a new machine, or a new operating system?)

— How does the machine's instruction set affect performance?

Performance

e \Why do we care about performance evaluation?

— Purchasing perspective
e given acollection of machines, which has the
— best performance ?
— least cost ?
— best performance / cost ?
— Design perspective
o faced with design options, which has the
— best performance improvement ?

— least cost ?
— best performance / cost ?

e How to measure, report, and summarize performance?
— Performance metric
— Benchmark

Which of these airplanes has the best

performance?
Airplane Passenger | Cruising range Cruising speed Passenger throughput
Capacity (miles) (m._p.h.) (passengers x m_p.h.)
Boeing 777 375 4630 610 228,750
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

e \What metric defines performance?
— Capacity, cruising range, or speed?
e Speed

— Taking one passenger from one point to another in the least
time

— Transporting 450 passengers from one point to another

Two Notions of “Performance”

e Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute ajob?
— How long must | wait for the database query?
— Timeto do thetask
e Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?
— Total amount of work donein a givetime

e |f we upgrade a machine with a new processor what do
we Increase?

e |f we add a new machineto the lab what do we increase?

v

Execution Time

e Elapsed Time
— counts everything (disk and memory accesses, 1/0 , etc.)

— auseful number, but often not good for comparison
purposes

e CPU time
— doesn't count 1/O or time spent running other programs
— can be broken up into system time, and user time

e Our focus. user CPU time

— time spent executing the lines of code that are"in" our
program

Execution Time

e EXxecution timeon a computer istypically divided into:
— User time: Time spent executing instructions in the user code

— System time: Time spent executing instructions in the kernel on behalf of the
user code (e.g., opening files)

— Other: Time when the system isidle or executing other programs
e Use“time” and “top” commands in Unix to see these

90.7u 12.9s 2:39 65%
(0.7 + 12.9)/(2:39) = €5%. 1/3 of the eslapsed time for I/0
wailting, running other

programs

Nl B INIRIEN

[] Usertime [Sys. time [[Other/ idle

Performance Expressed as Time

e Timeisthe measure of computer performance and
the only reliable one

e Performance 1performance(x) = 1
: : execution_time(x)
— Bigger iIs better
— Improve performance = decrease execution time

e " X Isntimesfaster than Y" means
Performance(X) Execution_Time (Y)

Performance(Y) Execution _Time (X)

10

Time Measurement

e But what does the “time” mean?

— Absolute time measures
o Difference between start and finish of an operation
e Synonyms:. running time, elapsed time, completion time, execution time,
response time, latency
— 1. Everything: response time => system perfor mance
* Includes disk access, memory access, 1/0, OS, CPU time
— 2. CPU only: CPU execution time or CPU time => CPU performance
 thetime CPU spends for this task
» User CPU time and system CPU time

— Relative (normalized) time measures

e Running time normalized to some reference time
— 3. Interms of clock cyclesfor computer designer

11

Clock Cycles

e Instead of reporting execution time in seconds, we often
use cycles
seconds cycles seconds

program program cycle
e Clock “ticks” indicate when to start activities (one
abstraction):

e cycletime = time between ticks :ﬂgeeconds per cycle
e clock rate (frequency) = cycles per second (1 Hz. =1
cycle/sec)
A 200 MHz. clock has a

e 10? = 5 nanoseconds Ccycle time
200 = 10 12

Outline

e Defining performance (4.2)

e CPU performance and its factors (4.2)
e Evaluating performance (4.3)

e About benchmark (4.3)

13

CPU Time and its Factors

CPU Time = clock cycles for a program x clock cycle time

clock cycles for a program

clock rate
Instruction count x Cycles per instruction

clock rate

Instruction count x CPI

clock rate
CPU clock cycles= > CPI xC,.

C. : the count the number :::1i115t1"|.1r:t1'0115 of classi Ia};ecuted

14

CPI

e The average number of clock cycles each
Instruction takes to executed

e One way to comparing two different
Implementations of the same instruction set
e Overal CPI for aprogram

— Number of cyclesfor each instruction type

— Frequency of each instruction type in the program
execution

15

Performance Equation

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle

e Performance is determined by execution time

e Do any of the other variables equal performance?
— # of cyclesto execute program?
— # of instructions in program?
— # of cycles per second?
— average # of cycles per instruction?

— average # of instructions per second?
e MIPS (million instructions per second)
e When isit fair to compare two processors using M1PS?

16

How to determine the three factors

e Instruction count
— Using software tools by profiling, or
— Simulator of the architecture, or
— Hardware counters (accuracy varies)
— You can measur e it without knowing the CPU implementation

o CPI

— Depends on design details in the computer
— By detalled ssmulation or hardware counter
— CPI should be measured

e Y Ou cannot get it from the “Manuals”

e Clock cycle
— From the “manuals”

17

How to iImprove the performance

e Reduce I nstruction count to execute

® |ncrease the number of instruction per cycle
(reduce CPI)

— Concurrent execution of instructions
® Increase clock rate

18

How Hardware and Software Affect
Performance ?

+ Algorithm * Instruction set architecture
— Instruction count — Instruction count
— Possibly CPI — CPI
+ E.g. floating point — Clock rate
lgorith :
dgorhms « Other underlying
* Programming language architecture (from Chapter
— Instruction count 5)
- CPI — Pipeline
» E.g. data abstraction in . CPI
J 2=
'ava — Indirect code * Clock rate
+ Compiler — Memory system
— Instruction count . CP

— CPI * Clock rate

19

Aspects of CPU Performance

CPUtime = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle
Inst Count CPI Clock Rate

Algorithm X X

Programming

Language X X

Compller X X

ISA X X X

(instruction set architecture)

20

Short Summary

e Performance is determined by execution time

e Do any of the other variables equal performance?
— # of cyclesto execute program?
— # of instructions in program?
— # of cycles per second?
— average # of cycles per instruction (CPI)?
— average # of instructions per second (IPC)?

e Common pitfall: thinking one of the variablesisindicative
of performance when it really isn’t.

e Remember: Timeisthe only reliable measurement for
performance

21

Outline

e Defining performance (4.2)

e CPU performance and its factors (4.2)
e Evaluating performance (4.3)

e About benchmark (4.3)

22

Evaluating Performance

e \Which program shall be used to evaluate
performance

— Best one: real workload inyour daily life
e It ISNOt easy for everyone

— Alternative: benchmark
e To predict the performance of the real workload

23

Benchmarks

Performance best determined by running areal application

Use programs typical of expected workload

Or, typical of expected class of applications
e compilergeditors, scientific applications, graphics, etc. GCC, tex, spice, Excdl,

Small benchmarks

took small fragments of code from inside application loops

nice for architects and designers, easy to standardize but it can be abused
e best for isolating performance of individual features of the machine

nice for architects and designers

easy to standardize

can be abused

Livermore Loops, LINPACK

Toy benchmarks: 10 ~ 100 lines
e Sieve of Erastosthenes, Puzzle, Quicksort, N-Queen

Synthesis benchmarks:

Try to match average frequency of alarge set of programs

Exercise the hardware in amanner to mimic real-world applications, but in a small
piece of code.

Examples. Whetstone, Dhrystone —

e Performs avaried mix of instructions and uses the memory in various ways,

e How many “Whetstones” or “Dhrystones” per second your computer can do. 24

More Benchmarks

e Drystone[Weicker84]

e \Whestone[Currow & Wichmann7/6}

— University computer center jobs
— 12 loops

e SPEC Benchmarks

— SPEC (System Performance Evaluation Cooperative)
e companies have agreed on a set of real program and inputs

o valuable indicator of performance (and compiler technology)
e can still be abused

— SPEC 89
— SPEC 92
— SDPEC 95
— SPEC2000
— SPEC2004

25

Application-oriented Benchmarks

CPU performance
— SPEC, for scientific applications

Server performance

— Focus on throughput, response time to individual events
— SPECweb99

Graphics performance
— 3D Mark

Embedded computing
- EEMBC
— Automatic, consumer, networking, office automation, telecommunication

Other research oriented
— MediaBench
— CommBench

26

SPEC CPU 2000

o o o

gnp Compression Quantum chromodynamics

vir FPGA circult placement and routing sﬂm Shallow water modal

gioc The Gnu C compller mgrid Mutlgnd sohver In 3-0 potantial feld

mef Combinatonal optimization appiu Farabolic /alliptic partlal diferantial equation

crary Chass program mesa Three-dimensional graphics Norary

parser | WoRl processing program galgel Computational Tiuld dynamics

aon Computer visualization art Image recognition using neural networks

peribmk | per application equake | Selsmic wave propagation simulation

gap Group theory, Interpreter facerec | Image recognition of Taces

vortex | Objectonented database ammp | Computational chemistry

bap2 Comprasslon lucas Primallty testing

ool Flace and rote simulator Tmazd | Crash simulation using fnite-clement method
sharack | HIgh-enarngy nuclear physks aotalorator design
apsl Mateorology: pollutant distribution

FIGURE 4.5 The SPEC CPU2000 benchmarks. The 12 integer benchmarks in the left half of the
table are written in C and C++, while the floating-point benchmarks in the right half are written in Fortran

(77 or 90) and C. For more information on SPEC and on the SPEC benchmarks, see www.spec.org. The
SPEC CPU benchmarks use wall dock time as the metric, but because there is little 110, they measure CPU

performance.

27

SPEC CINT2000

SPEC CINT2000 Benchmark Kernels
Benchmark He_f;:::c& Language Application Class General Description
Comprasses a TIFF (Tagged Imags Format Fils), a Web
164.gzip 1400 G Compression sarvar log, binary program coda, "random” data, and a tar
fila sounca,
: Maps FPGA circuit logic blocks and thair raquired
175.vpr 1400 c E.':,:g E?;%:}EEE connactions using a combinatorial aptimization program.
' , Such programs are found in infegratad circuit CAD
Placement and Routing | proomms.
176 1100 c C Programming Compilas Motorola 88100 machine code from five
-gec Language Compiler diffarant input sourca files using gec.
181.mdl 1800 C Combinatorial Solves a single-depot vehicle scheduling problam of the
L Optimization typa aftan found in the public transportation planning field.
Solves five different chessboard input layouts o varying
L Lo - I saarch free “depths’ for possible naxt moves.
197 parser 1800 C Word Processing Parsaes input sentences to find English syntax using a

&0,000-word dicionary.

Finds tha intarsaction of three-dimansional rays using

252 eon 1300 C+ Computer Visualization orobabilisfic ray iracing.
PERL Programming Processas five Per scripts to create mail, HTML, and ofhar
253 perlbmk 1800 C Language output,
Group Theory Interprats a group theory language that was written to
254.gap 1100 c Interpreter process combinatorial problames.
255.vortex 1900 C e Manipulates data from thres object-oriented databases.
Database
256 bzip2 1500 C Compression 1?[2{“ presses a TIFF, a binary program, and a tar source
Place and Route Approximates a solution to the problem of finding an
3000 E Simulator optimal transistor layout on a microchip.,

28

SPEC CFP2000

SPEC CFP2o00 Benchmark Kemels

Benchmark Flefr?;ﬁeg o= Language Application Class General Description
: FORTRAM [Quantum Simulates quark interactions as neadad by physicists
e o 7 Chromodynamics studying quantum chromaodynamics.
Pradicts waather using mathematical medeling techniquas.
171 .=wim 3100 FO HJ?HAN E,lh?j“':iw Water Swim is often used as a benchmark of suparcomputar
edeling parformana.
172 . 1800 FORTRAM |30 Paotential Field Computas the solution of a three-dimensional scalar Poisson
mgry 77 Solwer aquation. This kemel banchmark comeas from MASA,
173.ap0lu 5100 FORTRAM |Parabolic-Elliptic Partial | Solvas five nonlinaar partial diffarantial equations using
PP 7 Differential Equations | sparse Jacoblan matrices.
B . . Corvarts a two-dimensional graphics input to a three-
177.mesa 1400 c 3-0 Graphics Library dmansional graphics output.
. . Detarminas the critical valua of temparatura differancas in
175.galge=l 2S00 FO H;UHAN gnmpu_taimnal L the walls of a fluid tank that cause convectiva flow o
ynamios changa to cscillatory flow.
. Locates images of a halicoptar and an airplans within an
179.art 2600 c Image Recognition image. The algorithm uses neural networks.
Seizmic Wave Lizas finita alamant anakhysis to recovar tha histary of graund
183 .equake 1200 c Propagation Simulation | motion ensuing from a seismic event.
FORTRAM - Lisas the *Elastic Graph Matching® mathod to racogniza
187 facerec 1500 a0 Face Recognition facas represented by labelad graphs.
Computational Solvas a malscular dynamics problam by caleulating the
B oo . Chemistry mctions of maleculas within a system,
FORTRAN o _ Bagins the process of datarmining the primality of a large
189 Jucas 2000 a0 Primality Testing Mersenne number (2*-"). The result is nat found; tha
imtarmadiate results are measured instead,
FORTRAM |Finite-Element Crash Simulates the affects of tha collision of inalastic thrae-
191 jma3d il 80 |Simulation dimensional solids.
High Energy Muclear))) ,)
: FORTRAM : Simulates tracking particle behavior through a particla
200 . sixtrack 1100 =7 B:i.s;-.s Accelerator accalarator.
FORTRAN Finds the velocity of pollutart particles from a given
301 .apsi 2800 -7 Pallutant Distribution soures using parametars of intial valocity, wind spead,

anid tam paratura,

29

Arithmetic Mean vs. Geometric Mean

Problem
— How you combine the normalized results or Can you ?

When arithmetic mean applied to the normalized execution time

— Ais5.05 times faster than B

— B is5.05 times faster than A

— Thisisused in SPEC ratio

— Result is strongly affected by the choosing refer ence machine
Geometric means produces the same “relative” results whether we
normalizeto A or B

— Pros: independent of the running time

— Cons: Geometric mean does not track total execution time and thus can’t be
used to predict relative execution time for a workload

So what’s the solution to summary the performance
— Measuretheworkload and weighted by their frequency of execution

30

Amdahl's Law

Execution Execution time atftected . .)
— + Execution time unaftected

time after — A t of i] {
improvement mount of improvemen
T Performance after improvement
Speedip =

Performance before improvement

Execution time before improvement

Execution time after improvement

Execution time before improvement

Execution time attected

+ + Execution time unattected
Amount of improvement

31

Amdahl's Law

® Speedup due to enhancement E:

ExTime w/o E Performance w/ E
Speedup(E) = ---—-—=-=====--- R e e e e e
ExTime w/ E Performance w/o E

e

e Suppose that enhancement E accelerates afraction
F of the task by afactor S, and the remainder of the
task Is unaffected, then:

ExTime (E) =((1-F)+ F/5) X ExTime(without E)
1

(1-F) + E/S

Speedup (E) =

32

Amdahl’s Law

e Hoating point instructions improved to run 2X; but
only 10% of actual instructions are FP

ExTime ., = ExTime_ 4, x (0.9 + .1/2) = 0.95 x ExTime,

E’*F"EEEIH|:':'::r1.|rna~rall = ! = 1.053

0.95

33

Example #3

e QOur favorite program runs in 10 seconds on computer A, which has
a400 Mhz. clock. We are trying to help a computer designer build a
new machine B, that will run this program in 6 seconds. The
designer can use new (or perhaps more expensive) technology to
substantially increase the clock rate, but has informed us that this
Increase will affect the rest of the CPU design, causing machine B to
require 1.2 times as many clock cycles as machine A for the same
program. What clock rate should we tell the designer to target?”

Execution Time (A) 10 C X 400x106
on Time (B! 6 12C x _
Execution_Time (B) = —
seconds cycles seconds

= ®
Prograin Prograin E}.-'-EIE

34

Speedup

ASSume

execution time unaffected = f x Execution Time before improvement
Amound of improvement =

Execution time before improvement
Speedup =

Execution time affected . . .
+ Execution time unaffected

Amount of improvement
B 1
=
/., 7
f =0,speedup=n 7
f |~=1, speedup = 1/f, less speedup
— N=> infinity, speedup= 1/f

« Opportunity of improvement depend on how much the time event
OCCUrs

* Principle: Make the common case fast
— Frequency of one even may be much higher than another
— Common case is often the simple case, thus easier to speedup

35

Summary

e Performance is specific to a particular program/s
— Total execution timeisaconsistent summary of performance

e For agiven architecture performance increases come from:
— Increases in clock rate (without adverse CPI affects)
— Improvements in processor organization that lower CPI
— compiler enhancements that lower CPl and/or instruction count
— Algorithm/Language choices that affect instruction count

e Amdahl’sl|aw

36

