
1

Chapter 4Chapter 4
Accessing and UnderstandingAccessing and Understanding

PerformancePerformance



2

OutlineOutline

Defining performance (4.2)
CPU performance and its factors (4.2)
Evaluating performance (4.3)
About benchmark (4.3)



3

Why Study Performance?

Conflicting Goals
–User

 Find the most suitable machine to get the job done at the lowest cost
⇒ Application-oriented metrics

–Vendor
 Persuade you to buy their machine regardless of your needs

⇒Hardware-oriented metrics

Know the vocabulary and understand the issues, so that:
–As a user/buyer, you can make better purchasing decisions
–As an engineer, you can make better hardware/software design

decision



4

Performance for a CPU Designer

An attempt to quantify how well a particular computer can
perform a user’s applications

Problems:
–Essentially a software+hardware issue
–Different machines have different strengths and weaknesses
–There is an enormous amount of hype and outright deception in

the market –be wary
Key to understanding underlying organizational

motivation
–Why is some hardware better than others for different programs?
–What factors of system performance are hardware related? (e.g.,

Do we need a new machine, or a new operating system?)
–How does the machine's instruction set affect performance?



5

Performance

Why do we care about performance evaluation?
–Purchasing perspective

 given a collection of machines, which has the
–best performance ?
–least cost ?
–best performance / cost ?

–Design perspective
 faced with design options, which has the

–best performance improvement ?
–least cost ?
–best performance / cost ?

How to measure, report, and summarize performance?
–Performance metric
–Benchmark



6

Which of these airplanes has the best
performance?

What metric defines performance?
–Capacity, cruising range, or speed?

 Speed
–Taking one passenger from one point to another in the least

time
–Transporting 450 passengers from one point to another



7

Two Notions of “Performance”

Response Time (latency)
–How long does it take for my job to run?
–How long does it take to execute a job?
–How long must I wait for the database query?
–Time to do the task

Throughput
–How many jobs can the machine run at once?
–What is the average execution rate?
–How much work is getting done?
–Total amount of work done in a give time

 If we upgrade a machine with a new processor what do
we increase?

 If we add a new machine to the lab what do we increase?



8

Execution Time

Elapsed Time
–counts everything (disk and memory accesses, I/O , etc.)
–a useful number, but often not good for comparison

purposes

CPU time
–doesn't count I/O or time spent running other programs
–can be broken up into system time, and user time

Our focus: user CPU time
–time spent executing the lines of code that are "in" our

program



9

Execution Time

 Execution time on a computer is typically divided into:
– User time: Time spent executing instructions in the user code
– System time: Time spent executing instructions in the kernel on behalf of the

user code (e.g., opening files)
– Other: Time when the system is idle or executing other programs

 Use “time”and “top”commands in Unix to see these



10

Performance Expressed as Time

Time is the measure of computer performance and
the only reliable one

Performance
–Bigger is better
–Improve performance = decrease execution time

" X is n times faster than Y" means



11

Time Measurement

But what does the “time”mean?
–Absolute time measures

 Difference between start and finish of an operation
 Synonyms: running time, elapsed time, completion time, execution time,

response time, latency
–1. Everything: response time => system performance

•Includes disk access, memory access, I/O, OS, CPU time
–2. CPU only: CPU execution time or CPU time => CPU performance

•the time CPU spends for this task
•User CPU time and system CPU time

–Relative (normalized) time measures
 Running time normalized to some reference time

–3. In terms of clock cycles for computer designer



12

Clock Cycles

 Instead of reporting execution time in seconds, we often
use cycles

Clock “ticks”indicate when to start activities (one
abstraction):

 cycle time = time between ticks = seconds per cycle
 clock rate (frequency) = cycles per second (1 Hz. = 1

cycle/sec)
A 200 MHz. clock has a



13

OutlineOutline

Defining performance (4.2)
CPU performance and its factors (4.2)
Evaluating performance (4.3)
About benchmark (4.3)



14

CPU Time and its Factors



15

CPICPI

The average number of clock cycles each
instruction takes to executed

One way to comparing two different
implementations of the same instruction set

Overall CPI for a program
–Number of cycles for each instruction type
–Frequency of each instruction type in the program

execution



16

Performance Equation

Performance is determined by execution time
Do any of the other variables equal performance?

–# of cycles to execute program?
–# of instructions in program?
–# of cycles per second?
–average # of cycles per instruction?
–average # of instructions per second?

MIPS (million instructions per second)
When is it fair to compare two processors using MIPS?



17

How to determine the three factors

 Instruction count
–Using software tools by profiling, or
–Simulator of the architecture, or
–Hardware counters (accuracy varies)
–You can measure it without knowing the CPU implementation

CPI
–Depends on design details in the computer
–By detailed simulation or hardware counter
–CPI should be measured

 You cannot get it from the “Manuals”

Clock cycle
–From the “manuals”



18

How to improve the performance

Reduce Instruction count to execute
Increase the number of instruction per cycle

(reduce CPI)
–Concurrent execution of instructions

Increase clock rate



19

How Hardware and Software Affect
Performance ?

Indirect code



20

Aspects of CPU Performance



21

Short Summary

 Performance is determined by execution time
Do any of the other variables equal performance?

–# of cycles to execute program?
–# of instructions in program?
–# of cycles per second?
–average # of cycles per instruction (CPI)?
–average # of instructions per second (IPC)?

Common pitfall: thinking one of the variables is indicative
of performance when it really isn’t.

Remember: Time is the only reliable measurement for
performance



22

OutlineOutline

Defining performance (4.2)
CPU performance and its factors (4.2)
Evaluating performance (4.3)
About benchmark (4.3)



23

Evaluating Performance

Which program shall be used to evaluate
performance
–Best one: real workload in your daily life

 It is not easy for everyone

–Alternative: benchmark
To predict the performance of the real workload



24

Benchmarks
 Performance best determined by running a real application

– Use programs typical of expected workload
– Or, typical of expected class of applications

 compilers/editors, scientific applications, graphics, etc. GCC, tex, spice, Excel,
 Small benchmarks

– took small fragments of code from inside application loops
– nice for architects and designers, easy to standardize but it can be abused

 best for isolating performance of individual features of the machine
– nice for architects and designers
– easy to standardize
– can be abused
– Livermore Loops, LINPACK
– Toy benchmarks: 10 ~ 100 lines

 Sieve of Erastosthenes, Puzzle, Quicksort, N-Queen
 Synthesis benchmarks:

– Try to match average frequency of a large set of programs
– Exercise the hardware in a manner to mimic real-world applications, but in a small

piece of code.
– Examples: Whetstone, Dhrystone –

 Performs a varied mix of instructions and uses the memory in various ways;
 How many “Whetstones”or “Dhrystones”per second your computer can do.



25

More Benchmarks

Drystone[Weicker84]
Whestone[Currow & Wichmann76]

–University computer center jobs
–12 loops

 SPEC Benchmarks
–SPEC (System Performance Evaluation Cooperative)

 companies have agreed on a set of real program and inputs
 valuable indicator of performance (and compiler technology)
 can still be abused

–SPEC 89
–SPEC 92
–SDPEC 95
–SPEC2000
–SPEC2004



26

Application-oriented Benchmarks

 CPU performance
– SPEC, for scientific applications

 Server performance
– Focus on throughput, response time to individual events
– SPECweb99

 Graphics performance
– 3D Mark

 Embedded computing
– EEMBC
– Automatic, consumer, networking, office automation, telecommunication

 Other research oriented
– MediaBench
– CommBench



27

SPEC CPU 2000SPEC CPU 2000



28

SPEC CINT2000



29

SPEC CFP2000



30

Arithmetic Mean vs. Geometric Mean

 Problem
– How you combine the normalized results or Can you ?

 When arithmetic mean applied to the normalized execution time
– A is 5.05 times faster than B
– B is 5.05 times faster than A
– This is used in SPEC ratio
– Result is strongly affected by the choosing reference machine

 Geometric means produces the same “relative”results whether we
normalize to A or B
– Pros: independent of the running time
– Cons: Geometric mean does not track total execution time and thus can’t be

used to predict relative execution time for a workload
 So what’s the solution to summary the performance

– Measure the workload and weighted by their frequency of execution



31

Amdahl's Law

Execution
time after
improvement



32

Amdahl's Law

Speedup due to enhancement E:

Suppose that enhancement E accelerates a fraction
F of the task by a factor S, and the remainder of the
task is unaffected, then:



33

Amdahl’s Law

Floating point instructions improved to run 2X; but
only 10% of actual instructions are FP



34

Example #3

 Our favorite program runs in 10 seconds on computer A, which has
a 400 Mhz. clock. We are trying to help a computer designer build a
new machine B, that will run this program in 6 seconds. The
designer can use new (or perhaps more expensive) technology to
substantially increase the clock rate, but has informed us that this
increase will affect the rest of the CPU design, causing machine B to
require 1.2 times as many clock cycles as machine A for the same
program. What clock rate should we tell the designer to target?"



35

Speedup

f
f



36

Summary

 Performance is specific to a particular program/s
–Total execution time is a consistent summary of performance

 For a given architecture performance increases come from:
–increases in clock rate (without adverse CPI affects)
–improvements in processor organization that lower CPI
–compiler enhancements that lower CPI and/or instruction count
–Algorithm/Language choices that affect instruction count

Amdahl’s law


