
1

Graduate Computer Architecture

Chapter 2 –
Instruction Set Principles

2

Outline

Classifying instruction set architectures
Memory addressing
Addressing modes
Type and size of operands
 Instructions for control
The role of compiler

3

Brief Introduction to ISA

 Instruction Set Architecture: a set of instructions
–Each instruction is directly executed by the CPU’s hardware

How is it represented?
–By a binary format since the hardware understands only bits

 Concatenate together binary encoding for instructions, registers,
constants, memories

4

Brief Introduction to ISA (cont.)

 Options - fixed or variable length formats
– Fixed - each instruction encoded in same size field (typically 1 word)
– Variable –half-word, whole-word, multiple word instructions are possible

 Typical physical blobs are bits, bytes, words, n-words
 Word size is typically 16, 32, 64 bits today

5

An Example of Program Execution

 Command
– Load AC from

Memory
– Add to AC from

memory
– Store AC to memory

 Add the contents of
memory 940 to the
content of memory
941 and stores the
result at 941

Fetch Execution

6

Instruction Set Design

timeCycleCPIICTimeCPU _**_ 
The instruction set influences everything

7

Classifying Instruction Set Architectures

How is typing done? How is the size
specified

Type and size of operands

What are the options for the opcode?Operations

How is the effective address for an
operand calculated?
Can all operands use any mode?

Addressing Modes

How many? Min, Max - maybe even
average

Number of explicit
operands
named per instruction

Where are they other than memoryOperand Storage in CPU

These choices critically affect - #instructions, CPI, and
cycle time

8

Basic CPU Storage Options

9

Comparison

10

Classifying ISAs
Accumulator (before 1960):

1 address add A acc acc + mem[A]

Stack (1960s to 1970s):
0 address add tos tos + next

Memory-Memory (1970s to 1980s):
2 address add A, B mem[A] mem[A] + mem[B]
3 address add A, B, C mem[A] mem[B] + mem[C]

Register-Memory (1970s to present):
2 address add R1, A R1 R1 + mem[A]

load R1, A R1 <_ mem[A]

Register-Register (Load/Store) (1960s to present):
3 address add R1, R2, R3 R1 R2 + R3

load R1, R2 R1 mem[R2]
store R1, R2 mem[R1] R2

11

Classifying ISAs

12

Stack Architectures
 Instruction set:

add, sub, mult, div, . . .
push A, pop A

 Example: A*B - (A+C*B)
push A
push B
mul
push A
push C
push B
mul
add
sub

A B
A

A*B
A*B

A*B
A*B

A
A
C

A*B
A A*B

A C B B*C A+B*C result

13

Stacks: Pros and Cons
 Pros

– Good code density (implicit operand addressing top of stack)
– Low hardware requirements
– Easy to write a simpler compiler for stack architectures

 Cons
– Stack becomes the bottleneck
– Little ability for parallelism or pipelining
– Data is not always at the top of stack when need, so additional

instructions like TOP and SWAP are needed
– Difficult to write an optimizing compiler for stack architectures

14

Accumulator Architectures

•Instruction set:
add A, sub A, mult A, div A, . . .
load A, store A

•Example: A*B - (A+C*B)
load B
mul C
add A
store D
load A
mul B
sub D

B B*C A+B*C AA+B*C A*B result

15

Accumulators: Pros and Cons

•Pros
–Very low hardware requirements
–Easy to design and understand

•Cons
–Accumulator becomes the bottleneck
–Little ability for parallelism or pipelining
–High memory traffic

16

Memory-Memory Architectures

•Instruction set:
(3 operands) add A, B, C sub A, B, C mul A, B, C

•Example: A*B - (A+C*B)
–3 operands

mul D, A, B
mul E, C, B
add E, A, E
sub E, D, E

17

Memory-Memory:
Pros and Cons

•Pros
–Requires fewer instructions (especially if 3

operands)
–Easy to write compilers for (especially if 3

operands)
•Cons

–Very high memory traffic (especially if 3 operands)
–Variable number of clocks per instruction

(especially if 2 operands)
–With two operands, more data movements are

required

18

Register-Memory Architectures

•Instruction set:
add R1, A sub R1, A mul R1, B
load R1, A store R1, A

•Example: A*B - (A+C*B)
load R1, A
mul R1, B /* A*B */
store R1, D
load R2, C
mul R2, B /* C*B */
add R2, A /* A + CB */
sub R2, D /* AB - (A + C*B) */

19

Memory-Register:
Pros and Cons

•Pros
–Some data can be accessed without loading first
–Instruction format easy to encode
–Good code density

•Cons
–Operands are not equivalent (poor orthogonality)
–Variable number of clocks per instruction

20

Load-Store Architectures

•Instruction set:
add R1, R2, R3 sub R1, R2, R3 mul R1, R2, R3
load R1, R4 store R1, R4

•Example: A*B - (A+C*B)
load R1, &A
load R2, &B
load R3, &C
load R4, R1
load R5, R2
load R6, R3
mul R7, R6, R5 /* C*B */
add R8, R7, R4 /* A + C*B */
mul R9, R4, R5 /* A*B */
sub R10, R9, R8 /* A*B - (A+C*B) */

21

Load-Store:
Pros and Cons

•Pros
–Simple, fixed length instruction encoding
–Instructions take similar number of cycles
–Relatively easy to pipeline

•Cons
–Higher instruction count
–Not all instructions need three operands
–Dependent on good compiler

22

Registers:
Advantages and Disadvantages

•Advantages
–Faster than cache (no addressing mode or tags)
–Can replicate (multiple read ports)
–Short identifier (typically 3 to 8 bits)
–Reduce memory traffic

•Disadvantages
–Need to save and restore on procedure calls and context

switch
–Can’t take the address of a register (for pointers)
–Fixed size (can’t store strings or structures efficiently)
–Compiler must manage

23

Pro’s and Con’s of Stack, Accumulator,
Register Machine

24

 It is the most common choice in today’s general-
purpose computers

Which register is specified by small “address”(3 to
6 bits for 8 to 64 registers)

 Load and store have one long & one short address:
One and half addresses

General Register Machine and Instruction
Formats

25

Real Machines Are Not So Simple

Most real machines have a mixture of address instructions
A distinction can be made on whether arithmetic

instructions use data from memory
 If ALU instructions only use registers for operands and

result, machine type is load-store
–Only load and store instructions reference memory

Other machines have a mix of register-memory and
memory-memory instructions

26

Combinations of Number of Memory Addresses
and Operands Allowed

VAXMemory-memory33

VAXMemory-memory22

IBM 360/370, Intel
80x86, Motorola
68000, TI
TMS320C54x

Register-memory21

Alpha, ARM, MIPS,
PowerPC, SPARC,
SuperH, Trimedia
TM5200

Register-register30

ExamplesTypes of
architecture

Maximum number
of operands
allowed

Number of
memory
address

27

Compare Three Common General -Purpose
Register Computers

where (m,n) means m memory operands and n total operands

28

Outline

Classifying instruction set architectures
Memory addressing
Addressing modes
Type and size of operands
 Instructions for control
The role of compiler

29

Memory Addressing

How memory addresses are interpreted
–Endian order
–Alignment

How architectures specify the address of an object
they will access
–Addressing modes

30

Memory Addressing (cont.)

 All instruction sets discussed in this book are byte
addressed

 The instruction sets provide access for bytes (8 bits), half
words (16 bits), words (32 bits), and even double words (64
bits)

 Two conventions for ordering the bytes within a larger object
– Little Endian
– Big Endian

31

Little Endian

 The low-order byte of an object is stored in memory at the
lowest address, and the high-order byte at the highest
address. (The little end comes first.)

 For example, a 4-byte object
– (Byte3 Byte2 Byte1 Byte0)
– Base Address+0 Byte0
– Base Address+1 Byte1
– Base Address+2 Byte2
– Base Address+3 Byte3

 Intel processors (those used in PC's) use "Little Endian" byte
order.

Dr. William T. Verts An Essay on Endian Order, http://www.cs.umass.edu/~verts/cs32/endian.html, April 19, 1996

32

Big Endian

 The high-order byte of an object is stored in memory at the
lowest address, and the low-order byte at the highest
address. (The big end comes first.)

 For example, a 4-byte object
– (Byte3 Byte2 Byte1 Byte0)
– Base Address+0 Byte3
– Base Address+1 Byte2
– Base Address+2 Byte1
– Base Address+3 Byte0

Dr. William T. Verts An Essay on Endian Order, http://www.cs.umass.edu/~verts/cs32/endian.html, April 19, 1996

33

Endian Order is Also Important to File Data

 Adobe Photoshop -- Big Endian
 BMP (Windows and OS/2 Bitmaps) -- Little Endian
 DXF (AutoCad) -- Variable
 GIF -- Little Endian
 JPEG -- Big Endian
 PostScript -- Not Applicable (text!)
 Microsoft RIFF (.WAV & .AVI) -- Both, Endian identifier encoded into file
 Microsoft RTF (Rich Text Format) -- Little Endian
 TIFF -- Both, Endian identifier encoded into file

Dr. William T. Verts An Essay on Endian Order, http://www.cs.umass.edu/~verts/cs32/endian.html, April 19, 1996

34

MIPS requires that all words start at addresses that
are multiples of 4 bytes

Called Alignment: objects must fall on address that
is multiple of their size

0 1 2 3
Aligned

Not
Aligned

A Note about Memory: Alignment

35

Alignment Issues
•If the architecture does not restrict memory accesses to be

aligned then
–Software is simple
–Hardware must detect misalignment and make 2 memory accesses
–Expensive detection logic is required
–All references can be made slower

•Sometimes unrestricted alignment is required for backwards
compatibility

•If the architecture restricts memory accesses to be aligned then
–Software must guarantee alignment
–Hardware detects misalignment access and traps
–No extra time is spent when data is aligned

•Since we want to make the common case fast, having restricted
alignment is often a better choice, unless compatibility is an
issue

36

Memory Addressing

Alignment restrictions
–Accesses to objects larger than a byte must be aligned
–An access to an object of size s bytes at byte address A is

aligned if A mod s = 0
–A misaligned access takes multiple aligned memory references

37

Outline

Classifying instruction set architectures
Memory addressing
Addressing modes
Type and size of operands
 Instructions for control
The role of compiler

38

Memory Addressing

 All architectures must address memory

A number of questions naturally arise
 What is accessed - byte, word, multiple words?

– today’s machine are byte addressable
 this is a legacy and probably makes little sense otherwise

– main memory is really organized in n byte lines
 e.g. the cache model

 Hence there is a natural alignment problem
– accessing a word or double-word which crosses 2 lines

 requires 2 references
– automagic alignment is possible but hides the number of references

 also therefore hides an important case of CPI bloat
 hence a bad idea - guess which company does this?

39

Addressing Modes

An important aspect of ISA design
–has major impact on both the HW complexity and the IC
–HW complexity affects the CPI and the cycle time

Basically a set of mappings
–from address specified to address used
–address used = effective address
–effective address may go to memory or to a register array

 which is typically dependent on it’s location in the instruction field
 in some modes multiple fields are combined to form a memory address
 register addresses are usually more simple - e.g. they need to be fast

–effective address generation is an important focus
 since it is the common case - e.g. every instruction needs it
 it must also be fast

40

Example for Addressing Modes

Accessing using a pointer or
a computed address

Regs[R4] <- Regs[R4] +
Mem[Regs[R1]]

Add R4, (R1)Register indirect

Accessing local variables (+
simulates register redirect,
direct addressing modes)

Regs[R4] <- Regs[R4] +
Mem[100 + Regs[R1]]

Add R4,100(R1)Displacement

For constantsRegs[R4] <- Regs[R4] + 3Add R4,#3Immediate

When a value is in a registerRegs[R4] <- Regs[R4] +
Regs[R3]

Add R4,R3Register

When usedMeaningExample
instruction

Addressing mode

41

Example for Addressing Modes (cont.)

If R3 is the address of a
pointer p, the mode yields *p

Regs[R1] <- Regs[R1] +
Mem[Mem[Regs[R3]]]

Add R1,@(R3)Memory indirect

Sometimes useful for
accessing static data;
address constant may need
to be large

Regs[R1] <- Regs[R1] +
Mem[1001]

Add R1,(1001)Direct or absolute

Sometimes useful in array
addressing: R1 = base of
array; R2= index amount

Regs[R3] <- Regs[R3] +
Mem[Regs[R1] + Regs[R2]]

Add R3,(R1+R2)Indexed

When usedMeaningExample
instruction

Addressing mode

42

Example for Addressing Modes (cont.)

Used to index arrays. May be
applied to any indexed
addressing mode in some
computers

Regs[R1] <- Regs[R1] +
Mem[100 + Regs[R2] +
Regs[R3] * d]

Add
R1,100(R2)[R3]

Scaled

Same use as autoincrement.
Autodecrement/-increment can
also act as push/pop to
implement a stack

Regs[R2] <- Regs[R2] –d
Regs[R1] <- Regs[R1] +
Mem[Regs[R2]]

Add R1,-(R2)Autodecrement

Useful for stepping through
arrays within a loop. R2 points to
start of array; each reference
increments R2 by size of an
element, d

Regs[R1] <- Regs[R1] +
Mem[Regs[R2]]
Regs[R2] <- Regs[R2] + d

Add R1,(R2)+Autoincrement

When usedMeaningExample
instruction

Addressing mode

43

Summary of Use of Memory Addressing Mode
displacement, immediate, and register
indirect addressing modes represent 75%
to 99% of the addressing mode usage

For VAX architecture

44

MIPS implements only displacement
–Why? Experiment on VAX (ISA with every mode) found

distribution
–Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other:

4%
–80% use small displacement or register indirect (displacement 0)

 I-type instructions: 16-bit displacement
–Is 16-bits enough?
–Yes? VAX experiment showed 1% accesses use displacement

>16

Example: MIPS Addressing Modes

Op(6)

31 26 01516202125

Rs(5) Rd(5) Immediate(16)

45

Determining Field Size

Analyze your programs
–using dynamic traces
–proper application mix
–optimizing compiler

Choose
–displacement field size
–immediate or literal field size
–address modes
–register file size and structure

Consider cost of these choices
–datapathCPI and cycle time
–code density and encoding

46

Displacement Addressing Mode

 What’s an appropriate range of the displacements?

For Alpha architecture

The size of address should be
at least 12-16 bits, which
capture 75% to 99% of the
displacements

47

Immediate or Literal Addressing Mode

 Does the mode need to be supported for all operations or for
only a subset?

48

Immediate Addressing Mode (cont.)

 What’s a suitable range of values for immediates?

For Alpha architecture

The size of the immediate field
should be at least 8-16 bits,
which capture 50% to 80% of
the immediates

49

Types of Operations

 Arithmetic and Logic: AND, ADD
 Data Transfer: MOVE, LOAD, STORE
 Control BRANCH, JUMP, CALL
 System OS CALL, VM
 Floating Point ADDF, MULF, DIVF
 Decimal ADDD, CONVERT
 String MOVE, COMPARE
 Graphics (DE)COMPRESS

50

Distribution of Data Accesses
by Size

51

Addressing Modes for the DSP World

 Data is essentially an infinite stream
– hence model memory as a circular buffer

 register holds a pointer
 2 other registers hold start and end mark
 autoincrement and autodecrement detect end and then reset

– hence modulo or circular addressing mode
 FFT is an important application

– FFT shuffle or butterfly
 reverses the bit order of the effective address

– bit-reverse mode
 hw reverses the low order bits of an address
 number of bits reversed is a parameter depending on which step of`the FFT

algorithm you’re in at the time

 Importance - 54 DSP algo’s on a TI C54x DSP
– immediate, displacement, register indirect, direct = 70%
– auto inc/dec = 20% and the rest counts for < 10%

52

Addressing Modes for Signal Processing

DSPs deal with infinite, continuous streams of data,
they routinely rely on circular buffers
–Modulo or circular addressing mode

For Fast Fourier Transform (FFT)
–Bit reverse addressing
–0112 1102

53

Frequency of Addressing Modes for TI
TMS320C54x DSP

54

Outline

Classifying instruction set architectures
Memory addressing
Addressing modes
Type and size of operands
 Instructions for control
The role of compiler

55

Type and Size of Operands

Character: 8 bits
Half word: 16 bits
Words: 32 bits
Double-precision floating point: 2 words (64 bits)

56

Type and Size of Operands

 How is the type of an operand designated?
– Encoding in the opcode

 For an instruction, the operation is typically specified in one field, called the
opcode

– By tag (not used currently)

 Common operand types
– Character

 8-bit ASCII
 16-bit Unicode (not yet used)

– Integer
 One-word 2’s complement

57

Common Operand Types (cont.)

–Single-precision floating point
 One-word IEEE 754

–Double-precision floating point
 2-word IEEE 754

–Packed decimal (binary-coded decimal)
 4 bits encode the values 0-9
 2 decimal digits are packed into one byte

58

Two More Addressing Issues

 Access alignment: address % size == 0?
– Aligned: load-word @XXXX00, load-half @XXXXX0
– Unaligned: load-word @XXXX10, load-half @XXXXX1
– Question: what to do with unaligned accesses (uncommon case)?

 Support in hardware? Makes all accesses slow
 Trap to software routine? Possibility
 Use regular instructions

– Load, shift, load, shift, and

 MIPS? ISA support: unaligned access using two instructions
– lwl @XXXX10; lwr @XXXX10

 Endian-ness: arrangement of bytes in a word
– Big-endian: sensible order (e.g., MIPS, PowerPC)

 A 4-byte integer: “00000000 00000000 00000010 00000011”is 515
– Little-endian: reverse order (e.g., x86)

 A 4-byte integer: “00000011 00000010 00000000 00000000 ”is 515
– Why little endian? To be different? To be annoying? Nobody knows

59

SPEC2000 Operand Sizes

60

Media and Signal Processing

New data types
–e.g. vertex

 32-bit floating-point values for x,y,z and w

–pixel
 4 8-bit channels: RGB and A (transparency)

New numeric type for DSP land
–fixed point for numbers between +1 and -1

 0100 0000 0000 0000 2-1

New operations
–inner product is a common case

 hence MAC performance is important
 effectively an ax + previous b style of computation
 sometimes called a fused operation

61

Operands for Media and Signal
Processing

Vertex
–(x, y, z) + w to help with color or hidden surfaces
–32-bit floating-point values

Pixel
–(R, G, B, A)
–Each channel is 8-bit

62

Special DSP Operands

 Fixed-point numbers
– A binary point just to the right of the sign bit
– Represent fractions between –1 and +1
– Need some registers that are wider to guard against round-off error

 Round-off error
– a computation by rounding results at one or more intermediate steps, resulting in a result

different from that which would be obtained using exact numbers

63

Fixed-point Numbers (cont.)

2‘complement number Fixed-point numbers

Douglas L. Jones, http://cnx.org/content/m11930/latest/

64

Example

 Give three 16-bit patterns:
0100 0000 0000 0000
0000 1000 0000 0000
0100 1000 0000 1000
What values do they represent if they are two’s complement integers? Fixed-point

numbers?
 Answer
Two’s complement: 214, 211, 214 + 211 + 23

Fixed-point numbers: 2-1, 2-4, 2-1 + 2-4 + 2-12

65

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

-1
-2
-3
-4
-5
-6
-7
-8
7
6
5
4
3
2
1
0

0
-1
-2
-3
-4
-5
-6
-7
7
6
5
4
3
2
1
0

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

b3b2b1b0

Bit-Pattern, Unsigned, 2’s Comp, 1’s Comp,

66

Outline

Classifying instruction set architectures
Memory addressing
Addressing modes
Type and size of operands
 Instructions for control
The role of compiler

67

SPECint92 codes

 The most widely executed
instructions are the simple
operations of an instruction
set

 The top-10 instructions for
80x86 account for 96% of
instructions executed

 Make them fast, as they are
the common case

68

What Operations are Needed

 Arithmetic and Logical
– Add, subtract, multiple, divide, and, or

 Data Transfer
– Loads-stores

 Control
– Branch, jump, procedure call and return, trap

 System
– Operating system call, virtual memory management instructions

All computers provide the above operations

69

What Operations are Needed (cont.)

 Floating Point
– Add, multiple, divide, compare

 Decimal
– Add, multiply, decimal-to-character conversions

 String
– move, compare, search

 Graphics
– pixel and vertex operations, compression/decompression operations

The above operations are optional

70

Relative Frequency of
Control Instructions

71

Operations for Media and Signal
Processing

Partitioned add
–16-bit data with a 64-bit ALU would perform four 16-bit adds

in a single clock cycle
–Single-Instruction Multiple-Data (SIMD) or vector

Paired single operation
–Pack two 32-bit floating-point operands into a single 64-bit

register

72

Operations for Media and Signal
Processing (cont.)

 Saturating arithmetic
– If the result is too large to be represented, it is set to the largest representable

number, depending on the sign of the result

 Several modes to round the wider accumulators into the
narrower data words

 Multiply-accumulate instructions
– a <- a + b*c

73

Instructions for Control Flow

74

Control Instruction Types

 Jumps - unconditional transfer
Conditional Branches

–how is condition code set?
–how is target specified? How far away is it?

Calls
–how is target specified? How far away is it?
–where is return address kept?
–how are the arguments passed? Callee vs. Caller save!

Returns
–where is the return address? How far away is it?
–how are the results passed?

75

Distribution of Control Flows

76

Addressing Modes for Control Flow
Instructions

 How to get the destination address of a control flow
instruction?
– PC-relative

 Supply a displacement that is added to the program counter (PC)
 Position independence

– Permit the code to run independently of where it is loaded

– A register contains the target address
– The jump may permit any addressing mode to be used to supply the target

address

77

Usage of Register Indirect Jumps

Case & Switch
Virtual functions or methods

–C++ or Java

High-order functions or function pointers
–C, C++, and Lisp

DLL’s
–shared libraries that get dynamically loaded

78

Addressing Modes for Control Instructions

 Known at compile time for unconditional and conditional
branches - hence specified in the instruction
– as a register containing the target address
– as a PC-relative offset

 Consider word length addresses, registers, and instructions
– full address desired? Then pick the register option.
– BUT - setup and effective address will take longer.
– if you can deal with smaller offset then PC relative works
– PC relative is also position independent - so simple linker duty

 consider the ease in particular for DLL’s

 How do you find out what works?
– start by measuring your programs of course.

79

Control instructions

 Addressing modes
– PC-relative addressing (independent of program load & displacements are

close by)
 Requires displacement (how many bits?)
 Determined via empirical study. [8-16 works!]

– For procedure returns/indirect jumps/kernel traps, target may not be known
at compile time.
 Jump based on contents of register
 Useful for switch/(virtual) functions/function ptrs/dynamically linked libraries

etc.

80

How Far are Branch Targets from
Branches?

For Alpha architecture

The most frequent in the integer? programs are to targets that can be encoded in 4-8 bits
About 75% of the branches are in the forward direction

81

How to Specify the Branch Condition?

Program Status Word

82

Frequency of Different Types of
Compares in Branches

83

Procedure Invocation Options

 The return address must be saved somewhere, sometimes
in a special link register or just a GPR

 Two basic schemes to save registers
– Caller saving

 The calling procedure must save the registers that it wants preserved for access
after the call

– Callee saving
 The called procedure must save the registers it want to use

84

Encoding an Instruction Set

85

Encoding an Instruction Set

 How the instructions are encoded into a binary
representation for execution?
– Affects the size of code
– Affects the CPU design

 The operation is typically specified in one field, called the
opcode

 How to encode the addressing mode with the operations
– Address specifier
– Addressing modes encoded as part of the opcode

86

Issues on Encoding an Instruction Set

 Desire for lots of addressing modes and registers
 Desire for smaller instruction size and program size with

more addressing modes and registers
 Desire to have instructions encoded into lengths that will be

easy to handle in a pipelined implementation
– Multiple bytes, rather than arbitrary bits
– Fixed-length

87

3 Popular Encoding Choices

 Variable
– Allow virtually all addressing modes to be with all operations

 Fixed
– A single size for all instructions
– Combine the operations and the addressing modes into the opcode
– Few addressing modes and operations

 Hybrid
– Size of programs vs. ease of decoding in the processor
– Set of fixed formats

88

3 Popular Encoding Choices (Cont.)

89

Reduced Code Size in RISCs

More narrower instructions
Compression

90

Encoding an Instruction set

 a desire to have as many registers and addressing
mode as possible

 the impact of size of register and addressing mode
fields on the average instruction size and hence on
the average program size

 a desire to have instruction encode into lengths that
will be easy to handle in the implementation

91

Outline

Classifying instruction set architectures
Memory addressing
Addressing modes
Type and size of operands
 Instructions for control
The role of compiler

92

Compiler vs. ISA

Almost all programming is done in high-level
language (HLL) for desktop and server applications

Most instructions executed are the output of a
compiler

So, separation from each other is impractical

93

Goals of a Compiler

Correctness
Speed of the compiled code
Others

–Fast compilation
–Debugging support
–Interoperability among languages

94

Structure of Compiler

95

Optimization types

 High level - done at source code level
– procedure called only once - so put it in-line and save CALL

 more general is to in-line if call-count < some threshold
 Local - done on basic sequential block

– common subexpressions produce same value - either allocate a register or replace
with single copy

– constant propagation - replace constant valued variable with the constant - saves
multiple variable accesses with same value

– stack reduction - rearrange expression to minimize temporary storage needs
 Global - same as local but done across branches

– primary goal = optimize loops
 code motion - remove code from loops that compute same value on each pass and put it

before the loop
 simplify or eliminate array addressing calculations in loops

 Register allocation
– Associate registers with operands

 Graph coloring
 Processor-dependent

– Depend on processor knowledge

96

Compiler Optimization Summary

97

Machine Dependent Optimizations

Strength reduction
–replace multiply with shift and add sequence

 would make sense if there was no hardware support for MUL
 a trickier version: 17x = arithmetic left shift 4 and add

Pipeline scheduling
–reorder instructions to minimize pipeline stalls
–dependency analysis
–compiler can’t see run time dynamics - e.g. branch direction

resolution

Branch offset optimization
–reorder code to minimize branch offsets

98

Compiler Based Register Optimization

 Assume small number of registers (16-32)
 Optimizing use is up to compiler
 HLL programs have no explicit references to registers

– usually –is this always true?

 Assign symbolic or virtual register to each candidate
variable

 Map (unlimited) symbolic registers to real registers
 Symbolic registers that do not overlap can share real

registers
 If you run out of real registers some variables use

memory

99

Graph Coloring

Given a graph of nodes and edges
Assign a color to each node
Adjacent nodes have different colors
Use minimum number of colors
Nodes are symbolic registers
Two registers that are live in the same

program fragment are joined by an edge
Try to color the graph with n colors, where n

is the number of real registers
Nodes that can not be colored are placed in

memory

100

Graph Coloring Approach

101

Compiler Optimization Levels

Level 0: unoptimized code
Level 1: local optimization, code scheduling, local register optimization
Level 2: global optimization, loop transformation, global register optimization
Level 3: procedure integration

102

Things you care about for the ISA design

Key: make the common case fast and the rare
case correct

How are variables allocated?
How are variables addressed?
How many registers will be needed?
How does optimization change the instruction mix?
What control structures are used?
How frequently are the control structures used?

103

Allocation of Variables
Stack

–used to allocate local variables
–grown and shrunk on procedure calls and returns
–register allocation works best for stack-allocated objects

Global data area
–used to allocate global variables and constants
–many of these objects are arrays or large data structures
–impossible to allocate to registers if they are aliased

Heap
–used to allocate dynamic objects
–heap objects are accessed with pointers
–never allocated to registers

104

Register Allocation Problem

Register allocation is much effective for statck-
allocated objects than for global variables.

Register allocation is impossible for heap-allocated
objects because they are accessed with pointers.

Global variables and some stack variables are
impossible to allocated because they are aliased.
–Multiple ways to refer the address of a variable, making it

illegal to put it into a register

105

Designing ISA to Improve Compilation

 Provide enough general purpose registers to ease register
allocation (more than 16).

 Provide regular instruction sets by keeping the operations,
data types, and addressing modes orthogonal.

 Provide primitive constructs rather than trying to map to a
high-level language.

 Simplify trade-off among alternatives.
 Allow compilers to help make the common case fast.

106

ISA Metrics
 Orthogonality

– No special registers, few special cases, all operand modes
available with any data type or instruction type

 Completeness
– Support for a wide range of operations and target applications

 Regularity
– No overloading for the meanings of instruction fields

 Streamlined Design
– Resource needs easily determined. Simplify tradeoffs.

 Ease of compilation (programming?), Ease of implementation,
Scalability

107

Quick Review of
Design Space of ISA

Five Primary Dimensions
 Number of explicit operands (0, 1, 2, 3)
 Operand Storage Where besides memory?
 Effective Address How is memory location

specified?
 Type & Size of Operands byte, int, float, vector, . . .

How is it specified?
 Operations add, sub, mul, . . .

How is it specifed?
Other Aspects
 Successor How is it specified?
 Conditions How are they determined?
 Encodings Fixed or variable? Wide?
 Parallelism

108

A "Typical" RISC

 32-bit fixed format instruction (3 formats)
 32 32-bit GPR (R0 contains zero, Double Precision takes a

register pair)
 3-address, reg-reg arithmetic instruction
 Single address mode for load/store:

base + displacement
–no indirection

 Simple branch conditions

see: SPARC, MIPS, MC88100, AMD2900, i960, i860
PARisc, DEC Alpha, Clipper,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

109

MIPS data types

 Bytes
– characters

 Half-words
– Short ints, OS related data-structures

 Words
– Single FP, Integers

 Doublewords
– Double FP, Long Integers (in some implementations)

110

Instruction Layout for MIPS

111

MIPS (32 bit instructions)

Op

31 26 01516202125

Rs1 Rd Immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

1. Register-Register

561011

2a. Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx Displacement

2b. Branch (displacement)

3. Jump / Call

112

MIPS (addressing modes)

 Register direct
 Displacement
 Immediate
 Byte addressable & 64 bit address
 R0 always contains value 0
 Displacement = 0 register indirect
 R0 + Displacement=0 absolute addressing

113

Types of Operations

 Loads and Stores
ALU operations
Floating point operations
Branches and Jumps (control-related)

114

Load/Store Instructions

115

Sample ALU Instructions

