Instruction Set Architecture
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| nstruction set architecture
(taking MIPS ISA as an example)




What Is Computer Architecture?

Computer Architecture =
Instruction Set Architecture
+ Machine Organization

“... the attributes of a[computing] system as
seen by the[__assembly  language]
programmer, 1.e. the conceptual structure
and functional behavior ...”




Recall in C Language

Operators. +,-,*, /[, %(mod), ...
-7/ 4==1, 7%==3
Operands:

— Variables: | ower , upper, fahr, cel si us
— Constants: 0, 1000,-17,15. 4

Assignment statement:
variable = expression

— Expressions consist of operators operating on operands,

e.g.,
cel sius = 5*(fahr-32)/09;

a = b+c+d-e:




When Translating to Assembly ...

a=b+5;

Statement
a oad $r1 MID

$r2 5 ~N

~—
add $r3, $r1, $r2  Constant
store $r3, M[a] > Operands

\

Memory
Register

Operator (op code)




Components of an ISA

Organization of programmable storage
— registers
— memory: flat, segmented

— Modes of addressing and accessing data items and
Instructions

Data types and data structures
— encoding and representation (next chapter)

| nstruction formats

|nstruction set (or operation code)
— AL U, control transfer, exceptional handling




MIPS ISA as an Example

Instruction categories: Registers
— Load/Store S0 - 5131
— Computational

— Jump and Branch

— Floating Point

— Memory Management
— Specid

3 Instruction Formats: all 32 bits wide
OP |$rs I $rt I $rd I sa Ifunct

OoP |$rs I $rt I immediate

OP | jump target
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Operands
— Register operands and their organization




Operands and Registers

Unlike high-level language, assembly don’t use variables
=> assembly operands are registers

— Limited number of special locations built directly into the
hardware

— Operations are performed on these

Benefits:
— Registersin hardware => faster than memory

— Registers are easier for a compiler to use
e €., asaplacefor temporary storage
— Registers can hold variables to reduce memory traffic and
Improve code density (since register named with fewer bits than
memory location)




MIPS Registers

32 registers, each is 32 bits wide
— Why 32? smaller isfaster
Groups of 32 bits called aword in MIPS
Registers are numbered from 0 to 31
Each can be referred to by number or name

Number references:
$0, $1, $2, .. $30, $31

By convention, each register also has a name to make it easier to
code, e.q.,

$16 - $22 = $s0 - $s7 (Cvariables)
$8 - $15 = $t0 - $t7 (temporary)

32 x 32-bit FP registers (paired DP)
Others: HI, LO, PC




Registers Conventions for MIPS

vO expression evaluation &

vl function results

gp pointer to global area
Sp stack pointer

fp frame pointer




MIPS R2000
Organization

Fig. A.10.1




Operations of Hardware

Syntax of basic MIPS arithmetic/logic

Instructions:
1 2 3 4

add $s0, $s1, $s2 # f =g + h
1) operation by name
2) operand getting result (“destination™)
3) 1st operand for operation (“sourcel”)
4) 2nd operand for operation (“source2”)

Each instruction i1s 32 bits

Syntax isrigid: 1 operator, 3 operands
— Why? Keep hardware ssmple viaregularity




Example

How to do the following C statement?

t=(g+h) - (0 +]);

use Intermediate temporary register t O

add $s0, $s1, $s2# f = + h
add $tO0, $s3, $s4# t0 =1 + |
sub $s0, $s0, $t 0# f=(g+h)- (i +j)




Register Architecture

Accumulator (1 register):

1 address: 7200 AN /lacc < acc + mem[A]
1+x address: addx A llacc «— acc + mem[A+X]

Stack:

0 address: add //tos « tos+ next

General Purpose Register:
2addresss  addAB  //EA(A) « EA(A) + EA(B)
3addresss  add A,B,C //EA(A) « EA(B) + EA(C)
L oad/Store: (a special case of GPR)

3 address: add $ra,$rb,$rc [I$ra<« $rb + $rc
load $ra,$rb [/$ra < mem[$rb]
store$ra,$rb [Imem[$rb] < $ra




Register Organization Affects Programming

Codefor C = A + B for four register organizations:

PushA Load A Load $r1,A Load $rl1,A
PushB Add B Add $r1,B Load $r2,B
Add Store C Store C,$rl Add $r3,$r1,$r2
Pop C Store C,$r3

=> Register organization is an attribute of 1SA!

Comparison: Byte per instruction? Number of instructions? Cycles per instruction?
Since 1975 all machines use GPRs
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Memory operands, data transfer




Memory Operands

C variables map onto registers, what about large
data structures like arrays?

— Memory contains such data structures
But MIPS arithmetic instructions operate on
registers, not directly on memory

— Datatransfer instructions (Iw, sw, ...) to transfer
between memory and register

— A way to address memory operands




Data Transfer. Memory to Register
(1/2)
To transfer aword of data, need to specify two
things:
— Register: specify this by number (O - 31)
— Memory address. more difficult

e Think of memory asa 1D array
o Address it by supplying a pointer to a memory address
o Offset (in bytes) from this pointer

e The desired memory address is the sum of these two
values, e.g., 8( $t 0)

o Specifies the memory address pointed to by the value in
$t 0, plus 8 bytes (why “bytes”, not “words”’?)

e Each addressis 32 bits 19




Data Transfer. Memory to Register
(2/2)

Load Instruction Syntax:
1 2 3 4

| w $t 0, 12( $s0)

1) operation name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory
Example: | w $t 0, 12( $s0)
— Iw (Load Word, so aword (32 bits) is loaded at atime)

— Takethe pointer in $s0, add 12 bytesto it, and then load the value from the
memory pointed to by this calculated sum into register $t 0

Notes:
—  $s0 iscalled the baseregister, 12 is called the offset

—  Offset isgenerally used in accessing elements of array: base register points to the
beginning of the array




Data Transfer. Register to Memory

Also want to store value from aregister into
memory

Store instruction syntax Is identical to Load
Instruction syntax

Example: sw $t 0, 12( $s0)

— sw (meaning Store Word, so 32 bits or one word are
loaded at atime)

— Thisinstruction will take the pointer in $s0, add 12
bytesto it, and then store the value from register $t O

Into the memory address pointed to by the calculated
sum

21




Compilation with Memory

Compile by hand using registers:
$s1:9, $s2:h, $s3:base address of A
g =h+ AB8J;

What offset in| wto select an array element Al 8] in a C program?
— 4x8=32 bytes to select A[ 8]
— 1st transfer from memory to register:
lw  $t0, 32($s3) # $t0 gets Al 8]
— Add 32 to $s3 to select A[ 8] , put into $t O

Next add it to h and placeing
add $s1, $s2, $t 0 # $s1 = h+A[ 8]




Addressing: Byte versus Word

Every word in memory has an address, similar to an index in an
array
Early computers numbered words like C numbers elements of an
array:

— Memory[0], Memory[1], Memory[2], ...

C%the “faddre s” of a word
Computers need to access 8-bit bytes as well aswords (4
bytes/word)
Today, machines address memory as bytes, hence word addresses
differ by 4
- Menory[ O] , Menory[ 4] , Menory[ 8], ...
— Thisisaso why lw and sw use bytes in offset




A Note about Memory: Alignment

MIPS requires that all words start at addresses that

are multiples of 4 bytes
O 1 2 3

Aligned

Not
Alignhed




Another Note: Endianess

Byte order: numbering of bytes within aword

Big Endian: address of most significant byte =
word address (xx00 = Big End of word)

— IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Little Endian: address of |east significant byte =
word address (00xx = Little End of word)

— Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

little endian byte
3 1 00

msb ‘ ‘ ‘ ‘ ‘ Isb




MIPS Data Transfer Instructions

| nstruction

SW

sh

sb
W
L

$t3,500($t4)
$t3,502($t2)
$t2,41($t3)
$t1, 30($t2)
$t1, 40($t3)
$t1, 40($t3)
$t1, 40($t3)
$t1, 40($t3)
$t1, 40

Comment

Store word
Store half
Store byte

| 0al
| 0al

| 0al

word

halfword What does it mean?
halwaed

oaly

_oad byte(
_oad Upper Immediate

(16 bits shifted left by 16)




Load Byte Signed/Unsigned




Role of Registers vs. Memory

What if more variables than registers?

— Compiler tries to keep most frequently used variablesin
registers
— Writes less common variables to memory: spilling

Why not keep all variables in memory?

— Smaller isfaster:
registers are faster than memory

— Registers more versatile:

o MIPS arithmetic instructions can read 2 registers, operate on
them, and write 1 per instruction

o MIPS datatransfers only read or write 1 operand per
Instruction, and no operation
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|mmediate operands (Sec 2.3)




Constants

Small constants used frequently (50% of operands)
eg, A=A+5
B=B+1,
C=C-18;
Solutions? Why not?
— put ‘typical constants in memory and load them
— create hard-wired registers (like $zero) for constants

MIPS Instructions:
addi $29, $29, 4
dti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

Design Principle: Make the common casefast Which format?




Immediate Operands

|mmediate: numerical constants
— Often appear in code, so there are special instructions for them

f =g + 10 (in C)
addi $s0, $s1, 10 (in MIPS)
where $s0, $s1 are associated withf , g

— Syntax similar to add instruction, except that last argument isa
number instead of a register

— One particular immediate, the number zero (0), appears very
often in code; so we define register zero ( $0 or $zer 0) to

aways 0
— Thisisdefined in hardware, so an instruction like
addi $0, $0, 5 will not do anything




Outline




Instructions as Numbers

Currently we only work with words (32-bit blocks):

— Each register isaword
— | wand sw both access memory one word at atime

So how do we represent instructions?

— Remember: Computer only understands 1s and 0s, so
“add $t 0, $0, $0” is meaningless to hardware

— MIPS wants simplicity: since data is in words, make
Instructions be words. ..




MIPS Instruction Format

One Instruction 1s 32 bits
=> divide instruction word into “fields”

— Each field tells computer something about instruction
We could define different fields for each

Instruction, but MIPS is based on ssmplicity, so

define 3 basic types of instruction formats:

— R-format: for register

— |-format: for immediate, and | wand sw (sincethe
offset counts as an Immediate)

— J-format: for jump




R-Format Instructions (1/2)

Define the following “fields”:

6 S S S S 6

| opcode| rs rt rd |shant | funct |

— opcode: partially specifieswhat instruction it is (Note: O for all R-Format
Instructions)

f unct : combined with opcode to specify the instruction

Question: Why aren’t opcode and f unct asingle 12-bit field?

r s (Source Register): generally used to specify register containing first
operand

rt (Target Register): generally used to specify register containing second
operand

r d (Destination Register): generally used to specify register which will
receive result of computation




R-Format Instructions (2/2)

Notes about register fields:

— Each register field is exactly 5 bits, which means that it
can specify any unsigned integer in the range 0-31.
Each of these fields specifies one of the 32 registers by
number.

Final field:

— shant : contains the amount a shift instruction will
shift by. Shifting a 32-bit word by morethan 31 s
useless, so thisfield isonly 5 bits

— Thisfield isset to O in al but the shift instructions




R-Format Example

MIPS Instruction:

add $8, $9, $10
opcode = 0 (look up in table)
funct = 32 (look up in table)
rs=9 (first operand)
rt = 10 (second operand)
rd = 8 (destination)

— shamt = 0 (not a shift)

binary representation:
\OOOOOO 0100101010 0100000000 100000\

called a Machine Language I nstruction




|l-Format Instructions

Define the following “fields”:

6 S S 16

| opcode| rs rt i mredi at e

— opcode: uniguely specifies an I-format instruction

— 1 s: specifies the only register operand

— 1t : specifiesregister which will recelve result of computation
(target register)

- addi , sl ti, immediate is sign-extended to 32 bits, and treated
as a signed integer

— 121 bits =» can be used to represent immediate up to 21° different
values

Key concept: Only one field Isinconsistent with R-format.
Most importantly, opcode isstill in same location




I-Format Example 1

MIPS Instruction:

addi $21, $22, -50

— opcode = 8 (look up in table)

— rs= 22 (register containing operand)

— It = 21 (target register)

— Immediate = -50 (by default, thisis decimal)
decimal representation:

| 8 22 21 - 50 |
binary representation:

| 001000( 10110{10101f 1111111111001110 |

39




I-Format Example 2

MIPS Instruction:
lw  $t0, 1200( $t 1)
— opcode = 35 (look up in table)
— rs=9 (base register)
— rt = 8 (destination register)
— Immediate = 1200 (offset)
decimal representation:
BEE 9 8 1200
binary representation:
| 100011{01001{01000/ 0000010010110000 |

40




|I-Format Problem

What if immediate istoo big to fit in immediate field?

L oad Upper Immediate:
| ul register, I medi ate
— puts 16-bit immediate in upper half (high order half) of

the specified register, and sets lower half to Os
addi $t 0, $t 0, OxABABCDCD

becomes:;

| ui $at, OxABAB
or | $at, Pat, OxCDCD
add $t 0, $t 0, $at

LUl R1

/

0000 ... 0000




Big Idea: Stored-Program Concept

Computers built on 2 key principles:
1) Instructions are represented as numbers

2) Thus, entire programs can be stored in memory to be read or
written just like numbers (data)

One conseguence: everything addressed

— Everything has a memory address: instructions, data
e both branches and jumps use these
— Oneregister kegps address of the instruction being executed:
“Program Counter” (PC)

o Basically apointer to memory: Intel callsit Instruction Address Pointer,
which is better

— A register can hold any 32-bit value. That value can be a (signed)
Int, an unsigned int, a pointer (memory address), etc.

42
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— Arithmetic and logical (Sec 2.5)




MIPS Arithmetic Instructions

| nstruction Example Meaning Comments
add add $1,$2,$3 $1=9%2+ %3 3 oper ands;
subtract sub $1,$2,$3 $1=9%2-%3 3 operands;
add immediate addi $1,$2,100 $1=%$2+ 100 + constant;




Bitwise Operations

Up until now, we’ve done arithmetic (add, sub, addi )
and memory access (I wand sw)

All of these instructions view contents of register asa
single quantity (such as a signed or unsigned integer)

. View contents of register as 32 bits
rather than as a single 32-bit number

Since registers are composed of 32 bits, we may want to
access individual bits rather than the whole.

| ntroduce two new classes of 1nstructions:




Logical Operators

Logical instruction syntax:
1 2 3 4

or $t0, $t1, S$t2

1) operation name

2) register that will receive value

3) first operand (register)

4) second operand (register) or immediate (numerical constant)
| nstruction names.

— and, or : expect the third argument to be aregister

- andi , or i : expect the third argument to be immediate

MIPS Logical Operators are al bitwise, meaning that bit O of the
output is produced by the respective bit 0’s of the inputs, bit 1 by the
bit 1’s, etc.




Use for Logical Operator And

and operator can be used to set certain portions of a bit-string to 0s,
while leaving the rest alone => mask

Example:
Mask: 1011 0110 1010 0100 0011§1101 1001 1010
0000 0000 0000 0000 0000 1111 111711111

The result of anding thesetwo is:
0000 0000 0000 0000 000(¥1101 1001 1010

In MIPS assembly: andi $t 0, $t 0, OXFFF




Use for Logical Operator Or

or operator can be used to force certain bits of a
string to 1s

For example,
$t 0 =0x12345678, then after

ori $t0, $t0, OxFFFF
$t 0 = 0x1234FFFF

(e.g. the high-order 16 bits are untouched, while
the low-order 16 bits are set to 1)




Shift Instructions (1/3)

Shift Instruction Syntax:
1 2 3 4

S| | $t 2, $s0, 4

1) operation name

2) register that will receive value
3) first operand (register)

4) shift amount (constant)

MIPS has three shift instructions:

— sl | (snift left logical): shifts left, fills empties with Os

- sr| (shift right logical): shiftsright, fills empties with Os

— sr a (shift right arithmetic): shiftsright, fills empties by sign extending




Shift Instructions (2/3)

Move (shift) all the bitsin aword to the left or right by a number of
bits, filling the emptied bits with Os.

Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110

0000 0000y0001 0010 0011 0100 0101 0110

Example: shift |eft by 8 bits

0001 00100011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 100C




Shift Instructions (3/3)

Example: shift right arithmetic by 8 bits
0001 0010 0011 0100 0101 0110y0111 1000

T

0000 0000J0001 0010 0011 0100 0101 0110

Example: shift right arithmetic by 8 bits

1001 0010 0011 0100 0101 0110P111 1000

1111 111741001 0010 0011 0100 0101 0110




Uses for Shift Instructions (1/2)

Suppose we want to get byte 1 (bit 15 to bit 8) of aword in
$t 0. We can use:

sl | $t0, $t0, 16

Sr | $t0, $t0, 24

0001 0010 0011 0104 0101 0110 0111 1000

/=

0101 0110 0111 10000000 OOOO 0000 0000

e

0/0/0/040/0/0/010/0/00J0/0/0/00/0/0/040.0/0/¢ [OXN0NRONNIS




Uses for Shift Instructions (2/2)

Shift for multiplication: in binary
— Multiplying by 4 is same as shifting left by 2:
o 11, x 100, = 1100,
« 1010, x 100, = 101000,

— Multiplying by 2" is same as shifting left by n
Since shifting Is so much faster than multiplication (you
can imagine how complicated multiplication is), a good
compiler usually notices when C code multiplies by a
power of 2 and compilesit to a shift instruction:

a *= 8§; (in C)
would compile to:

S| | $s0, $s0, 3  (inMIPS)




MIPS Logical Instructions

Instruction

Example

Meaning

Comment

and

or

nor

and immediate
or immediate
shift left logical
shift right logical

shift right arithm.

and $1,$2,$3
or $1,$2,$3
nor $1,$2,$3
andi $1,$2,10
ori $1,$2,10
sl $1,$2,10
srl $1,%$2,10
sra $1,$2,10

$1=%2& $3
$1=9%2|%3

$1 = ~($2 |$3)
$1=%$2& 10
$1=%$2]10

$1=%$2<<10
$1=9%2>>10
$1=%$2>>10

3 reg. operands; Logical AND
3 reg. operands; Logical OR
3 reg. operands; Logical NOR
L ogical AND reg, zero exten.
L ogical OR reg, zero exten.
Shift left by constant

Shift right by constant

Shift right (sign extend)




So Far...

All instructions have allowed us to manipulate data.
So we’ve built a calculator.

In order to build a computer, we need ability to
make decisions...
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Decision making and branches (Sec. 2.6, 2.9)




Decision Making: Branches

Decision making: if statement, sometimes combined with goto and labels
beq registerl, register2, L1(beqg: Branch if equal)

Go to the statement labeled L1 if the value in registerl equals the value
In register2

bne registerl, register2, L1(bne: Branch if not equal)

Go to the statement labeled L1 if the value in registerl does not equal
the value in register2

beg and bne are termed Conditional branches

What instruction format is beq and bne?




MIPS Decision Instructions

beq registerl, register2, L1

Decision instruction in MIPS:
beq registerl, register2, L1
“Branch if (registersare) equal”
meaning :
| f (registerl==reqgister2) goto L1

Complementary MIPS decision instruction

bne registerl, register2, L1
“Branch if (registersare) not equal”

meaning :

I f (registerl!=register2) goto L1

These are called conditional branches




MIPS Goto Instruction

| abel

MIPS has an unconditional branch:;

] | abel

— Called a Jump Instruction: jump directly to the given label without testing any
condition

—~ meaning :
got o | abel

Technically, it’s the same as:

beqg $0, $0, | abel
since it always satisfies the condition
It has the J-type instruction format




Compiling an If statement

If I==j)gotoL1;
f=g+h;
L1: f=f-1;
f, g, h, i, and | correspond to five registers $s0 through $s4.

beq $s3, $4, L1 #goto L1if i equalsj
add $s0, $s1, $s2 #f = g+h (skipped if i equalsj)
L1: sub $50, $s0, $s3 #f=f - (always executed)

\I nstructions must have memory addresses

Label L1 corresponds to address of sub instruction




Compiling an if-then-else

Compile by hand

1 f (i ==1]) f=g+h;
b ) () TP
| == |

Use this mapping:
f:%$s0,g:%$s1, h:$s2,

| :$s3,] : $s4

l
Final compiled MIPS code: =Xt
beq  $s3, $s4, True
sub  $s0, $s1, $s2 - h(f al se)
] Fin to Fin
Erue: add  $s0, $s1, $s2 g+h (true)
| N:
Note: Compiler automatically creates labels to handle decisions
(branches) appropriately




Inequalities iIn MIPS

Until now, we’ve only tested equalities (== and ! = in C), but
general programs need to test < and >

Set on Less Than:

slt regl,reg2,reg3
meaning :

1 f (reg2 < reg3)
regl = 1; # set

el se regl = O; # reset
Compileby hand:1f (g < h) goto Less;
Letg: $sO, h: $si

slt $t0,$s0,$s1 # $t0 =1 if g<h
bne $t 0, $0, Less # goto Less if $t0!=0

MIPS has no “branch on less than” => too complex




Immediate In Inequalities

Thereisaso an immediate version of sl t to test against constants:
slti

I1f (g >= 1) goto Loop
C Loop:
M
| slti $t0, $s0, 1 # $t0 = 1 if $s0<1l (g<l)

P beq $t0,%$0,Loop # goto Loop if $t0==0
S

Unsigned inequality: sl tu, sl ti u
$s0 = FFFF FFFA..,, 9$s1 = 0000 FFFA,,

slt $t0, $s0, $si =>$t 0 ?
sltu $t1, $s0, $s1 =>$t 1 ?




Branches: Instruction Format

Use |-format:;

| opcode| rs rt i mredi at e

— opcode specifiesbeq or bne
- rs andrt specify registers to compare

What can | nmedi at e specify? PC-relative addressing

- | mredi at e isonly 16 bits, but PC is 32-bit
=>| mmedi at e cannot specify entire address
Loops are generally small: < 50 instructions

o Though we want to branch to anywhere in memory, a single branch only need to
change PC by a small amount

How to use PC-relative addressing

e 16-biti nedi at e asasigned two’s complement integer to be added to the PC if
branch taken

o Now we can branch +/- 2% bytes from the PC ?




Branches: Instruction Format

| nmedi at e specifies word address

— Instructions are word aligned (byte address is always a multiple of
4,1.e., it endswith 00 in binary)

o The number of bytesto add to the PC will always be a multiple of 4
— Specify thei mredi at e in words (confusing?)

— Now, we can branch +/- 21> words from the PC (or +/- 217 bytes),
handle loops 4 times as large

| nmedi at e specifies PC + 4
— Dueto hardware, add i mredi at e to (PC+4), not to PC

— If branch not taken: PC=PC + 4
— If branch taken: PC = (PC+4) + (i mredi at e*4)




Branch Example

MIPS Code:

Loop: beq $9, $0, End
add  $8, $8, $10
addi  $9, $9, -1
' Loop

End:

Branch is |-Format:

| opcode| rs rt i mredi at e
opcode =4 (look up in table)
rs =9 (first operand)
rt =0 (second operand)
| nmedi at e =77?
— Number of instructions to add to (or subtract from) the PC, starting at the

Instruction following the branch
=>| medi ate =




Branch Example

MIPS Code:

Loop: beq  $9, $0, End
add  $8, $8, $10
addi  $9, $9, -1
] Loop

End:

decimal representation:

| 4 9
binary representation:
| 000100 01001 0000000000000011 |

67




J-Format Instructions (1/3)

For branches, we assumed that we won’t want to
branch too far, so we can specify change in PC.
For general jJumps (] and] al ), we may jJump to
anywhere in memory.

|deally, we could specify a 32-bit memory address
to jump to.
Unfortunately, we can’t fit both a 6-bit opcode and

a 32-bit address into a single 32-bit word, so we
compromise.




J-Format Instructions (2/3)

Define “fields” of the following number of bits each:
|6 bits 26 bits

As usual, each field has a name:
\opcode target address

Key concepts:

— Keep opcode field identical to R-format and I-format for
consistency

— Combine other fields to make room for target address
Optimization:
— Jumps only jump to word aligned addresses

o last two bitsare aways 00 (in binary)
o Specify 28 bits of the 32-bit bit address




J-Format Instructions (3/3)

Where do we get the other 4 bits?
— Takethe 4 highest order bits from the PC

— Technically, this means that we cannot jump to anywhere in
memory, but it’s adeguate 99.9999. ..% of the time, since
programs aren’t that long

— Linker and loader avoid placing a program across an address
boundary of 256 MB

Summary:
— New PC = PC[31..28] || target address (26 hits) || 00

— Note: || means concatenation
4 bits || 26 bits || 2 bits = 32-bit address

If we absolutely need to specify a 32-bit address:
—~ Use jr $ra  #jump to the address specified by $ra




MIPS Jump, Branch, Compare

| nstruction Example Meaning

branch on equal beq $1,$2,25 if ($1 ==%$2) goto PC+4+100
Equal test; PC relative branch

branch on not eq. bne$1,$2,25  if ($1!= $2) go to PC+4+100
Not equal test; PC relative

set on lessthan  dt $1,$2,$3 If ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp.

set lessthan imm. dti $1,$2,100  if ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp..

jump j 10000 go to 10000 26-bit+4-bit of PC




Outline

Jumps for procedures (Sec. 2.7)




Procedures

*Procedure/Subroutine

A set of instructions stored in memory which perform a set of operations
based on the values of parameters passed to it and returns one or more
values

«Steps for execution of a procedure or subroutine

»The places parameters in places where the
can access them

» The program transfers control to the procedure
» The procedure gets storage needed to carry out the task
» The procedure carries out the task, generating values

» The procedure (callee) places values in places where the program (caller)
can access them

» The procedure transfers control to the program (caller)




Procedures

int f1 (inti, intj, intk, intg)
{

}
Int f2 (intsl, ints2)

return 1; callee

| =11(3,4,5, 6); caller
add $2, $3, $3

How to pass parameters & results?
How to preserve caller register values?
How to alter control? (i.e., go to callee, return from callee)




Procedures

How to pass parameters & results

— $a0-$a3: four argument registers. What if # of parametersis larger than 4?7 —
push to the stack

— $vO0-$v1: two value registersin which to return values

How to preserve caller register values?
— Caller saved register

— Callee saved register

— Usestack

How to switch control?

— How togotothecallee
e ja procedure address(jump and link)
— Store the the return address (PC +4 ) at $ra
— set PC = procedure _addres
How to return from the callee

— Cadlleeexectuesjr $ra




Procedure calling/return

«Studies of programs show that alarge portions of procedures have afew
parameters passed to them and return avery few, often one value to the
caller

«Parameter values can be passed in registers

*MIPS allocates various registers to facilitate use of procedures
«$a0-$a3 four argument registers in which to pass parameters
«$v0-$v1 two value registers in which to return values
$ra one return address register to return to point of origin

sjump-and-link instruction  jal ProcedureAddress

»Jump to an address and simultaneously save the address of the following
instruction in register $ra (What is the address of the following instruction?)

»jal isaJformat instruction, with 26 bits relative word address. Pseudodirect
addressing appliesin this case.




Procedure Call Stack (Frame)

argument registers

return registers

Callee saved registers

Local varnables

Higher memory address

Procedure Frame

;tacl-; SIOWS

¥

Liower memory address

Frame pointer points to the first word of the procedure frame




Procedure Call Stack (Frame)

Before the procedure call during the procedure call after the procedure call




Procedure Calling Convention

Calling Procedure

— Step-1: pass the argument

— Step-2: save caller-saved registers
— Step-3: Execute ajal instruction

r # passing argument

sw  $t3, 4($sp) # save $t3
jal  foo

_ | lw  S$t3. 4(Ssp) # restore $t3
1T aT add $t3, $v0, $t3

x=foo(4);




Procedure Calling Convention

Called Procedure

— Step-1: establish stack frame b Sep. Sep. 32
o subi $sp, $sp <frame-size> sw Sra, 20($sp)

— Step-2; saved callee saved registers |G RINEA
o Pra, $fp,$s0-$s7

— Step-3: establish frame pointer
o add $fp, $sp, <frame-size>-4 o

On return from a call e

~ Step-1: put returned valuesin R s
o register $vO, [$v1]. jr 9ra

— Step-2: restore callee-saved registers

— Step-3: pop the stack

— Step-4: return: jr $ra




Registers Conventions for MIPS

expression evaluation &

function results

arguments

28 gp pointer to global area
29 sp stack pointer

30 fp frame pointer




Nested Procedures

it fact (1int n)

$sp, 3sp, -8 {
$ra, 4($sp) # save $ra

if (n <1) return 1;
else return (n x fact(n-1));

$v0.5zero,1 # return 1 ]

$sp, $sp, 8 # fix up the stack pointer & return
Sra

$a0, 0($sp) #restore argument $al
$v0, $a0, $v0 # return n x fact(n-1)
$ra, 4(3sp) # restore $ra

Ssp, 5sp, 8  # restore stack pointer
bra # return to the caller




String Copy Procedure in C

$sp, Ssp, -4
350, 0($sp)
$s0, Szero, Szero
$t1, $s0, Sat
$t2, O($t1)
$t3, $s0, 2al
$t2, 0($t3)
$t2, Szero, L2
$s0, $s0, 1
L1
$s0, 0($sp)

$sp, $sp, 4
$ra

void strepy (char x[ ], char y[]) {
int i;
i=0;

# adjust stack for 1 more item
# save $s0

#2i=0

# address of y[i] in $t1

# 12 = y[i]

# address of x[i] in $t3

# x[i] = y[i]

# ify[i]==0,goto L2

# 1= i+1

# gotolL1

# y[i] ==0; end of string, restore old
# $s0

#pop 1 word off stack
#Freturn




Array vs. Pointer

Cleari(int array[ ], int size)
{
int I;
for (i=0, i< size; i+= 1)
array[i] = 0;

5t0, Szero  #i=0

511, 5t0,2 #1"2

ot2, 5a0, 5t1 #1t2 = address of array[i]
Szero, 0(5t2) #array [i] =0

510, 5t0, 1 Fi=i+1

5t3, 510, 5a1 # compare i and size
5t3, Szero, loop1




Array vs. Pointer

Clear 2(int "array, int size)
{
int "p,
for (p = &array[0]. p < &array[size], p = p+1)
0 =0:

move  $t0, $a0 # p = &array[0]
sl $t1, $a1, 2 #11 =size x 4
add $t2, $a0, $t1 #12 = &array[size]
Loop2: sw $zero, 0($t0) # memory[p] =0
addi $t0, 5t0, 4 % p=pt+d
slt $t3, $t0, $t2 # compare p, & array[size]

bne $13, $zero, Loop2




Array vs. Pointer

$t0, $zero  #i=0

$t1,5t0,2 #I*2

$t2, $a0, $t1 #t2 = address of array][i]
$zero, 0(5t2) #array [i]=0 # of Instruction per iteration
$10, $10, 1 #i=i+1 =1

$t3, $t0, $a1 # compare i and size
$t3, $zero, loop1

Paointer

move  3t0, 5a0 # p = &array[0]

sli 5t1, sat, 2 #11 =sizex 4

add st2, 5al, St #12 = &array[size]
Loop2: sw Szero, 0(5t0) # memory[p] =0

addi St0, $t0, 4 # p=p+4

sit 5t3, 5t0, St2 # compare p, & array[size]

bne 5t3, Szero, Loop2

# of Instruction per iteration




Procedure calling/return

« How to do the return jJump?

*Use ajr instruction jr $ra

*Refined MIPS steps for execution of a procedure
> Caller puts parameter values in $a0-$a3
»Caller usesajal X to jump to procedure X (callee)
» Callee performs calculations
> Callee place resultsin $v0-$v1

> Callee returns control to the caller using jr $ra




More Registers??

*What happens when the compiler needs more registers than 4 argument and 2 return
value registers?

»Can we use $t0-$t7, $s0-$s7 in callee or does caller need values in these registers??
> $t0-$t9: 10 temporary registers that are not preserved by the callee on a procedure call
»>$30-$s7: 8 saved registers that must be preserved on a procedure call if used

*Any registers needed by the caller must be restored to the values they contained before
the procedure was invoked

*How?
> Spill registers to memory
»>usetheregistersin callee
> restore contents from memory

*We need a stack (LIFO data structure) (Why?)

»Placing data onto stack push
»Removing data from stack pop




Stack and Stack Pointer

A pointer is needed to the stack top , to know where the next procedure should place the
registers to be spilled or where old register values can be found (stack pointer)

«$sp is the stack pointer
«Stacks grow from higher addresses to lower addresses

*What does a push/pop means in terms of operations on the stack pointer (+/-)?

Higher address

Higher address
$sp

Contents of register X

$sp

L ower address Lower address

After push of contents of register X

89




int leaf_example (int g, int h, int i, int )
{

int f;

f=(g+h) - (i+));

return f;

*g,h, i, and j correspond to $a0
through $a3

L ocal variable f corresponds to $s0.
Hence, we need to save $s0 before
actually using it for local variable f
(maybe caller needsit)

*Return value will bein $v0

«Textbook assumes that $t0, $t1 need
to be saved for caller (page 135)

Leaf example:
subi $sp,$sp,4

sw $s0, O ($sp)
add $t0, $a2, $al
add $t1,%a2,%a3
sub $s0,$t0,$t1

add $v0,$s0,$zero

lw $50, O($sp)
addi $sp,$sp,4

jr $ra

#procedure |label
#make room for 1 item

#store register $s0 for use later
# $t0 € g+h

#Bt1 €< i+

# < $tO-$t1

# set up return valuein $v0

# restore register $s0 for caller
#adjust stack to delete 1 item

#jump back to caller




Low address

subi $sp,$sp,12
sw $t1, 8($sp)
sw $t0 ,4($sp)
sw $s0,0($sp)

Contents of register $t1

Contents of register §t0

Contents of register §s0

# adjust stack to make room for 3 items

# save register $t1 for later use

# save register $tO for later use
# save register $s0 for later use



*main calls procedure A with one argument
*A calls procedure B with one argument
*If precautions not taken

»%a0 would be overwritten when B is called and value of parameter passed to A
would be lost

»When B iscalled using ajal instruction, $rais overwritten

*How about if caller needs the values in temporary registers $t0-$t9?

*More than 4 arguments?
L ocal variables that do not fit in registers defined in procedures? ( )
*\We need to store the register contents and allocate the local variables somewhere?

*We already saw a solution when we saved $s0 before using it in the previous
example




Solution

»Use segment of stack to save register contents and hold local variables (
or )

>t $sp changes during procedure execution, that means that accessing alocal
variable in memory might use different offsets depending on their position in the
procedure

»Some MIPS software uses aframe pointer $fp to point to first word procedure
frame

> $fp provides a stable base register within a procedure for local memory references

»>$sp points to the top of the stack, or the last word in the current procedure frame

»An activation record appears on the stack even if $fp is not used.




*Passes arguments
>Thefirst 4 in registers $a0-$a3

» The remainder of arguments in the stack (push onto stack)
v'Load other arguments into memory in the frame

v'$sp points to last argument

Save the caller-saved registers ($a0-$a3 and $t0-$t9) if and only if the caller needs the
contents intact after call return

«Execute ajal instruction which saves the return address in $ra and jumps to the
procedure




Allocates memory on the stack for its frame by subtracting the frame’s size from the
stack pointer ($sp € $sp — frame size)

Save callee-saved registers in the frame ($s0-$s7, $fp, and $ra) before altering them
since the caller expects to find these registers unchanged after the call

»>%fp is saved by every procedure that allocates a new stack frame (we will not
worry about thisissue in our examples)

»>%raonly needsto be saved if the callee itself makes a call

Establish its frame pointer (we will not worry about thisissue in our examples)

*The callee ends by
Return the value if afunction in $v0
*Restore all callee-saved registers that were saved upon procedure entry
Pop the stack frame by adding the frame size to $sp
*Return by jumping to the address in register $ra (jr $ra)




Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

Low address

Figure 3.12 page 139




void swap (int v[], int k)
{
int temp;
temp = v[K];
v[K] = v[k+1];
v[k+1] = temp;

v and k correspond to $a0 and $al
*What is actually passed asv?

L ocal variable corresponds to $t0. (Why
we can use $t0 and not use $s0 as explained
before?)

»>Thisisaleaf procedure

> $t0 does not have to be saved by callee
*No registers need to be saved
*No return value

swap:
add $t1, $al, $al
add $t1,$t1,$t1
add $t1,$a0,5t1

lw $t0, O($t1)
lw $t2, 4($t1)

sw $t2,0($t1)
sw $t0,4($t1)

jr $ra

#procedure |label
#Ptl € k*2

#$tl < k*4

#$t1 €< base + (k*4)

# temp < V[K]
# $t2 € v[k+1]

#v[k] € $t2 (whichisv[k+1])
# v[k+1] < V[K] (temp)

#jump back to caller




int fact (int n)
{
if (n<1)
return 1;
else
return (n * fact(n-1));

«Parameter n corresponds to $a0

*This procedure makes recursive calls
which means $a0 will be overwritten,
and so does $ra when executing ja
instruction (Why?). Implications?

«Return value will bein $v0

addi $sp,$sp,-8
sw $ra, 04($sp)
sw $20,0($sp)

dti $t0,$a0, 1
beq $tO, $zero,L 1
addi $v0, $zero, 1
addi $sp,$sp,8

jr $ra

addi $a0,$a0,-1
jal fact

lw $20,0($sp)

lw $ra,4($sp)
addi $sp,$sp,8
mul $v0,$a0,$v0
jr $ra

#procedure | abel

#make room for 2 items
#store register $ra

# store register $a0
#testif n<1
#ifn>=1,gotoL1

#return 1

# pop 2 items off the stack
# return to caller

# next argument isn-1

# call fact with argument n-1
# restore argument n

# restore $ra

# adjust stack pointer

# return n *fact (n-1)

#return to caller




Old $ra

Old $ra

Old $a0
Old $ra

Old $a0
Old $ra

Old $a0
Old $ra

Call to fact(1) returns

Old $ra

Call to fact(2) returns




Registers Conventions for MIPS

vO expression evaluation &

vl function results

gp pointer to global area
Sp stack pointer

fp frame pointer




JAL and JR

Single instruction to jJump and save return address. jJump
and link (j al )
— Replace:

1008 addi $ra, $zero, 1016 #%$ra=1016

1012 | sum #go to sum

with:
1012 jal sum # $ra=1016,go to sum

— Step 1 (link): Save address of next instruction into $ra
— Step 2 (Jump): Jump to the given label
— Why have aj al ? Make the common case fast: functions are
very common
jumpregister: jr register
— ] r provides aregister that contains an address to jump to;
usually used for procedure return 1o




MIPS Jump, Branch, Compare

| nstruction Example

Meaning

branch on equal beq $1,%$2,25

branch on not eq. bne $1,%$2,25
set on lessthan 9t $1,$2,$3

set lessthan imm. dlti $1,$2,100

j 10000
jr $31

jump
jump register

jump and link jal 10000

If ($1 ==%$2) goto PC+4+100
Equal test; PC relative branch
iIf ($1!=$2) goto PC+4+100
Not equal test; PC relative

If ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp.
If ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp..
go to 10000 26-bit+4-bit of PC
goto $31

For switch, procedurereturn
$31 =PC + 4; go to 10000
For procedure call




Why Procedure Conventions?

Definitions
— Caller: function making the call, using ja
— Callee: function being called

Procedure conventions as a contract between the
Cdler and the Cadllee

If both the Caller and Callee obey the procedure
conventions, there are significant benefits

— People who have never seen or even communicated
with each other can write functions that work together

— Recursion functions work correctly




Caller’s Rights, Callee’s Rights

Callees’ rights:
— Right to use VAT registers freely
— Right to assume arguments are passed correctly

To ensure callees’sright, caller saves registers:
— Return address $ra
— Arguments $a0, $al, $a2, $a3
— Return value $v0, $v1
— $t Registers $t0 - $t9
Cdllers’ rights:
— Right to use Sregisters without fear of being overwritten by callee
— Right to assume return value will be returned correctly

To ensure caller’sright, callee saves registers:
~ $sRegisters $0 - $s7




Memory Allocation for Program and Data

5sp ——  Tfff fffC hex

Sgp —— 1000 8000 nex

1000 0000 nex

pc — 0040 0000 hex

0




Representation of Characters

ASCII (American Standard Code for Information
|nterchange)

— Uses 8 bits to represent a character

— MIPS provides instructions to move bytes.
o |b $tO, O($sp)#Read byte from source
o Sb $t0, O(Sgp)#Write byte to destination

Unicode
— Uses 16 hits to represent a character

— MIPS provides instructions to move 16 bits:;
o |h $t0, O($sp) #Read halfwordfrom source
o sh $t0, O($gp) #Write halfwordto destination




2.9 MIPS Addressing

for 32-Bit Immediates and Addresses




32-Bit Immediate Operands

If constants are bigger than 16-bit, e.q.,
OXABABCDCD

| ul $S0, OxABAB
or | $S0, $S0, OxCDCD




Addressing in Branches and Jumps

J-type
|6 bits 26 bits

|-type
| 6 bits|5 bits|5 bits 16 bits
— Program counter = Register + Branch address
o PC-relative addressing
— We can branch within £215 words of the current instruction.

— Conditional branches are found in loops and in if
statements, so they tend to branch to a nearby
Instruction.




J-type

26-bit field s sufficient to represent 32-bit address?

- PCis 32 bits

e Thelower 28 bits of the PC come from the 26-hit field
— Thefield isaword address
— It represents a 28-bit byte address

o The higher 4 bits

— Come from the original PC content

An address boundary of 256 MB (64 million
Instructions)




Branching Far Away

If we need branch farther than can be represented
IN the 16 bits of the conditional branch 1nstruction

— Ex: beq $0, $s1, L1
e L1 with 16 bitsis not sufficient

o The new instructions replace the short-address conditional
branch:
bne $0, $S1, L2
j L1
L2:




Addressing Modes

ing mode Example Meaning
Register Add R4,R3 R4 < R4+R3
|mmediate Add R4,#3 R4 < R4+3
Displacement Add R4,100(R1) R4 < R4+Mem[100+R1]
Register indigeft  Add R4,(R1) R4 <« R4+Mem[R1]
Indexed / Base  Add R3,(R1+R2) R3 « R3+Mem[R1+R2]

Direct / Absolute Add R1,(1001) R1 <« R1+Mem[1001]
Memory indirect Add R1,@(R3) R1 « R1+Mem[Mem[R3]]
Auto-increment Add R1,(R2)+ R1 <« R1+Mem[R2]

R2 «+ R2+d
Auto-decrement Add R1,-(R2) R2 «+ R2-d

R1 <« R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1<« R1+
Mem[100+R2+R3*d]




MIPS Addressing Mode (1)

Immediate addressing

op Immediate

The operand is a constant

Example: addi $2, $3, 4 within the instruction itself




MIPS Addressing Mode (2)

Register addressing

|
op rt rd ‘ funct

The operand is a register

.| Register \ \

Example : add $r1, $r2, $r3




MIPS Addressing Mode (3)

Base addressing

Address

Byte Halfword

|
‘ Register \

The operand is at MEM

Example : lw 32, 100(33




How to Get the Base Address In the Base
Register

Method 1.

.data # define prog. data section
xyz. .word 1 # some data here
# possibly some other data
text # define the program code
# lines of code
lw 3$95,xyz # loads contents of xyz inr5

the assembler generates an instruction of the form:
w55, offset($gp) # gp is register 28, the global pointer

Mote : data word, text are assembler directives




MIPS Addressing Mode (4)

PC-relative addressing

op rs Address




MPIS Addressing Mode (5)

Pseudodirect addressing

‘ op Address

Example : ] 100




2.10 Translating and Starting a Program




Starting A Program

Compiler

"Transforms the C program into an assembly language program.

Assembly language program

Object: Machine language module

_‘ﬂhiect: Library routine (machine language)

Executable: Machine language program

.

Memory




Assembler

Assembler

— The assembler turns the assembly |language program
(pseudoinstructions) into an object file.
o An object file contains

— machine language instructions
— Data

— Symbol table: A table that matches names of labels to
the addresses of the memory words that instruction
occupy.

— InMIPS

o Register $at isreserved for use by the assembler.




An Object File for UNIX Systems

Obhject file
header

I a1 =3

Procedme A

Text
size

Data
size

20hex

Text segment

Address

Instruction

Iw $a0, 0{%gp)

al 0
al U

lw $a0. x
jal B

Data segment

Relocation
information

Address

Inztruction
Type

Cependen
cy

0

4

symbol table

Labe

static data
segment

external
references




Linker (Link editor)

Linker takes all the independent
machine language programs anc
together to produce an executab
run on a computer.

y assembled
“stitches” them
e filethat can be

There are three steps for the linker:

.Determine the addresses of data
Patch both the internal and exter

.Place code and data modules symbolically in memory.

and instruction |abels.
nal references.




Linker

The linker use the relocation information and

symbol table in each object module to resolve all
undefined |abels.

If all external references are resolved, the linker

next determines the memory locations each
modules will occupy.




Example

] The first 3 commands have each taken\
0 gCccC -C maln.cc) one source file, and compiled it into

something called “object file”, with the
006 gcc-cac same names, but with a “.0 suffix. The
object file contains the code for the source

% gCC -C b.C file in machine language, but with some/

esolved symbols.

% gcc -o hello world main.o a.o b.o

Tite A GameT e (e 2 ol flee.
iInto one program. The linker (which is
invoked by the compiler now) takes all the
symbols from the 3 object files, and links
them together.

N~ g




Loader

Read the executables file header to determine the size of
the text and data segments

Creates an address space large enough for the text and data

Copies the instructions and data from the executable file
INnto memory

Copies the parameters (if any) to the main program onto
the stack

Initializes the machine registers and sets the stack pointer
the first free location

Jump to a start-up routine which copies the parameters
Into the argument registers main0:

_start _up:
Iw a0, offset($sp)
jal main:
exit




Dynamically Linked Libraries (DLL)

Disadvantages with traditional statically linked
library
— Library updates

— Loading the whole library even if al of thelibrary is
not used

e The standard C library is2.5 MB.
Dynamically linked library

— Thelibraries are not linked and loaded until the
program Is run.

— Lazy procedure linkage
o Each routineislinked only after it is called.




Dynamic Linking

O.S. services request of dynamic linking
— Dynamic loader is one part of the OS

— Instead of executing a JSUB instruction that refers to an external
symbol, the program makes aload-and-call service request to the

Example
— When call aroutine, pass routine name as parameter to O.S. (a)

— If routine is not loaded, O.S. loads it from library and pass the
control to the routine (b and c)

— When the called routine completes it processing, it returns to the
caler (O.S) (d)

— When call aroutine and the routine is still in memory, O.S.
simply passes the control to the routine (e)




Example of Dynamic Linking

Load-and-call
ERRHANDL

Dynamic
loader
(part of the
operating
system)

Dynamic
loader

User
program

User
program

ERRHANDL

T

Library

o e e

Load thero
the specifis




Dynamic
loader

User
program

ERRHANDL

Jump back to the
dynamic loader

Dynamic
loader

*_..—

User
program

ERRHANDL

p bal
er pi

ck to the
ogram

(d)

Load-and-call
ERRHANDL

Dynamic
loader

User
program

ERRHANDL




Starting a Java Program

\ |
Clann filus {(Java bytecodes) | | Java Library routines (sachins fanguage) |

» . »

I VUil MEBCHInE

1ol

" ‘
" F

| Gompilod Java matheds (machine language)

Java Virtual Machine (JVM): The program that interprets Java
bytecodes

— Low performance
Just In Time Compiler (JI'T): profile the running program to find

where the hot methods are, and then compile them into the native
Instruction set on which the virtual machine is running.

— The program can run faster each time it is run.




How Compilers Optimize

Dependencies

anguage dependent;
achine independent

bomewhat language dependent;

argely machine independent

Small language dependencies;

achine dependencies slight
e.g., register counts/types)

ighly machine dependent;
anguage independent

Front end per
language

Intermediate
representation

High-level
optimizations

Global
optimizer

Code generator '

unction

Transform language to
common intermediate form

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Including global and local
optimizations + register
allocation

Detailed instruction selectio
and machine-dependent
optimizations; may include
or be followed by assembler

© 2003 Elsevier Science (USA). All rights reserved.




Compiler Optimization Summary

Optimization name
High level
Procedure integration

| Explanation

At or near the source level; processor independent
Replace procedure call by procedure body

| 6L

Q3

Local

Common subexpression
elimination

Constant propagation

Stack height reduction

Within straight-line code
Replace two instances of the same computation by single copy

Replace all instances of a variable that is assigned a constant
with the constant

Rearrange expression tree to minimize resource needed for
expression evaluation

01

o1

01

Global
Global common subexpression

elimination
Copy propagation
Code motion

Induction variable elimination

Across a branch
Same as local, but this version crosses branches

Replace all instances of a variable A that has been assigned X
{i.e., A=X) with X

Remove code from a loop that computes same value each
iteration of the loop

Simplify/eliminate array addressing calculations within loops

02

02

02

02

Processor dependent
Strength reduction
Pipeline scheduling
Branch offset optimization

Depends on processor knowledge

Example: replace multiply by a constant with shifts

Reorder instructions to improve pipeline performance
Choose the shortest branch displacement that reaches target

01

§1

01




T0
Summarize

MPS operands

Name Example Comments
$s0-$s7, $0-$t9, $zero, |Fast locations for data. In MPS, data must be in registers to perform
Rregisters [$a0-$a3, $v0-$v1, $gp, arithrmetic. MIPS register $zero always equals 0. Regjister $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Menmory[Q], Accessed only by data transfer instructions. MIPS uses byte addresses, so
230 menmory |Memony4, ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.
MIPS assembly language
Category Instruction Example Meaning Comments
add add $s1, $s2, $s3  [$sl = $s2 + $s3 Three operands; data in registers
Arithmetic  |subtract sub $s1, $s2, $s3  [$sl = $s2 - $s3 Three operands; data in registers
add immediate addi $s1, $s2, 100 ([$s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2)  [$s1 = Memory[$s2 + 100|Word from memory to register
store word sw $s1, 100($s2)  [Memory[$s2 +100]=$s1 |Word fromregister to memory
Data transfer (load byte I'b $s1, 100($s2)  [$s1 = Memory[$s2 + 100|Byte frommemory to register
store byte sb $s1, 100($s2)  [Memory[$s2 +100]=$s1 |Byte fromregister to memory
load upper lui $s1, 100 $s1=100%2 1 Loads constant in upper 16 bits
immediate
branch on equal beq $s1, $s2, 25 if ($s1 == $s2)goto Equal test; PC-relative branch
PC+4+100
branchonnotequal |bne $s1, $s2, 25 if ($s1 1= 9$s2)goto Not equal test; PC-relative
Conditional PC+4+100
branch set on less than slt $s1, $s2, $s3 |if ($s2 < $s3) $s1=1; |Compare less than; for beq, bne
else $s1 =0
set less than slti $s1, $s2, 100 |if ($s2 < 100) $s1=1; |Compare less than constant
immediate else $s1 =0
jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra goto $ra For switch, procedure return
tional jump  |jump and link jal 2500 $ra=PC +4;goto 10000 [For procedure call




Summary: MIPS ISA (1/2)

32-bit fixed format instructions (3 formats)

32 32-bit GPR (RO = zero), 32 FP registers, (and HI LO)
— partitioned by software convention

3-address, reg-reg arithmetic instructions

Memory Is byte-addressable with a single addressing
mode: base+displacement

— 16-bit immediate plus LUI

Decision making with conditional branches. beg, bne
— Often compare against zero or two registers for =

— To help decisions with inegualities, use: “Set on Less
Than”called dlt, dti, sltu, sltu

Jump and link puts return address PC+4 into link register
$ra (R31)

Branches and Jumps were optimized to address to words,
for greater branch distance 135




Summary: MIPS ISA (2/2)

|mmediates are extended as follows:
— logical immediate: zero-extended to 32 bits
— arithmetic immediate: sign-extended to 32 bits
— Dataloaded by |b and |h are smilarly extended:
Ibu, Ihu are zero extended; Ib, |h are sign extended
Simplifying MIPS: Define instructions to be same size as data (one
word), so they can use same memory

Stored Program Concept: Both data and actual code (instructions)
are stored in the same memory

Instructions formats are kept as ssimilar as possible

opcode | Tmedi at e
target address




Alternative Architectures

Design alternative:
— to provide more powerful operations
— to reduce number of instructions executed

— danger Is aslower cycle time and/or a higher CPI

—“The path toward operation complexity is thus fraught with
peril.
To avoid these problems, designers have moved toward
simpler instructions”

Let’slook (briefly) at Intel |1A-32




|A-32

1978: Intel 8086 is announced (16 bit architecture)

1980: 8087 floating point coprocessor is added

1982: 80286 increases address space to 24 bits, +instructions
1985: 80386 extends to 32 bits, new addressing modes

1989-1995: 80486, Pentium, Pentium Pro add afew instructions
(mostly designed for higher performance)

1997: 57 new “MMX”’ Instructions are added, Pentium |1

1999: Pentium |11 added another 70 instructions for streaming SIMD
extension (SSE)

2001: Another 144 instructions (SSE2)

2003:. AMD extends to increase address space to 64 bits,
widens all registers to 64 bits and other changes (AMD64)

2004 Intel capitulates and embraces AMDG64 (callsit EM64T) and
adds more media extensions
“This history illustrates the impact of the “golden handcuffs’ of compatibility
“adding new features as someone might add clothing to a packed bag”
“an architecture that is difficult to explain and impossible to love”




|A-32 Overview

Complexity:
— Instructions from 1 to 17 byteslong
— one operand can come from memory
— complex addressing modes
e.g., ‘base or scaled index with 8 or 32 bit displacement”

Saving grace:

— the most frequently used instructions are not too difficult to build
— compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style Is made up in quantity,
making It beautiful from the right perspective”




|A-32 Registers

Mame Use
31 D
EAX PR O
ECX PR 1
EDX GPR 2
EBX GPR 3
EZF GPR 4
EEF PR S
ES1 GPR G
EDI GPR T
C5 Code segment polnter
55 Stack segment pointer [top of stack)
s Data segment pointer 0
ES Data segment pointer 1
Fa Data segment pointer 2
G5 Data segment pointer 3
EIF nstruction pointer (PC)
EFLAGS Conditlon codes

« Fewer reaisters than MIPS

140



|A-32 Addressing Mode

Registers are not “general purpose” — note the
restrictions below

Register
Description rastrictions

Reglster Indiract Addrass 1= In a reglster. not ESP or EBP Tw $s0,00fs51)
Basad mode with 8- or 32-bit Address |13 contents of base raglstar plus not ESP of EBP Tw 50, 1000451 #<16-bit
displacemant displacameant. #displacement
Basa plus scaled Index Tha addrass 15 Base: any GPR mu 1 $t0.4s52,:
Base + (27598 x Inoex) Index: not ESPE | add 40, 4t0,4s1
where Scale has thevalue 0, 1, 2, or 3. Tw $50,004t0)
Basa plus scaled Index with Tha addrass |5 Base: any GPR mu 1 $t0.4s52 .,
B- or 32-bit displacemant Base + (2°°91% ¥ Indax) + displacement Index: not ESP add b0, 4t0. 451
where Scale has thevalue 0, 1, 2, or 3. Tw 5010004ty #<16-bit
#displacement

AGURE 2.42 1A-32 32-bit addressing modes with register restrictions and the aquivalamt MIPS code. The Base plus Scaled Index
addressing mode, not found in MIPS or the PowerPC, iz included to avoid the multiplies by four {scale factor of 2) to turn an index in a register nto a
byte address {see Figures 2.34 and 2.36). A scale factor of 1 is used for 16-bit data, and a scale factor of 2 for 84-bit data. Scale factor of O means the
address 15 not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS aquivalent mode would need two more
instructions:a 101 to lead the upper 16 bits of the displacement and an add to sum the upper address with the base register 45 1. (Intel gives two dif-
ferent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we combme them here.)
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|A-32 Typical Instructions

Four major types of integer instructions:

— Data movement including move, push, pop

— Arithmetic and logical (destination register or memory)
— Control flow (use of condition codes/ flags)

— String instructions, including string move and compare

Instruction

JE niame it equall ||l|:|11'1||1||ll:||-':' IEIP=nam=]:
ETF—]._-_-_.I'I:IFrll— < EIP+1Z8

CALL names SF=5F-4;: H[SPI=EI1FP+5: EIP=name:
MOYs EEX [EOT+4E] ERX=MI[EDT+45]
PUEH ESI ZF=%F-4; MLZF1=EZ=1

FOP EDI ECI=MIZF1: SP=5FP+4

TE .T EDX 4

I'IEE 171;
+d; ESI=ESI+d

. __Fig. 2.4
1.1A-32: Two-operand operation vs. MIPS: three-operand operation 9 3
2.1A-32: Register-memory vs. MIPS: register-register 142




|A-32 Instruction Formats

d.JZ EIP + digplacement
4 4 i

JE Candk-
tion

Displacement

b CALL
&

CALL

c. MOV ESK [EDI + 48]
i} 1 1 E g

MOow [d |w . Displacemsan

Posioyle

d. PUSH ES

PUSH |Rep

e ADD EAX, S6FES
4 31 32

ADD |Reg|w mmedlatz

L TEST EDX, #42
F 1 3 32

TEZT (w| Postbyta Immedate

|A-32 variable-length encoding vs. MIPS fixed-length encoding




Summary

|nstruction complexity isonly one variable

— lower instruction count vs. higher CPI / lower clock
rate

Design Principles:

icity favors regularity

er isfaster

design demands compromise
— make the common case fast

Instruction set architecture
— avery important abstraction indeed!




