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Abstract—Given the explosive growth of mobile subscribers,
network operators have to densely deploy base stations to serve
the exponentially increasing access demands. Nevertheless, recent
researches have pointed out that base station operation has been
identified as a significant portion of total system energy con-
sumption and 90% of the traffic is carried by only 40% of base
stations even under peak traffic demand. Therefore, switching off
underutilized base stations for saving power is an important issue
with the increasing awareness of environmental responsibility and
economical concerns of network operators. This paper targets the
problem of dynamic base station operation, with an objective
to minimize total power consumption of all base stations. We
prove this problem is NP-hard and cannot be approximated in
polynomial time with a ratio better than 3

2
. Then, we propose

a distributed algorithm to tackle it. The simulation results show
that our proposed algorithm can significantly reduce the network
power consumption.

Index Terms—Energy efficiency, base station operation, cellu-
lar networks

I. INTRODUCTION

The explosive growth of mobile subscribers are pushing
fourth generation (4G) network operators to densely deploy
base stations in geographical regions with nearly 100% cov-
erage for serving the exponentially increasing access de-
mands [1]. To serve such a large number of mobile subscribers,
total energy consumption of base stations needed for operating
a 4G Long Term Evolution (LTE) network is estimated to
be 60 times more than that for a 2G wireless network [2].
This phenomenon leads to a potential harm to the environment
caused by the CO2 emissions and the use of non-renewable
energy resources. From an economic perspective, LTE network
operators need to spend more than 10 billion dollars on elec-
tricity to supply the energy consumed by their base stations,
and the amount would keep growing at a rapid rate [1], [3].
As a result, recent researches have been shifting their focus
toward an energy-efficient wireless network design to reduce
the operating expenditure of network operators as well as take
the responsibility for the sustainability of human beings [4]–
[6].

In a cellular network, base station operation has been
identified as a significant portion of total system energy
consumption, and it accounts for around 60% to 80% [7]. As
indicated by the following observations [1], [8], [9], switching
“off” those under-utilized base stations can potentially reduce
base station energy consumption without affecting the quality

of service of mobile users. Firstly, some base stations are
usually deployed for serving the peak traffic demand. Even
under a peak-traffic demand, it has been pointed out that 90%
of the traffic is carried by only 40% of base stations in the
network [8]. Secondly, the mobile users residing in urban areas
generally produce a considerably large amount of traffic during
daytime, but the traffic demand falls drastically during the off-
peak hours. The traffic profile given by some measurements
from real traffic trace over one week has demonstrated that
many of the base stations can be switched off when the traffic
is low. Specifically, the time portion that the traffic is below
20% of the peak demand during a day is 38.6% in weekdays
and 75.6% in weekends [1]. Lastly, base stations consume
a significant portion of energy even when their workloads
are low. For example, an LTE macro base station consumes
1350W at the cell cite with only 12W consumed by its RF
module. That is, even when the site experiences little or no
data transmission/reception, over 90% of its energy is still
consumed [9].

Based on the observations, dynamically switching the op-
eration mode of base stations to “on” or “off” is one of
the effective ways to minimize total energy consumption of
next-generation mobile systems. It has been considered as an
emerging and challenging research issue in recent years. [10]
is the first work to consider dynamic base station operation
and proposed a scheme to switch off some base stations
when their workload is low. Marsan et al. [4], [7] proposed
some switching strategies for dynamic base station operation
based on daily traffic profile. In [5], Son et al. proposed
a greedy algorithm considering the tradeoff between energy
consumption and flow-level delay.

Most of the previous works proposed their solutions by
using the centralized approach, which is not suitable for LTE
wireless systems due to the following reasons. In the 3GPP
LTE specifications, a flat-system architecture is preferred in-
stead of a traditional hierarchical structure. For example, the
radio resource control functionality is integrated into base
stations in LTE/LTE-Advanced systems, so a base station
can control its radio and power resources without the aid of
a centralized control node [11]. Furthermore, self-organized
and self-optimization capabilities are included in the LTE
specifications as well as the requirement to avoid single point
of failure that often occurs in those centralized controllers [11],



[12]. Thus a decentralized scheme for dynamic base sta-
tion operation should be designed and implemented for LTE
wireless systems. In [13], Zhou et al. proposed a distributed
scheme for the target problem where the task is accomplished
by mobile devices. However, the distributed algorithm would
cause a ping-pong effect so that mobile stations are involving
an infinite loop to switch their associated base stations.

In this paper, we study an optimization problem for energy-
efficient base station operation in 4G cellular networks. The
objective is to minimize the total power consumption of all
base stations while the data requirement of every user is
satisfied. We prove that this problem is NP-hard and cannot
be approximated in polynomial time with a ratio better than 3

2 ,
unless P = NP . Then, we propose a decentralized algorithm
implemented in both base stations and mobile devices to
avoid the ping-pong effect. For the performance evaluation,
we conduct simulation experiments with various practical
configurations, and compare our algorithm with the scheme
proposed by [13].

The remainder of this paper is organized as follows. Sec-
tion II presents the system model and formal formulation of
the target problem. In Section III, the proof of NP-hardness,
the inapproximability result, and the proposed distributed
algorithm for the target problem are provided. Simulation
results and analysis are reported in Section IV. Section V
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In LTE wireless systems, base stations are the main com-
ponent of the cellular infrastructure. In order to serve the
increasing demands of mobile users and provide sufficient
coverage to the region of interest, base stations are required
to be densely deployed and consume significant power. The
power consumption of a base station can be classified into two
parts, i.e., zero-loading power and loading power. The zero-
loading power is consumed when the base station is switched
“on” regardless of the number of mobile users it serves. On the
other hand, the loading power is proportional to the loading
for serving mobile users. Generally, the zero-loading power
consumption in a base station is more significant than that
for the loading power. In LTE, base stations can communicate
with each other via a dedicated interface, so that information
(e.g., location, loading, maximal operational power, etc.) can
be easily exchanged between base stations.

Here we assume that mobile users can request their own
data rates required for their applications. However, due to
some wireless characteristics such as interference and multi-
path fading, users may experience different channel conditions.
In our model, the modulation-coding scheme is allowed to
be adaptively adjusted based on users’ channel conditions. To
follow the 3GPP LTE specifications, data is assumed to be
carried by resource blocks, hereafter called tiles. To deliver the
same amount of data, a user with good channel condition can
potentially occupy less tiles when a higher-rate modulation-
coding scheme is adopted. In contrast, a user with poor channel

condition may be allocated more tiles when a lower-rate
modulation-coding scheme is adopted, to tolerate higher bit
errors. Base stations are assumed to be aware of the channel
condition of every user in their coverage according to periodic
reports from users.

B. Problem Formulation

In this paper, we are interested in minimizing the total
power consumption of all base stations, provided that the data
rate requirement of each user in the network can be satisfied.
The system model under consideration can be formulated as
follows.

In a network, the set of base stations in the region of interest
is denoted as B and the set of base stations in the on state
is denoted as Bon, Bon ⊆ B. For each base station b ∈ B,
the maximal operational power is Pb. Specifically, the zero-
loading power consumption of a base station b ∈ B is denoted
as qbPb, where qb is the proportion of consumed operational
power to maximal operational power when base station b is
switched “on”. The loading power of base station b ∈ B is
denoted as (1−qb)ρbPb, where ρb is the proportion of allocated
tiles for serving users to the total available tiles, 0 ≤ ρb ≤
1, ∀b. Therefore, the total amount of power consumed by base
station b can be represented as (1− qb)ρbPb + qbPb ≤ Pb [5].

The set of users are denoted as U . The data rate requirement
of each user u ∈ U is denoted as ru. There are M modulation-
coding schemes, and each base station b can provide at most
Tb tiles for serving users. When user u is associated with base
station b and modulation-coding scheme m is adopted, the base
station b can provide data rate γm

b,u in a tile for the user. Note
that base station b always adopts the highest-rate modulation-
coding scheme that user u can receive. Therefore, user u will
occupy

⌈
ru
γm
b,u

⌉
tiles when it associates with base station b and

modulation-coding scheme m is adopted. We also define an
indicator function χb,u, where χb,u is 1 if user u associates
with base station b; otherwise, the value is 0. A set of base
stations in the on state is feasible if the following constraints
are met:

1) Service Feasibility: For every base station b, the sum
of tiles for serving users cannot exceed the total tiles it can
provide.

∑
∀u∈U

χb,u ·

⌈
ru
γm
b,u

⌉
≤ Tb, ∀b ∈ B (1)

2) User Connectivity: Each user can only associate with
one base station. This constraint ensures that for each user,
there is at least one base station the user can associate with.∑

∀b∈B

χb,u = 1, ∀u ∈ U (2)

The Energy-Efficient Base Station Operation Problem
Input instance: Consider the set of base stations B. Each
base station b has Tb tiles, maximal operational power Pb,
and proportion of consumed operational power to maximal
operational power qb when the base station is switched on. Let



the set of users be U . Each user u has data rate requirement
ru. There are M modulation-coding schemes. The base station
b in the on state can provide data rate γm

b,u in a tile for user u
when the user is associated with base station b and modulation-
coding scheme m is adopted.
Objective: Our objective is to find a feasible set of base
stations Bon in the on state and user association function χb,u,
provided that the requirement of each user in the network
can be satisfied. We state our objective function formally as
follows:

min
∑

b∈Bon

(1− qb)ρbPb + qbPb (3)

subject to constraints (1)-(2).

III. ENERGY-EFFICIENT BASE STATION OPERATION

In this section, we prove the NP-hardness of the problem
and give a ( 32 − ϵ)-inapproximability result. Then, we propose
a distributed algorithm to solve the problem.

A. ( 32 − ϵ)-Inapproximability

Before our solution to the target problem, we show two
important properties of the problem, namely its NP-hardness
and inapproximability ratio. We prove that the problem is
NP-hard by a reduction from the partition problem, which is
known to be NP-complete [14]. Then, we show the problem
cannot be approximated in polynomial time with a ratio better
then 3

2 , unless P = NP .

Lemma 1. Energy-efficient base station operation problem is
NP-hard.

Proof: The input for the partition problem is a set of n
integers, A = {a1, a2, ..., an}. The output is Y ES if and only
if A can be partitioned into two subsets Z and A\Z that have
the same sum, i.e.,

∑
ai∈Z ai =

∑
ai /∈Z ai =

1
2

∑
ai∈A ai.

We show that given an instance ⟨A⟩ of the parti-
tion problem, we show how to construct an instance
⟨B, Tb, Pb, qb, U, ru, γ

m
b,u, M⟩ of our problem in polynomial

time such that A can be evenly partitioned if and only if there
exists a base station operation whose total power consumption
is no more than 2 watts. The construction can be performed
as follows: There are 3 base stations (i.e., |B| = 3), and each
base station b has the same number of tiles Tb =

1
2

∑
ai∈A ai,

∀b ∈ B. The number of users is set as n (i.e., |U | = n),
and user requirement ri is set as ai, ∀1 ≤ i ≤ n. Each user
can associate with an arbitrary base station. There is only one
modulation-coding scheme (i.e., M = 1). The base station
b can provide γm

b,u = 1 data rate in a tile for every user u,
∀u ∈ U, b ∈ B,m = 1. Thus, each base station consumes the
same number of tiles ai to satisfy the requirement of each user
i (i.e.,

⌈
ri
γm
b,i

⌉
= ai, ∀1 ≤ i ≤ n, b ∈ B). Then, let us consider

the power consumption of a base station is only consumed
by the zero-loading power (i.e., qb = 1, ∀b ∈ B), and the
operational power Pb of base station b is 1 watt, ∀b ∈ B.
In other words, the power consumption of a base station is
irrelevant with the loading.

To complete the proof, we demonstrate that two evenly
partitioned subsets can be used to derive a set of “on” base
stations whose total power consumption is no more than
2 watts, and vice versa. Since each integer corresponds to
each user’s requirement and a subset corresponds to the users
served by a base station, two evenly partitioned subsets imply
that all users can be served by two base stations. Thus, two
of the base stations have to be switched on, and the total
power consumption is 2 watts. On the other hand, if the
total power consumption is no more than 2 watts, only two
base stations can be switched on. It implies that two base
stations are needed to serve all users, and the set can be
evenly partitioned by assigning the corresponding integer into
the corresponding subset. The existence of a polynomial time
algorithm for the partition problem implies the same for our
problem. We conclude that the energy-efficient base station
operation problem is NP-hard.

Theorem 1. For the energy-efficient base station operation
problem, there is no ( 32 − ϵ)-approximation algorithm, for any
ϵ > 0, unless P = NP .

Proof: We prove this problem by contradiction. Suppose
there exists a polynomial-time α-approximation algorithm Q
for the target problem, for some ratio α < 3

2 . We show how
to use the hypothetical algorithm Q to solve the partition
problem. We have proved in Lemma 1 that the integer set
A can be evenly partitioned if and only if there exists a base
station operation whose total power consumption is no more
than 2 watts. If A can be evenly partitioned, Q will output a
base station operation with total power consumption no more
than α × 2, because Q is an approximation algorithm with a
ratio α. Otherwise, Q will output a base station operation with
total power consumption at least 3 watts, since at least three
base stations have to be switched on to serve all users. This
implies that Q can be used to decide whether A can be evenly
partitioned if α× 2 < 3. Hence, unless P = NP , there is no
( 32 − ϵ)-approximation algorithm for the energy-efficient base
station operation problem, for any ϵ > 0.

B. Green Decentralized Algorithm for Cellular Networks

In this section, we propose a decentralized algorithm, Green
Decentralized Algorithm for Cellular Networks (GDCN), with
two stages to tackle the energy-efficient base station operation
problem. The first stage is the election process. In this stage,
each base station determines whether it can be switched off by
comparing its utility value with the utility values broadcasted
by neighboring base stations. The second stage is the user
transition process. In this stage, base stations having the
smallest utility value among its neighbors will try to transfer
all of its users into neighboring base stations. If a base station
can transfer all its users into neighboring base station, the base
station can be switched off to save power.

1) Election Process (EP): In the first stage, each base
station calculates a utility value FEP (b) based on its provided
data rate for serving users and maximal operational power, and
then broadcasts the value to its neighbors if ρb > 0. ρb = 0
implies that no user is served by the base station b and the base



station b has to be switched “off”. The utility value FEP (b)
is defined as follows.

FEP (b) =

{ ∑
∀u∈U χb,uru

Pb
if ρb > 0

∞ if ρb = 0
(4)

In the case of ρb > 0, the base station b has a smaller utility
value if it has higher Pb (i.e., maximal operational power)
and its total data rate (i.e.,

∑
∀u χb,uru) supplied to all of its

users is lower. Thus, to achieve energy-efficient base station
operation, a base station with a lower utility value should have
a higher priority to be switched off. If ρb = 0, it means that
base station b is not serving any users and can be switched
off directly. Thus, the utility value is set as ∞.

Let Bb be the set of base station b and its neighboring base
stations. Upon receiving neighbors’ utility values, each base
station determines whether it has the smallest utility value
among its neighbors, shown in Equation (5). If so, the base
station will try to transfer its users into neighboring base
stations in the next stage.

b∗EP = argmin
b′∈Bb

FEP (b
′) (5)

Each base station b ∈ B executes the distributed election
process described as follows.

Algorithm 1 Stage 1: Election Process
1: if FEP (b) =∞ then
2: The base station switches off directly
3: else
4: State ← 0
5: while State = 0 do
6: Broadcast msg⟨FEP (b), State⟩
7: b∗EP ← argminb′∈Bb

FEP (b
′)

8: if b∗EP = b then
9: Execute Stage 2

10: State ← 1
11: FEP (b)←∞
12: Broadcast msg⟨FEP (b), State⟩
13: end if
14: if All neighbors’ states are 1 then
15: State ← 1
16: end if
17: end while
18: end if

If the utility value of the base station is ∞, it will be
switched off directly (Lines 1-2); otherwise, the election
process will start (Lines 3-18). In Line 4, we initialize the base
station’s state to 0, indicating that the base station has not yet
executed Stage 2 (i.e., the base station has not tried to switch
off). Then, the base station broadcasts a message including its
utility value and state to its neighbors (Line 6). Upon receiving
neighbors’ messages, the base station determines whether it
has the smallest utility value among its neighbors (Line 7).
If so, it executes Stage 2 to transfer all of its users into

the neighboring base stations (Line 9). The state and utility
value are respectively updated to 1 and ∞ (Lines 10-11).
Then, the base station broadcasts its updated message to its
neighbors such that the base station will not be considered by
the neighboring base stations again (Line 12). If all neighbors’
states are 1, it means that the neighboring base stations have
been switched off or cannot serve more users transferred
from other base stations. Therefore, the base station will not
consider to switch off and the state is updated to 1 (Lines
14-16).

2) User Transition (UT): If the base station identifies itself
having the smallest utility value among its neighbors, it tries
to transfer all of its users into neighboring base stations so
that it can safely switch off. The detailed user transition stage
is described as follows.

Stage 2: User Transition
1: Ub ← The set of users served by base station b
2: Sort Ub in decreasing order by data rate requirement
3: for i = 1→ |Ub| do
4: Inform user i to handoff based on Equation (7)
5: if Received msg⟨ACK⟩ then
6: Ub = Ub − {i}
7: end if
8: end for
9: if |Ub| = 0 then

10: Switch off the base station
11: end if

Let the set of users currently served by the base station b be
Ub (Line 1). We then sort Ub in a decreasing order according
to the user’s data rate requirement in Line 2. Then, the base
station tries to transfer its users into neighboring base stations
(Lines 3-8). The base station informs the users in Ub to handoff
one by one (Lines 3-4). When the user is informed to handoff,
given the set of base stations Bu that user u ∈ Ub can associate
with, it calculates utility values to determine which base station
it should try to handoff. The utility value is revised based on
that in [13] and is defined as follows:

FUT (b) =

∑
i∈Ub

χb,i ·
⌈

ri
γm
b,i

⌉
Pb

(6)

The user has a higher utility value if the base station has
higher loading and less operational power. Thus, in order to
switch off more base stations with larger operational power
consumption, users will gather in the base stations with higher
loading and less operational power based on Equation (7). To
avoid users interchange between two base stations, when the
utility value of the original base station b̂ is equal to the utility
value of b∗UT , the user will stay at the original base station.

b∗UT = argmax
b′′∈Bu

FUT (b
′′) (7)

where



(a) Urban deployment (b) Suburban deployment

Fig. 1. Real base station deployments

b∗UT =

{
b̂ if FUT (b̂) = FUT (b

∗
UT )

b∗UT otherwise.
(8)

When the user successfully transfers to a new base station,
it will send an ACK message to the original base station. If
the ACK message is received, the user will be removed from
Ub by the original base station b in Line 6. Finally, the base
station b will check whether Ub is empty. If so, the base station
b has completely moved its users and can be safely switched
off (Lines 9-11).

C. Properties

Lemma 2. GDCN is starvation-free.

Proof: A priority-based approach may suffer from the
hazard of starvation, which will occur due to the following
condition. In Stage 1, the base station with the smallest utility
value will be selected and execute Stage 2 to try to move
its users into its neighboring base stations. Consequently,
when there are some remaining users staying in the selected
base station, it will get a utility value less than or equal to
that before executing Stage 2. Under such circumstance, the
selected base station will always be the base station having
the smallest election utility value among its neighbors; its
neighbors will never have a chance to change their states, and
a starvation situation occurs.

To avoid starvation, we need to adjust the selection priority
after each selection round, so that the selected base station
gets the lowest priority and will never be selected again. To
do so, we set FEP (b) to ∞ (the lowest priority) in Line 11
of Stage 1 for each selected base station. Since the priority is
changed, the starvation situation is avoided.

Lemma 3. GDCN can eliminate the ping-pong effect.

Proof: In our algorithm, once users are informed by their
base station to handoff to other base stations, they will not
associate with the original base station again. If base station b
determines to switch off in Stage 1, it means that base station
b has the smallest utility value among its neighboring base
stations. Then, the users under base station b will be informed

TABLE I
MAXIMAL OPERATIONAL POWER OF BASE STATION

Class Operational power (W) Amount

I 800 65
II 1350 21
III 2000 46

TABLE II
MODULATION-CODING SCHEMES WITH SNR RANGES

m Modulation Coding rate γm
b,u (kbps) SNR range (dB)

1 QPSK 1/2 4.8 [3.7164,5.9474)
2 QPSK 3/4 7.2 [5.9474,9.6598)
3 QAM16 1/2 9.6 [9.6598,12.361)
4 QAM16 3/4 14.4 [12.361,16.6996)
5 QAM64 2/3 19.2 [16.6996,17.9629)
6 QAM64 3/4 21.6 [17.9629,+∞)

to handoff to one of its neighboring base stations. For each
handoff user, the user will have the highest user transition
utility value for the new base station, and will not move back
to the original base station since the user transition utility value
of the original base station is lower than that of the new base
station. Therefore, the ping-pong effect can be eliminated in
GDCN.

IV. PERFORMANCE EVALUATION

In this section, we developed a Java program to evaluate the
performance of our proposed algorithm, denoted as GDCN, in
comparison with the distributed approach proposed in [13],
represented as DIST.

A. Simulation Settings

For our simulation settings, we adopted various practi-
cal configurations. We use two kinds of real base station
deployment: in urban area and suburban area provided by
“Ofcom”, supported by the UK government [15]. Base station
location and operational parameters are manually extracted and
represented in Fig. 1. Based on the real operational param-
eters, the maximal operational power of each base station is
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quantized into three classes: 800W (green), 1350W (blue), and
2000W (red). We set qb = 0.5 for each base station [5], i.e.,
the zero-loading power of each base station is a half of its
maximal operational power. Each base station has 2000 tiles
to satisfy the user requirements [16]. The settings for urban
and suburban areas are described as follows.

• Urban: The base station topology is a 2×0.85 km2 region
around Piccadilly Circus with 132 base stations, where
the exact number of base stations in each class is listed
in Table I. Each base station has a radius of 200m to
400m [13]. We simulate the number of users from 2000
to 20000. The path loss model we adopted is PL(dB) =
35.2 + 35 log10(d1), where d1 is in meters [17].

• Suburban: The base station topology is a 8×2 km2 region
around Camberwell with 61 base stations. All of them are
class III base stations, and each base station has a radius
of 900m. We simulate the number of users from 2000
to 9000. The path loss model we adopted is PL(dB) =
131.1 + 42.8 log10(d2), where d2 is in kilometers [18].

Users are uniformly distributed in the given region. The
user’s signal-to-noise ratio (SNR) can be derived based on its
distance to the base station and the path loss model. Then, each
user can be mapped to the best modulation-coding scheme
it can utilize according to the relation between the SNR
ranges and modulation-coding schemes listed in Table II [17].
Each user randomly requests one of three kinds of data rate
requirements, 122 kbps, 256 kbps, and 512 kbps [13], [19]. For
the initial setting, each user will associate with the base station
that can provide the best modulation-coding scheme within its
reachable region. The results were derived by averaging values
collected from 500 independent simulations.

B. Simulation Results

The first result, shown in Fig. 2(a), demonstrates the re-
lationship between the total power saving and the amount
of users. The degree of power saving is calculated by the
following equation:

Pi − Pr

Pi
(9)

where Pi is the initial network power consumption before
the operation of switching base stations off, and Pr is the
network power consumption after executing the algorithm. As
expected, in both areas for both algorithms, the degree of
power saving decreases as the number of users increases. This
is because as the number of users increases, more base stations
have to remain active to serve the users. However, the degree
of power saving in GDCN decreases at a much slower rate than
that in DIST when the number of users increases. Since DIST
is only implemented in end devices, and those devices make a
decision at the same time based on the utility values, a ping-
pong effect may occur. Moreover, when the resources of base
stations with higher utility values are exhausted, the users will
stay in their original base stations without considering other
appropriate base stations, which limited the performance of
DIST. On the other hand, in GDCN, each base station can
determine by itself whether it should be switched off or not.
Fig. 2(b) shows the ratio of the base stations that are switched
off in both areas for both algorithms. We can observe that
GDCN can switch off much more base stations than DIST.
Moreover, GDCN switches off more base stations with higher
operational power (i.e., Classes II and III) in urban area.

In order to save network power consumption, whenever
a base station is switched off, the users under the base
station need to associate with another base station, and may
change their SNR values under the new base station. Fig. 3,
from the user’s point of view, shows the user distribution in
each modulation-coding scheme after and before executing
both algorithms, where INIT represents the initial settings
without the operation of switching base stations “off”. Note
that in the initial settings, each user associates with the base
station adopting the best modulation-coding scheme in the
communication. Therefore, in both figures, the number of
users communicating with the highest-rate modulation-coding
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scheme (i.e., QAM64-3/4) is very high in INIT. Moreover,
as expected, the number of users in QAM64-3/4 in urban
is higher than that in suburban for INIT, GDCN, and DIST.
This is because base stations are densely deployed in urban.
After executing both algorithms in both areas, the simulation
results show that the proportion of users in QAM64-2/3 (i.e.,
m = 6) in GDCN is higher than that in DIST, and the user
distribution among modulation-coding schemes is not greatly
changed, compared with INIT.

V. CONCLUSION

In this paper, we have studied the problem of energy-
efficient base station operation in 4G wireless networks. The
objective is to minimize total power consumption of all base
stations, provided that the data rate requirement of each user
is satisfied. We show the NP-hardness of the problem and
prove that our target problem cannot be approximated in
polynomial time with a ratio better than 3

2 . Then, we propose a
decentralized algorithm to tackle the problem. The simulation
results demonstrate that our approach can greatly reduce the
network power consumption by effectively gathering mobile
users into a smaller set of base stations, so that more base
stations can be switched off to save power.
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